CN211281000U - 空中轨道交通系统 - Google Patents

空中轨道交通系统 Download PDF

Info

Publication number
CN211281000U
CN211281000U CN201921220139.1U CN201921220139U CN211281000U CN 211281000 U CN211281000 U CN 211281000U CN 201921220139 U CN201921220139 U CN 201921220139U CN 211281000 U CN211281000 U CN 211281000U
Authority
CN
China
Prior art keywords
carriage
suspension
track
rail
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201921220139.1U
Other languages
English (en)
Inventor
陈锡阳
陈俊恺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan Kaidao Technology Co ltd
Original Assignee
Dongguan Kaidao Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongguan Kaidao Technology Co ltd filed Critical Dongguan Kaidao Technology Co ltd
Priority to CN201921220139.1U priority Critical patent/CN211281000U/zh
Application granted granted Critical
Publication of CN211281000U publication Critical patent/CN211281000U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

本实用新型公开了一种空中轨道交通系统,其包括轨道系统、驱动系统、车辆系统以及配电系统;轨道系统包括架设在两立柱之间的桁架梁和安装在桁架梁上的呈箱体结构的轨道梁;驱动系统包括悬挂于轨道梁上并可沿轨道梁前后行走的行走机构;车辆系统包括车厢,车厢通过升降机构与行走机构可分离式连接,以使得车厢可在竖直方向作升降运动;配电系统包括在桁架梁上铺设的高压配电线和若干变压器,若干变压器可安装在桁架梁或立柱上,变压器的输出端输出可被行走机构直接使用的低压电源;采用上述结构的本实用新型空中轨道交通系统,通过轨道系统、配电系统以及车辆系统的优化配置,有效降低了建设和运营成本,提高了车辆系统的运行效率。

Description

空中轨道交通系统
技术领域
本实用新型涉及空中轨道交通技术领域,尤其涉及一种空中轨道交通系统。
背景技术
空中轨道车(简称空轨)是悬挂式单轨交通系统。轨道在车上方,由钢铁或水泥立柱支撑在空中。由于空轨交通系统将地面交通移至空中,在无需扩展城市现有公路设施的基础上可缓解城市交通难题;又由于它只将轨道移至空中,而不是像高架轻轨或骑坐式单轨那样将整个路面抬入空中,因此克服了其他轨道交通系统的弊病,在建造和运营方面具有很多突出的特点和优点。目前,传统的空轨交通系统包含轨道、立柱、空轨车体、行走机构和控制系统等组件,其中,该系统的轨道为钢制箱形梁,称之为轨道梁,行走机构在轨道梁中带动空轨车体行走。
虽然空轨交通系统已被研究和试运行很长时间了,但是现有的空轨交通普遍存在结构臃肿、系统不够优化以及各个系统间配合不够顺畅的问题,如:将轨道梁直接安装在立柱上,导致轨道梁的预制规格比较笨重,由此还导致不能在轨道梁上安装配电系统,从而使得配电设备(如变压器)必须安装在车辆上,造车了车辆比较笨重,不仅影响速度,还浪费动力能源。因此,有必要对现有的空轨交通系统的系统结构进行优化,以提高运行效率,降低建设和运营成本。
实用新型内容
本实用新型的目的是提供一种优化的空中轨道交通系统,以提高运行效率,降低建设和运营成本。
为了实现上述目的,本实用新型公开了一种空中轨道交通系统,其包括轨道系统、驱动系统、车辆系统以及配电系统;所述轨道系统包括架设在两立柱之间的桁架梁和安装在所述桁架梁上的呈箱体结构的轨道梁;所述驱动系统包括悬挂于所述轨道梁上并可沿所述轨道梁前后行走的行走机构;所述车辆系统包括车厢,所述车厢通过升降机构与所述行走机构可分离式连接,以使得所述车厢可在竖直方向作升降运动,且所述行走机构可带动所述车厢沿所述轨道梁行走;所述配电系统包括在所述桁架梁上铺设的高压配电线和若干变压器,若干所述变压器可安装在所述桁架梁或所述立柱上,所述变压器的输出端输出可被所述行走机构直接使用的低压电源。
与现有技术相比,本实用新型空中轨道交通系统中,轨道系统包括有桁架梁和轨道梁,通过桁架梁将轨道梁安装固定在立柱上,这样,沿轨道梁长度方向上不同位置所受拉力可被桁架梁承担并分解到整个桁架梁和轨道梁上,使得同样运载量的轨道梁的预制规格得到有效降低,减轻轨道梁的自重,不仅节省材料,而且还可降低安装难度,降低建设成本;另外,由于桁架梁的设置,可在桁架梁上铺设高压配电线,通过高压输电,提高输电距离,降低输电过程中的损耗,同时,可将配电系统中比较笨重的变压器(包括整流设备)安装在桁架梁或立柱上,可有效降低车厢的重量,使得车辆轻装运行,提高运行速度,降低运行中的能源消耗,降低运营成本;另外,车厢通过升降机构可实现垂直式升降,以便于上下乘客;由此可知,通过上述轨道系统、配电系统以及车辆系统的优化配置,有效降低了建设和运营成本,提高了车辆系统的运行效率。
较佳地,所述桁架梁的上弦和/或下弦上设置有至少一对所述轨道梁,一对所述轨道梁安装在所述桁架梁长轴向的相对的两侧并通过若干腹杆连接。
较佳地,所述桁架梁内形成有沿所述桁架梁长度方向延伸的容置空间,所述容置空间用于放置配电设备。
较佳地,所述轨道梁的顶面与底面之间的距离为a,0.1m≤a≤0.4m,所述轨道梁的横截面的宽度为b,0.1m≤b≤0.4m。
较佳地,所述立柱与所述桁架梁的连接处设置有一冲力传递机构,所述冲力传递机构包括一对液压缸和一连接杆,一对所述液压缸上的油嘴通过一细管连接,以使得两所述液压缸的状态不能发生突变,所述连接杆固定安装在所述立柱上,且所述连接杆的前后两端还分别与所述立柱两端的两个所述桁架梁连接,一对所述液压缸中的其中一者的底座固定安装在所述立柱上,一对所述液压缸中的另一者的底座固定安装在所述连接杆的一端,且两所述液压缸的活塞抵接在同一所述桁架梁上。
较佳地,所述升降机构包括悬挂板、卷扬机构和吊索;所述悬挂板设置于所述车厢的顶部,与所述车厢通过若干吊索可分离式连接,且当所述车厢靠近所述悬挂板时,所述车厢与所述悬挂板无缝接触,所述悬挂板用于支撑和安装所述行走机构,所述悬挂板的前端或后端设置一与所述悬挂板连接的安装基板,所述卷扬机构安装在所述安装基板上;若干所述吊索的一端与所述车厢连接,若干所述吊索的另一端卷绕在所述卷扬机构上。
较佳地,所述卷扬机构包括卷扬轮和与所述卷扬轮传动连接的卷扬驱动器,若干所述吊索包括与所述车厢靠近所述卷扬机构所在一端连接的第一吊索和与所述车厢远离所述卷扬机构所在一端连接的第二吊索,所述第二吊索的上端沿所述悬挂板延伸至所述卷扬轮。
较佳地,所述车辆系统还包括一防摆动机构,所述防摆动机构包括一设置在所述车厢上的伸缩杆和设置在所述伸缩杆的自由端的磁铁块,所述磁铁块的两侧分别设置有一导向轮,当所述伸缩杆伸出所述箱体时,所述导向轮沿与所述车厢相对的所述立柱滚动,所述磁铁块与所述立柱之间产生具有一定力度的非接触磁吸力,所述磁吸力垂直于所述立柱。
较佳地,所述车辆系统还包括减振机构,所述减振机构包括悬挂轴、悬挂固定罩、直线电机驱动机构以及检测装置,所述悬挂固定罩与所述车厢连接,所述悬挂固定罩的底部开口处设置有一托板,所述悬挂轴的上端与所述行走机构连接,所述悬挂轴的下端穿过所述悬挂固定罩的空腔与所述托板连接,且所述悬挂轴可在所述悬挂固定罩中上下滑动,所述悬挂固定罩内还设置有可套在所述悬挂轴上的弹性件;所述直线电机驱动机构用于根据所述车体或所述轨道在竖直方向上的微幅的起伏变化为所述悬挂固定罩提供竖直方向上的上反驱动力,所述检测装置用于检测所述车厢在竖直方向上的位移或加速度的微幅变化量,所述检测装置与所述直线电机驱动机构电性连接。
较佳地,所述弹性件为空气弹簧,所述车厢上还设置有与所述空气弹簧的内腔连通的气囊,所述气囊的体积远大于所述弹性件的体积。
较佳地,所述车厢的头部和/或尾部覆设具有气囊结构的柔性壳体;当所述柔性壳体处于展开状态时,所述车厢整体呈流线型结构。
较佳地,所述车厢的顶部还具有前后延伸的套筒,所述套筒中设置一可沿所述套筒前后滑动的活动杆,所述活动杆的后端与所述柔性壳体连接。
较佳地,所述行走机构包括分别与所述车厢的顶部前后两端分别连接的主动轮机构和从动轮机构,所述主动轮机构和所述从动轮机构上分别设置有一连接件和一连接配合件,当前后所述车厢靠近时,后方所述车厢上方的连接件与前方所述车厢上方的连接配合件自动连接在一起,所述柔性壳体中的空气释放出来成收缩状态,以使得前后所述车厢无缝连接成为列车。
较佳地,所述连接件包括一咬合机构,所述连接配合件包括一连接块;所述咬合机构包括两相对设置的咬合片,两所述咬合片之间形成与所述连接块相适配的咬合空间,两所述咬合片之间可相对枢转运动,以打开或闭合所述咬合空间,且所述咬合空间与所述咬合片的长度延伸方向相垂直的两侧呈开放结构,以使得所述连接块从所述咬合空间内可侧滑分离。
较佳地,所述咬合空间与所述咬合片的长度延伸方向相垂直的两侧呈开放结构,以使得所述连接块从所述咬合空间内可侧滑分离。
较佳地,所述连接件上设置有与所述行走机构的电力驱动系统电性连接的第一电触头,所述连接配合件上设置有与所述行走机构的电力驱动系统电性连接的第二电触头,当所述连接件与连接配合件连接时,所述第一电触头与所述第二电触头电性连接。
较佳地,所述轨道系统中还包括一停靠系统,所述停靠系统包括设置于主车道至少一侧的一泊车架,所述泊车架包括两引道和若干停车道,两所述引道的一端分别与所述主车道上的前后两个位置对接,两所述引道的另一端自所述主车道横向向一侧延伸,每一所述停车道的两端分别与两引道连接,所述停车道用于集中悬挂停靠轨道车,所述轨道车可通过所述引道进出于任一所述停车道。
较佳地,沿所述轨道梁延伸方向,前后相邻两段所述轨道梁的行驶面的相对的端部分别设置一斜面,两所述斜面相对呈“八”字形设置,所述轨道系统还包括一无缝驳接系统,其包括一设置于两所述斜面之间的楔形驳接块,通过所述驳接块将两段所述轨道梁的行驶面无缝对接在一起,所述驳接块的两侧分别与所相对的两所述斜面之间设置有滑动连接结构,通过所述滑动连接结构,所述驳接块可沿两所述斜面在水平面内滑动,以使得两段所述轨道梁相对靠近或远离;所述驳接块上分别与两所述斜面相邻的侧边的长度小于所述斜面的长度,以使得所述驳接块在两段所述轨道梁的行驶面范围内滑动。
较佳地,所述空中轨道交通系统还包括一对行驶在轨道梁上的车辆进行实时定位的移动定位系统,所述移动定位系统包括若干编码色带组和一检测系统;若干所述编码色带组其沿所述轨道梁的延伸方向间隔设置,每一所述编码色带组包括若干条并行设置且具有不同的颜色排序的色带;所述检测系统安装在所述行走机构上,其包括一支撑板,所述支撑板上设置有若干组色带检测模组,每一所述色带检测模组分别与所述编码色带组内的其中一条所述色带相对应,每一所述色带检测模组包括若干色带检测器,若干所述色带检测器用于检测所述色带反射的光的颜色,以判断所对应的所述色带的颜色。
较佳地,所述检测系统还包括在彼此相邻的两所述色带检测模组之间设置的遮光板,所述遮光板用于分割两彼此相邻的所述色带检测模组的光线接收空间。
较佳地,所述检测系统还包括设置在所述支撑板前方用于将所述色带反射的混色光分解为单色光的光线处理元件,和位于所述光线处理元件与所述编码色带组之间的透光板,所述透光板上设置有若干分别与每一所述色带相对应的夹缝,光线通过所述夹缝后形成一光带。
较佳地,所述透光板与所述光线处理元件之间还设置有一聚光板,所述聚光板上设置有若干分别与所述透光板上的每一所述夹缝相对应的聚光镜。
附图说明
图1为本实用新型其中一实施例中轨道系统的其中一段的立体结构示意图。
图2为图1中桁架梁的立体结构示意图。
图3为本实用新型实施例中轨道梁的立体结构示意图。
图4为本实用新型另一实施例中轨道系统的其中一段的立体结构示意图。
图5为图4中D区的放大图。
图6为本实用新型其中一实施例中车辆系统与驱动系统的连接结构示意图。
图7为图6中车厢与悬挂板处于分离状态的示意图。
图8为图7中吊索的绕线示意图。
图9为图8中A区的放大结构示意图。
图10为本实用新型另一实施例中车辆系统与驱动系统的连接结构示意图。
图11为图10中悬挂固定罩的立体结构示意图。
图12为图10其中一视角下的分解示意图。
图13为图10另一视角下的分解示意图。
图14为本实用新型其中一实施例中,车辆系统的运行状态示意图。
图15为图14中B区的放大结构示意图。
图16为本实用新型实施例中,连接件与连接配合件的连接状态示意图。
图17为图16中连接件的立体结构示意图。
图18为本实用新型实施例中,停靠系统的立体结构示意图。
图19为本实用新型实施例中,无缝驳接系统的结构示意图。
图20为图19的分解示意图。
图21为沿图19F1方向的端面结构示意图。
图22为本实用新型无缝驳接系统实施例中,驳接块处于其中一状态下的立体结构示意图。
图23为本实用新型无缝驳接系统实施例中,驳接块处于另一状态下的立体结构示意图。
图24为本实用新型无缝驳接系统实施例中,驳接块处于另一状态下的立体结构示意图。
图25为实用新型实施例中,移动定位系统的安装结构示意图。
图26为实用新型实施例中,移动定位系统的原理结构示意图。
图27为在图26中的支撑板上安装遮光板的左视图。
图28为图26中的透光板的立体结构示意图。
具体实施方式
为详细说明本实用新型的技术内容、结构特征、实现原理及所实现目的及效果,以下结合实施方式并配合附图详予说明。
本实用新型公开了一种空中轨道交通系统,其包括轨道系统、驱动系统、车辆系统以及配电系统。如图1和图3,轨道系统包括架设在两立柱12之间的桁架梁10和安装在桁架梁10上的呈箱体结构的轨道梁11。如图4和图5,驱动系统包括悬挂于轨道梁11上并可沿轨道梁11前后行走的行走机构20,车辆系统包括车厢30和设置于车厢30上的升降机构,车厢30通过升降机构与行走机构20可分离式连接,以使得车厢30可在竖直方向作升降运动,且行走机构 20可带动车厢30沿轨道梁11行走。如图2,配电系统包括在桁架梁10上铺设的高压配电线40和若干变压器42,高压配电线40可安装在桁架梁10的底部,也可安装在桁架梁10侧部与轨道梁11之间的腹杆100上,若干变压器42可安装在桁架梁10或立柱12上,变压器42的输出端输出可被行走机构20直接使用的低压电源。
上述本实用新型空中轨道交通系统中,轨道系统包括有桁架梁10和轨道梁 11,通过桁架梁10将轨道梁11安装固定在立柱12上,沿轨道梁11长度方向上不同位置所受拉力可被桁架梁10承担并分解到整个桁架梁10和轨道梁11上,使得同样运载量的轨道梁11的预制规格得到有效降低,减轻轨道梁11的自重,不仅节省材料,而且还可降低安装难度,降低建设成本;另外,由于桁架梁10 的设置,可在桁架梁10上铺设高压配电线40,通过高压输电,提高输电距离,降低输电过程中的损耗,同时,可将配电系统中比较笨重的变压器安装在桁架梁10或立柱12上,可有效降低车厢30的重量,使得车辆轻装运行,提高运行速度,降低运行中的能源消耗,降低运营成本;再者,在车辆系统中,车厢30 通过升降机构可实现垂直式升降,以便于上下乘客。由此可知,通过上述轨道系统、配电系统以及车辆系统的优化配置,有效降低了建设和运营成本,提高了车辆系统的运行效率。
如图1和图2所示,桁架梁10的上弦上设置有一对轨道梁11,一对轨道梁 11安装在桁架梁10长轴向的相对的两侧并通过若干腹杆100连接。本实施例中,如图3,轨道梁11为钢制箱形梁,车厢30可悬挂于轨道梁11的底壁上的槽口 110处,行走机构20位于轨道梁11内部并可沿轨道梁11行走,来自于车厢30 的重力直接作用在轨道梁11上。在上述实施例中,由于桁架梁10的特殊桁架结构,其上弦具有抗压作用,下弦具有抗拉作用,当轨道梁11受到竖直向下的重力拉扯时,桁架梁10的上弦具有向中间挤压的趋势,桁架梁10的下弦具有向两侧拉扯的趋势,在这两趋势的互相作用下,桁架梁10整体具有比较高的抗形变能力,而由于轨道梁11通过若干腹杆100与桁架梁10连接,使得轨道梁 11与桁架梁10成为一个整体,将轨道梁11与桁架梁10联合在一起,来自于轨道车的重力负荷会通过腹杆100传递到桁架梁10上,这就从整体上提高了轨道梁11的抗形变能力和运载能力,即在同样运载负荷的要求下可大幅降低轨道梁11自身的高度,此处轨道梁11自身的高度指的是轨道梁11的顶面与底面之间的高度,正常情况下,轨道梁11的高度越大在竖直平面内的抗折弯能力越强。较优地,本实施例中,轨道梁11的高度优选为a,0.1m≤a≤0.4m,轨道梁的横截面的宽度为b,0.1m≤b≤0.4m,相比于传统的轨道梁11动辄需要一至两米的高度,即使在考虑所增加的桁架梁10所需材料的前提下也可大幅节省整体的造价成本。同时,由于若干腹杆100的设置,将轨道梁11分成若干支撑段,使得轨道梁11上自首端至尾端的各处的抗拉扯能力几乎相同,从而避免因轨道梁11的跨度比较大时因各段应力不同给轨道车带来的颠簸感,对于轨道车来说,在上述结构的轨道梁11上行走,可有效减少颠簸,稳定性好。另外,上述实施例中腹杆100的设置,还提高了轨道梁11的单位长度上的运载力,因此,可适当增大轨道梁11上悬挂的轨道车的密度。其次,由于轨道梁11自身高度可大幅降低,车厢30悬挂在轨道梁11上时,车厢30所占用的高度空间与桁架梁10重合,即桁架梁10不额外占用空间高度,这就缩减了轨道梁11对空间高度的要求,便于通过立交桥梁、涵洞等,容易在现有城市道路上叠加建设空中轨道交通系统。本实施例中,可根据车流量需求,在桁架梁10上设置一对或多对轨道梁11。
如图2所示,桁架梁10内形成有沿桁架梁10长度方向延伸的容置空间101,容置空间101用于放置配电设备41。本实施例中,可将配电设备41,如变压器、整流器、断路器等,放置在桁架梁10的容置空间101内,从而无须再为配电设备41设置额外的安装结构,施工方便,节约成本。
为应对热胀冷缩效应,轨道梁11都是分段设置,前后相邻的轨道梁11之间具有一定的缝隙,这就使得前后两段轨道梁11之间不能进行水平方向上的力的传递,那么当某一轨道梁11上产生制动冲力时(由于刹车而产生),该制动冲力只能被传递至该轨道梁11所属的立柱12上,进而传导到地面,然而在车辆瞬间产生较大的制动冲力的情况下,会对该立柱12产生较大的弯矩,使得立柱12变弯损坏,从而影响立柱12的寿命,为避免这种危害发生,立柱12需要设计更大的抗弯能力,耗用的材料成本也更大,并且立柱12的截面和占地更大,也影响美观。因此,较佳地,如图4和图5,立柱12与桁架梁10的连接处可设置一冲力传递机构,通过该冲力传递机构可将某一轨道梁11上产生的制动冲力传递到其他轨道梁11上,以减轻单一立柱12的弯矩。具体地,冲力传递机构包括一对液压缸16和一连接杆17,一对液压缸16上的油嘴通过一细管160连接,以使得两液压缸16的状态不能发生突变,即两液压缸16上的活塞不能快速移动,只能通过细管160缓慢变化(其中一液压缸16伸长,另外一液压缸16 压缩)。连接杆17固定安装在立柱12上,且连接杆17的前后两端还分别与立柱12两端的两个桁架梁10连接,一对液压缸16中的其中一者的底座固定安装在立柱12上,一对液压缸16中的另一者的底座固定安装在连接杆17的一端,且两液压缸16的活塞抵接在同一桁架梁10上。
下面具体说明上述冲力传递机构的工作原理:为便于说明,两液压缸16分别为第一液压缸16'和第二液压缸16”,立柱12前后的两桁架梁10分别为第一桁架梁10'和第二桁架梁10”,立柱12前后的两轨道梁11分别为第一轨道梁11' 和第二轨道梁11”,当第一轨道梁11'上产生如图4F1方向的制动冲力时,该制动冲力通过第一桁架梁10'传递给第二液压缸16”,此时,由于液压缸16状态不能发生突变,相当于一刚性元件,因此,制动冲力通过第二液压缸16”传递到立柱12上,此过程中,第二液压缸16”对立柱12产生一推力,然后立柱12再通过连接杆17将制动冲力传递到第二桁架梁10”上,以此向下传递,将该制动冲力分到前后多个桁架梁10上,最终通过多个立柱12将该制动冲力消化。同理,当第二轨道梁11”上产生如图4F2方向的制动冲力时,该制动冲力通过第二轨道梁11”和连接杆17传递到立柱12上,然后通过立柱12将制动冲力传递到第二液压缸16”,再通过第二液压缸16”传递给第一桁架梁10',由此,将制动冲力不断传递下去,此过程中,第二液压缸16”对立柱12产生拉力。由于连接杆17 将前后两桁架梁10连接为一体,因此,当前后两桁架梁10发生热胀冷缩时,由于热胀冷缩是缓慢发生的,因此前后两桁架梁10产生的应力会使得两液压缸16中的一者压缩,另外一者伸长,由此调节两桁架梁10之间的距离,从而达到应对热胀冷缩的效果。综上,本实施例中的冲力传递机构,通过一对液压缸 16和一连接杆17将前后两桁架梁10连接成一体,使之可互相传递制动冲力,同时由于两液压缸16之间的油路还通过细管160连通,因此两液压缸16可跟随热胀冷缩效应自动调节两桁架梁10之间的距离
如图7所示,升降机构包括悬挂板40、卷扬机构41和吊索42;悬挂板40 设置于车厢30的顶部,与车厢30通过若干吊索42可分离式连接,且当车厢30 靠近悬挂板40时,车厢30与悬挂板40无缝接触,悬挂板40用于支撑和安装行走机构20,悬挂板40的前端或后端设置一与悬挂板40连接的安装基板43,卷扬机构41安装在安装基板43上;若干吊索42的一端与车厢30连接,若干吊索42的另一端卷绕在卷扬机构41上。本实施例中,行走机构20安装在悬挂板40上,当车厢30升至上端与悬挂板40固定在一起时,行走机构20通过悬挂板40带动车厢30一起沿轨道梁11移动。车厢30与悬挂板40通过吊索42 以可分离的方式连接,由于卷扬机构41安装在车厢30的一端,不占用车厢30 顶部的空间,因此,车厢30正常行驶过程中,车厢30的顶壁与悬挂板40无缝抵接在一起,从而最大程度上拉近了车厢30与轨道梁11之间的距离,由于车厢30与行驶路面之间的安全距离是固定的,因此,通过拉近车厢30与轨道梁11之间的距离,可降低轨道梁11的安装高度,从而降低施工难度和施工成本,尤其是架设通过现有立交桥和隧道时,只需在一条快车道上空架设轨道,可以满足在轨道下面正常行驶高度小于2.7米的中巴车和小轿车,限高4.5米内的大型车辆行驶在主车道上,因而不需要改建立交桥和隧道。另外,车厢30高速行驶过程中,车厢30与悬挂板40直接抵接,还可降低车厢30的摆动幅度,有利于急转弯。
如图7和图8所示,卷扬机构41包括卷扬轮410和与卷扬轮410传动连接的驱动器411,若干吊索42包括与车厢30靠近卷扬机构41所在一端连接的第一吊索420和与车厢30远离卷扬机构41所在一端的第二吊索421,第二吊索421的上端沿顶盖延伸至卷扬轮410。本实施例中,第一吊索420和第二吊索421 分别固定在车厢30的前后两端,且第二吊索421沿顶盖延伸到卷扬轮410,从而通过安装在车厢30一端的卷扬轮410同时带动第一吊索420和第二吊索421 动作。较佳地,卷扬轮410有两个,两个卷扬轮410通过一驱动轴412与驱动器411传动连接,每一卷扬轮410上卷绕有一根第一吊索420和一根第二吊索 421。每个卷扬轮410上开设有相邻两卷绕槽,其中一个卷绕槽用于卷绕第一吊索420,另外一个卷绕槽用于卷绕与该卷扬轮410上的第一吊索420相对的第二吊索421,第一吊索420和第二吊索421分别固定在车厢30的前后两端的两个边角处,以对车厢30形成稳定的起吊。
如图7和图9所示,为避免车厢30在升降过程中侧向摆动,车辆系统还包括一防摆动机构,该防摆动机构包括一设置在车厢30上的伸缩杆310和设置在伸缩杆310的自由端的磁铁块311,磁铁块311的两侧分别设置有一导向轮312,当伸缩杆310伸出车厢30时,导向轮312沿与车厢30相对的立柱12滚动,磁铁块311与立柱12之间产生具有一定力度的非接触磁吸力,磁吸力垂直于立柱 12。在车厢30升降过程中,伸缩杆310处于伸出状态,此时,导向轮312沿立柱12滚动,磁铁块311靠近立柱12,与立柱12之间有1-5mm的距离,磁铁块 311与立柱12之间产生一水平方向的磁吸力,该磁吸力使得车厢30倾向于保持与立柱12相同的水平间距,并避免产生扭矩,而在竖直方向,当车厢30没有摆动时,磁铁块311与立柱12上下各个位置处的磁吸力相同,因此,该磁吸力在控制车厢30摆动的同时还不影响车厢30的上下移动。具体地,伸缩杆310 的自由端设置有一面对立柱12开口的固定盒313,磁铁块311嵌装在固定盒313 中,且导向轮312的轮沿凸出于固定盒313的开口面,当伸缩杆310伸出时,导向轮312与立柱12抵接,而保证磁铁块311与立柱12之间处于非接触状态。
如图10至图13所示,车辆系统还包括减振机构,减振机构包括悬挂轴320、悬挂固定罩321、直线电机驱动机构以及检测装置,悬挂固定罩321与车厢30 连接,悬挂固定罩321的底部开口处设置有一托板324,本实施例中,悬挂固定罩321上设置有两个开口,分别为靠近行走机构20的上开口3210和靠近车厢 30的下开口3211,上开口3210的口径与悬挂轴320的口径相当,下开口3211 的口径与托板324的口径相当。悬挂轴320的上端与行走机构20连接,悬挂轴 320的下端通过上开口3210穿过悬挂固定罩321的空腔与托板324连接,且悬挂轴320可在悬挂固定罩321中上下滑动,当轨道梁11在竖直方向上有起伏变化时,悬挂轴320带动托板324在悬挂固定罩321内腔中上下移动。悬挂固定罩321内还设置有可套在悬挂轴320上的弹性件325,弹性件325的底部与托板 324抵接,弹性件325的顶部与悬挂固定罩321的顶壁抵接,托板324的上下移动,会改变弹性件325的压缩量。直线电机驱动机构用于根据车厢30在竖直方向上的微幅的起伏变化为悬挂固定罩321提供竖直方向上的反驱动力,而检测装置用于检测车厢30在竖直方向上位移或加速度的微幅变化量,检测装置与直线电机驱动机构电性连接。
上述减振机构的工作原理为:车厢30的重量通过悬挂固定罩321压在弹性件325上,即悬挂轴320通过托板324和弹性件325将车厢30吊起,当车厢30 平稳行驶时,车厢30的重力G与弹性件325对悬挂固定罩321的支撑力F互相平衡(大小相等,方向相反)。当轨道梁11在竖直方向上有起伏变化时,悬挂轴320将跟随驱动机构起伏运动,悬挂轴320的起伏运动又会造成弹性件325 的弹力发生变化,即使得弹性件325对悬挂固定罩321的支撑力F发生变化,变为F’,从而使得悬挂固定罩321在竖直方向上产生一驱动力Fq,Fq=F'-G,根据公式F=m*a,该驱动力Fq使得车厢30在竖直方向产生加速度,进而产生位移,而当车厢30在竖直方向的加速度或位移出现微幅变化时,被检测装置获得,检测装置将这一变化量传输给直线电机驱动机构,直线电机驱动机构为悬挂固定罩321提供一与上述驱动力Fq方向相反大小相等的反驱动力Fq',Fq'与Fq大小相等,方向相反,从而使得悬挂固定罩321在竖直方向上的合力为零,即重新达到平衡,最终使得轨道车在竖直方向上的起伏趋势停止,这样,在轨道梁11起伏变化的情况下,虽然弹性件325的压缩量会跟随悬挂轴320产生一定的变化,但是车厢30在竖直方向上微幅移动后又会回到静止平衡状态,从而使得车厢30 的起伏振动降到最低,使得乘客几乎感觉不到振动感,改善了乘客的乘车体验感。本实施例中的直线电机驱动机构为一音圈电机,该音圈电机包括设置在悬挂固定罩321所形成的空腔中的定子3220和动子3221,定子3220和动子3221 中的其中一者套设在悬挂轴320的底端与托板324连接,定子3220和动子3221 中的另一者套设在悬挂轴320的上部与悬挂固定罩321连接。
由上可知,检测装置可检查车厢30的位移变化或者加速度变化,因此,检查装置可采用下述两种不同方式中的任一种,其一是:如图14和图15,包括与车厢30同步运动的位移检测器3230和沿轨道延伸方向与轨道平行设置的检测带3231,该检测带3231用作参考平面,位移检测器3230以检测带3231为参考平面实时检测车厢30在竖直方向上的位移变化量。位移检测器3230可采用高精度的激光测距仪,以捕捉车厢30在竖直方向毫米级的起伏变化。检测带3231 可采用高分子材料或超大分子聚乙烯材料,重量轻,在自重作用下不易产生弯曲变形,而且坚固耐用,使用时,将检测带3231两端拉紧固定在轨道沿线上每一轨道段两端的立柱12上,检测带3231不受车厢30的重力影响。另其二是:检测装置包括设置在车厢30上的高精度的加速度传感器(图未示),通过加速度传感器检测到的车厢30的加速度来调节直线电机驱动机构的动作。
较佳地,由于车厢30的重量比较大,即使弹性件325的压缩量以微小幅度变化,也会令弹性件325的弹力产生较大变化,这时就对直线电机驱动机构的功率提出比较高的要求,因此,为了减轻直线电机驱动机构的功率负担,如图 10和图13,弹性件325可优选为空气弹簧,车厢30上还可设置一与空气弹簧的内腔连通的气囊326,气囊326的体积远大于空气弹簧的体积。由于气囊326 与空气弹簧的内腔连通,因此空气弹簧由于压缩量变化产生的压强变化被空气弹簧和气囊326一起消化,又气囊326的体积远大于空气弹簧的体积,空气弹簧由于压缩量变化产生的压强变化的大部分会被气囊326消化掉。在没有安装气囊326的情况下,如果空气弹簧的压缩变化量为20mm,产生5000N的压力变化量,在增设气囊326的情况下,可以将空气弹簧的压力变化量降低到50N,从而降低了对直线电机驱动机构的功率要求。通常车厢30的重量在行驶过程中是不变的,当乘客上下车的变化而改变车厢30的重量时,可以通过气泵调节空气弹簧及气囊326的压强,使得车厢30静止平衡时空气弹簧处于压缩量的中值位置,在向上或向下起伏都有活动空间。
请再次参阅图6,车厢30的头部和/或尾部覆设具有气囊结构的柔性壳体 300,当柔性壳体300处于展开状态时,车厢30整体呈流线型结构,即该柔性壳体300可被充气展开,当柔性壳体300处于展开状态时,车厢30整体上呈向头部和尾部逐渐收缩的流线型结构。本实施例中,仅在尾部覆设柔性壳体300,头部为刚性壳体。当车厢30处于行进过程中时,柔性壳体300可被充气展开,形成一气囊,这样当前后两辆车厢30发生碰撞时,处于展开状态的柔性壳体300 可有效减缓碰撞力,从而达到有效保护车厢30和乘客的目的。另外,当将具有上述结构的车厢30首尾连接在一起组成列车时,可将柔性壳体300中的空气释放出来,使其处于松软状态,车辆对接时,后方车厢30的车头可插入前方车厢 30的柔性壳体300中,从而达到多辆车厢30无缝连接的目的,这就进一步减小了列车整体的风阻系数。再者,根据流体力学原理,一般来说,车辆高速行驶时,外型所造成的阻力来自车辆后方的真空区,真空区越大,阻力就越大,那么在本实施例中,由于当柔性壳体300处于展开状态时,其外表呈自车尾向后逐渐收缩的流线型结构,这就有效减小了车厢30后方的气流真空区,达到减小风阻的目的。本实施例中的柔性壳体300在处于展开状态时呈水滴形,从而最大限度地减小车厢30的风阻系数。本实施例中的柔性壳体300可为塑胶材料、布料等可形成气囊结构的材料,柔性壳体300通过铆钉、粘结或其他方式固定在车尾上。可通过气泵向柔性壳体300中充气,也可在柔性壳体300与车厢30 之间预留缝隙,当车厢30高速行驶时,通过该缝隙向柔性壳体300中灌气。
进一步改进,如图6,车厢30的顶部还具有前后延伸的套筒301,本实施例中,该套筒301安装在悬挂板40上,套筒301中设置可沿套筒301前后滑动的活动杆302,活动杆302的后端与柔性壳体300连接。本实施例中,套筒301 安装在车厢30上方的悬挂板40上,套筒301与活动杆302之间形成一活塞结构,当柔性壳体300处于松瘪状态时,活动杆302可为柔性壳体300提供支撑拉力,避免柔性壳体300的后端落下,而当柔性壳体300逐渐被吹起时,其带动活动杆302从套筒301中拉出。另外,由于套筒301和活动杆302的配合,当两车厢30发生碰撞时,如果活动杆302受到后车厢30的车头的碰撞,活动杆302会沿着套筒301急速向前滑动,那么在套筒301内部,活动杆302位于套筒301内的一端与套筒301的前端内壁之间会形成一阻挡活动杆302前移的反向阻挡气流,在该反向阻挡气流的作用下,减缓活动杆302的前移速度,进而减缓车厢30在碰撞作用力下的前移,降低碰撞对人体和车辆的冲击力。另外,活动杆302与套筒301之间具有用于空气进出的缝隙,从而使得空气可缓慢进出套筒301,达到缓冲碰撞的目的。当然,套筒301内可以填充液体,如油,可以大幅增加活动杆302抵抗的碰撞冲击力。
为便于轨道梁11上前后多个车辆系统之间连接在一起成为列车系统,以及减缓两车辆系统之间连接或碰撞时的冲击能量,如图6所示,行走机构20包括分别与悬挂板40的前后两端分别连接的主动轮机构200和从动轮机构201,主动轮机构200和从动轮机构201上分别设置有一连接件21和一连接配合件22,当前后两辆车厢30靠近时,后方车厢30上方的连接件21与前方车厢30上方的连接配合件22自动连接在一起,柔性壳体300中的空气释放出来成收缩状态,以使得前后车厢30无缝连接成为列车,进而使得前后两车厢30具有相同的运动状态。当前后两车厢30靠近到极限位置即将发生碰撞时,后方车厢30上方的连接件21与前方车厢30上方的连接配合件22连接在一起,且使得前后两车厢30连接成为一体,对于每一辆质量接近的车厢30来说,根据动量守恒定律,碰撞后连接在一起时的动量改变量为碰撞后分离时的动量改变量的二分之一,从而使得碰撞给每一辆车厢30所带来的影响降低了一半,从而有效提高了乘客的乘坐安全性和体验感。由此可知,通过上述连接结构,不仅可将多辆车厢30 连接成为列车,还可实现车厢30碰撞时的自动连接,从而减缓车厢30的碰撞伤害,提高了车厢30的安全性能。
如图16所示,连接件21包括一咬合机构,连接配合件22包括一连接块221。当前后两车厢30靠近时,连接块221被咬合机构咬住,使之成为一个整体。具体地,如图17,咬合机构包括两相对设置的咬合片210,两咬合片210之间形成与连接块221相适配的咬合空间211,两咬合片210之间可相对枢转运动,以打开或闭合咬合空间211。当连接块221与两咬合片210接触时,随着两车厢 30的进一步靠近,在连接块221的触动作用下,两咬合片210反向枢转,打开咬合空间211,当连接块221进入咬合空间211后,两咬合片210复位,从而将连接块221固定在咬合空间211中,完成两轨道车的固定连接。当然,为了简化结构,咬合片210也可以是只有上面或下面的其中一片。
具体地,咬合片210包括枢转部212和分别位于枢转部212两端的咬合部 213和驱动部214,咬合部213上设置有一向咬合空间211内凸伸的倒钩部215,驱动部214用于带动咬合部213相对枢转部212枢转,以使得两咬合片210上的咬合部213互相张开或闭合。本实施例中,当连接块221进入咬合空间211 内后,通过位于咬合部213上的倒钩部215阻挡连接块221脱离咬合空间211,当需要打开两辆车厢30之间的连接时,拉动咬合片210上的驱动部214,使得两咬合片210以各自的枢转部212转动中心相对反向枢转,从而使得两咬合片 210上的咬合部213互相远离,打开咬合空间211,释放连接块221。请继续参阅图17,两驱动部214之间设置有一可控驱动件216,驱动件216用于带动两驱动部214相对靠近或远离,当需要打开咬合空间211释放连接块221时,通过驱动件216拉动两驱动部214中的一者或两者互相靠近,从而使得咬合部213 张开。较佳地,该驱动件216为电磁铁,该电磁铁可吸附两驱动部214中的一者,也可同时吸附两驱动部214中的两者。
通常情况下,列车中,一车辆需要与前后车辆有效分离后才能在道岔转向脱离列车,如果一车辆与前后车辆没有实现分离状态下转向,将导致整列轨道车瞬间卡死在道岔位置的异常严重的事故,整列轨道车由高速行驶瞬间停止,给车辆和人员的冲击力将异常大,为解决该技术问题,较佳地,如图16,咬合空间211与咬合片210的长度延伸方向相垂直的两侧呈开放结构,以使得连接块221可从咬合空间211内可侧滑分离,从而实现任意车厢30在道岔上分道行驶而不需前后分离操作,大幅降低分道卡死风险。如图16所示,连接块221可沿C1-C2方向左右滑动,以实现连接块221与咬合空间211的分离。
另外,当列车中的某车辆上的电力系统由于故障或者其他原因断电时,该车辆只能被其拖下轨道梁11,这势必会影响整个列车的运行效率,为解决这一问题,如图16所示,上述实施例中的咬合空间211内设置有与行走机构20上的电力系统电性连接的第一电触头217,连接块221上设置有一凹槽,凹槽内嵌装有与行走机构20上的电力系统电性连接的第二电触头220,当连接块221进入咬合空间211内时,第一电触头217与第二电触头220电性连接。通过第一电触头217和第二电触头220的设置,当由多辆车厢30组成的列车中的其中一辆断电时,可由其他车厢30上方的行走机构20的电力系统为其提供电力供应。本实施例中,第一电触头217和第二电触头220通过绝缘胶塞固定。第一电触头217和第二电触头220除了可以传输电能,还可以用于载波传输信息,检测判断咬合片210是否进入咬合空间211等。
如图18所示,轨道系统中还包括一停靠系统,停靠系统包括设置于由轨道梁11形成的主车道13至少一侧的一泊车架14,本实施例中,主车道13的左右两侧分别相对设置一泊车架14。泊车架14包括两引道141和若干停车道140,两引道141的一端分别与主车道13上的前后两个位置对接,其中一引道141用于从主车道13进入泊车架14,另一引道141用于从泊车架14出来进入主车道 13,两引道141的另一端自主车道13横向一侧延伸,每一停车道140的两端分别与两引道141连接,停车道140用于集中悬挂停靠轨道车(包括车辆系统和驱动系统),轨道车可通过引道141进出于任一停车道140。具有上述结构的停靠系统,轨道车可从主车道13上通过其中一引道141进入其中任何一停车道140,在从停车道140上通过另一引道141进入主车道13,从而实现了停车道 140与主车道13的高效对接,另外,由于可在两引道141之间并行设置若干多个停车道140,因此,在主车道13一侧的某一段长度空间内,可以集中停放多辆轨道车,从而实现轨道车的集中停放,延长泊车架14的纵长距离就可以快速增加轨道车停车位的数量,这不仅有效地利用了地面道路上空的闲置空间建设停车位,还可降低轨道车空载行驶的里程和能耗,缩减用户为用车而消耗的进出站等待时间。
较佳地,主车道13可为平行延伸的双层车道,包括上层车道130和下层车道131,上层车道130和下层车道131的同一侧分别设置一泊车架14,分别位于同一侧上下两层的两泊车架14中的引道141通过斜道132连通,通过斜道132,轨道车可在上下两层泊车架14中转换。本实施例中,上层的泊车架14和下层的泊车架14之间具有两条斜道132、132’,其中一条斜道132用于由下层泊车架14到达上层泊车架14,另外一条斜道132’用于由上层泊车架14到达下层泊车架14,从而可在上层车道130和下层车道131中转换,进而实现轨道车的立体停放。较佳地,上层车道130和下层车道131的左右两侧分别相对设置有一泊车架14,其中,位于上层车道130两侧的两个泊车架14通过一环形的调头车道15连通。位于主车道13一侧的轨道车可通过调头车道15转向到主车道13 的另一侧,从而实现调头行驶,方便快速。由于调头车道15位于上层,当下层车道131上的轨道车需要通过调头车道15换向时,需要先通过斜道132进入上层的泊车架14,然后经由上层泊车架14中的引道141进入调头车道15。
为解决轨道梁11的热胀冷缩问题,如图19和图20,沿轨道梁11延伸方向,前后相邻两段轨道梁11的行驶面的相对的端部分别设置一斜面111,两斜面111 相对呈“八”字形设置,上述实施例中的轨道系统还包括一无缝驳接系统,其包括一楔形的驳接块60,驳接块60可被安装于两斜面111之间,通过驳接块60,两段轨道梁11沿道路延伸方向无缝对接在一起,且驳接块60通过滑动连接结构与两段轨道梁11滑动连接,通过滑动连接结构,两段轨道梁11可分别沿驳接块60上的相对的两个斜边L1、L2在水平面内滑动,以使得两段轨道梁11相对靠近或远离,且驳接块60上分别与两斜面111相邻的侧边的L1、L2长度小于斜面111的长度,以使得驳接块60在两段轨道梁11的行驶面范围内滑动。安装施工时,在现场准备至少一驳接块组,驳接块组包括若干驳接块60,每一不同的驳接块60呈等腰梯形,且底边依次相差5-10毫米,根据现场两段轨道梁 11之间的缝隙宽度选择一匹配的驳接块60把两段轨道梁11沿道路延伸方向无缝对接在一起。如图22至图24,当轨道梁11发生膨胀效应时,两段轨道梁11 对驳接块60产生挤压力,使得两段轨道梁111之间的间距缩小,带动驳接块60 沿两段轨道梁11短轴向OO’的F3方向滑动,从图22所示的状态变动到图24 所示的状态;当轨道梁11发生冷缩效应时,两段轨道梁11对驳接块60产生拉伸力,使得两段轨道梁11之间的间距变大,带动驳接块60沿两段轨道梁11短轴向OO’的F2方向滑动,从图22所示的状态变动到图23所示的状态。由于驳接块60跟随两段轨道梁11滑动,驳接块60本身为梯形,所以在调节两段轨道梁11之间的间距时驳接块60与两段轨道梁11始终保持无缝对接状态,进而实现了整条轨道上的轨道梁11之间的真正的无缝对接,进而降低了对预制轨道梁 11的公差配合的要求,也降低了施工难度,节省了施工成本。另外,由于驳接块60在两段轨道梁11的行驶面范围内滑动,因此,驳接块60不会影响到轨道车的正常行驶。本实施例中的轨道梁11为箱型的轨道梁11,驳接块60分别与两段轨道梁11的底壁连接。
如图20和图21,滑动连接结构包括分别设置在驳接块60的两斜边所在边沿处的两第一卡槽61,和设置在轨道梁11的对接边沿处的第二卡槽112,两第一卡槽61分别沿驳接块60的两斜边L1、L2延伸,第一卡槽61与第二卡槽112 可反向扣接在一起,且通过第一卡槽61和第二卡槽112的配合,轨道梁11可相对驳接块60滑动。本实施例中,第一卡槽61包括第一槽部62和第一边沿部 63,第二卡槽112包括第二槽部114和第二边沿部113,当将驳接块60安装在两段轨道梁11之间时,第一边沿部63与第二槽部114滑动连接,第二边沿部113与第一槽部62滑动连接,通过上述第一卡槽61和第二卡槽112的反向扣合滑动连接结构,不仅实现了驳接块60与两段轨道梁11之间的连接,还实现了驳接块60相对两段轨道梁11之间的滑动。第一卡槽61可优选为U型结构。
请再次参阅图20,为便于驳接块60的安装施工,驳接块60包括底板600 和盖设在底板600上并与底板600可拆卸连接的面板601,第一卡槽61开设在底板600上,本实施例中,面板601与底板600优选为通过螺钉连接,以方便拆卸。当将驳接块60安装到位后,通过底板600和面板601的结合,将两段轨道梁11的连接端夹持于面板601与底板600之间,此时,面板601的上表面与轨道梁11的上表面平齐。另外,轨道梁11上背向第二卡槽112的一侧还可开设一与面板601的边沿相适配的滑槽115,面板601可跟随底板600在滑槽115中滑动。
为更好地实现对车辆系统的精准定位,本实用新型空中轨道交通系统另一较佳实施例中还设置一对行驶在轨道梁11上的轨道车进行实时定位的移动定位系统,如图25和图26,其包括若干编码色带组50和检测系统。若干编码色带组50沿轨道梁11的延伸方向间隔设置,本实施例中,编码色带组50设置在轨道梁11的内壁上,每一编码色带组50包括若干条并行设置且具有不同的颜色排序的色带500,如某一编码色带组50内的色带500由上至下分别为红带、黄带、绿带、白带和黑带,相邻另一编码色带组50内的色带500分别为黄带、黄带、绿带、白带和黑带。检测系统安装在行走机构20上,以跟随轨道小车一起行走,检测系统包括一支撑板510,支撑板510上设置有若干组色带检测模组 511,每一色带检测模组511分别与编码色带组50内的其中一条色带500相对应,每一色带检测模组511包括若干色带检测器512,每一色带检测模组511内的若干色带检测器512用于检测所接到的不同的光的颜色,以判断所对应的色带500的颜色。对于每一编码色带组50来说,其中的某一色带500可能为多个颜色中的任意一个,每一色带500都反射与其颜色相同的光。检测时,每一色带500反射的光线投射到所对应的色带检测模组511内,在色带检测模组511 内,与色带500反射光线相对应的色带检测器512做出反应,从而判断出色带 500的颜色。对于色带检测器512,本实施例中可优选为颜色传感器或光敏二极管,下述实施例中以光敏二极管为例加以说明。
具有上述结构的基于色彩编码的移动定位装置的具体原理是:
如图25和图26所示,沿轨道梁11如轨道梁116的延伸方向等间隔地设置有若干定位段,A1、A2、A3……An,每个定位段An内并行设置有五条色带500,关于该五条色带500的颜色,可全部选择使用单色,如从红、橙、黄、绿、蓝、靛、紫中任意选择,也可选择使用由三基色(红、绿、蓝)组合而成的混色。当色带500全部选择使用单色时,每一色带检测模组511内设置与所使用色带 500的颜色种类相同数量的光敏二极管,每一光敏二极管用于检测一种色带500 反射的光线,如,当上述五条色带500的颜色从上述七种单色(红、橙、黄、绿、蓝、靛、紫)中选择时,每一色带检测模组511内需要设置七个光敏二极管。较优地,本实施例中,色带500可选择使用单色和混色,根据三基色(红、绿、蓝)原理,在每一色带检测模组511内均设置三个光敏二极管,该三个光敏二极管分别用于检测红光、绿光、蓝光,根据三个光敏二极管的检测结果综合判断所检测的色带500的颜色。如,该五条色带500的颜色可为红、黄(红+ 绿)、绿、黄、品红(红+蓝)、青(绿+蓝)、白(红+绿+蓝)和黑(不反射任一种三基色)中的任一种,将这五条色带500排列组合成不同的顺序设置在各个定位段An内,那么通过上述五种色带500可产生32768(85)种不同的编码色带组50,那么在轨道梁11上就可设置32768个定位段An,根据颜色对每个定位段An内的色带500进行编码,构成包括32768组定位编码的定位编码数据库,每一组定位编码对应一个已知位置的定位段An。如果在轨道梁11的两侧壁上均设置编码色带组50和与之对应的检测系统,那么在同样长度的轨道梁11上就可设置1073741824(32768*32768)个定位段An。定位段An的长度L决定了定位的精度,每个定位段An的长度L可根据需要自由设定,以满足不同级别的精度要求。当长度L设定为0.1米时,可以在10.7万公里长度的轨道上分布唯一的定位编码,满足若干城市轨道小车自动行驶定位和管理的需求。色带500 的宽度可设为10毫米,检测系统振动幅度在10毫米只内不会影响色带500的识别。
如图26,对应轨道梁11内壁上的五条色带500,支撑板510上自上至下间隔设置有五组色带检测模组511,每一组色带检测模组511分别与轨道梁11内壁上的一条色带500相对应,每一色带检测模组511包括有三个分别用于检测三种基础光线的光敏二极管。另外,由于对于色带500反射的混色光来说,需要将其处理为单色光,然后被光敏二极管接收,进而解析出该色带500的颜色,因此,本实施例中,检测系统还包括用于将色带500反射的混色光分解为单色光的光线处理元件,光线处理元件可包括在光敏二极管上涂覆的滤光层或在光敏二极管上设置的滤光罩,亦或者是在编码色带组50和支撑板510之间设置的分光器513,分光器513可优选为三棱镜或光栅。
当选择使用在三个光敏二极管上分别涂覆有红、绿、蓝滤光层时,如果色带500的颜色为黄色(红+绿),其所反射的黄光中包含有红、绿两种单色光,那么涂覆有红色滤光层的光敏二极管和涂覆有绿色滤光层的光敏二极管发生反应,输出信号“1”,涂覆有蓝色滤光层的光敏二极管输出信号“0”,从而根据光色组合“110”判断出该色带500的颜色为黄色。当选择使用三棱镜时,仍以黄色色带500为例,色带500反射出的黄光经过三棱镜分解为两束光,分别为红光和绿光,该两束光分别投射到对应的光敏二极管上,使得三个光敏二极管的输出组合为“110”,从而判断出该色带500颜色为黄色。
当轨道小车移动至某一定位段An时,支撑板510上的五组色带检测模组 511分别读取该定位段An内五条色带500的颜色,从而得到该定位段An的定位编码,然后通过查找上述定位编码数据库得到该定位段An的位置信息。由此可知,本实用新型基于色彩编码的移动定位装置检测识别的具体要素为色带500 的颜色,相比于图形形状的识别,具有识别速度快而且不受移动载体微幅振动的影响的优点。另外,本实施例中的移动定位装置还可设置一处理装置(图未示),处理装置与色带检测模组511电性连接,用于解析处理色带检测模组511 所检测到的编码色带组50中的色带500排序编码。该处理装置可自带存储器,轨道梁11上的与所有定位段An对应的定位编码可编辑成一数据库存储在处理装置的存储器中,以便处理装置调用,当色带检测模组511读取到某一定位段 An的定位编码时,传输给处理装置,处理装置快速给出轨道小车的当前定位信息。
另外,为避免同一束光线对上下彼此相邻的两组色带检测模组511造成影响,可采用下述两个方案来解决这一问题,其一是,如图27所示,在彼此相邻的两色带检测模组511之间设置遮光板514,遮光板514用于分割两彼此相邻的色带检测模组511的光线接收空间。其二是,如图26和图28,在三棱镜和编码色带组50之间设置透光板517,透光板517上设置有若干分别与每一色带500 相对应的夹缝518,光线通过夹缝518后形成一光带,每条色带500反射的光线经过透光板517上的夹缝518后形成一汇聚的光束,避免色带500反射光发散对色带检测模组511造成影响。在本方案中,还可在透光板517与三棱镜之间还设置有一聚光板515,聚光板515上设置有若干分别与透光板517上的每一夹缝518相对应的聚光镜516,该聚光镜516可为凸透镜,也可为凸透镜与凹透镜结合构成的具有聚光作用的透镜,当光束从透光板517上的夹缝518投射出来后投射在对应的聚光镜516上,色带500反射的光线经过透光板517上的夹缝 518后投射到与之对应的聚光镜516上,然后从聚光镜516投射到三棱镜上,光线经过聚光镜516的二次汇聚,使得投射到三棱镜上的光线更加凝聚。
以上所揭露的仅为本实用新型的较佳实例而已,当然不能以此来限定本实用新型之权利范围,因此依本实用新型申请专利范围所作的等同变化,仍属于本实用新型所涵盖的范围。

Claims (21)

1.一种空中轨道交通系统,其特征在于,包括轨道系统、驱动系统、车辆系统以及配电系统;
所述轨道系统,其包括架设在两立柱之间的桁架梁和安装在所述桁架梁上的呈箱体结构的轨道梁;
所述驱动系统,其包括悬挂于所述轨道梁上并可沿所述轨道梁前后行走的行走机构;
所述车辆系统,其包括车厢,所述车厢通过升降机构与所述行走机构可分离式连接,以使得所述车厢可在竖直方向作升降运动,且所述行走机构可带动所述车厢沿所述轨道梁行走;
所述配电系统,其包括在所述桁架梁上铺设的高压配电线和若干变压器,若干所述变压器可安装在所述桁架梁或所述立柱上,所述变压器的输出端输出可被所述行走机构直接使用的低压电源。
2.根据权利要求1所述的空中轨道交通系统,其特征在于,所述桁架梁的上弦和/或下弦上设置有至少一对所述轨道梁,一对所述轨道梁安装在所述桁架梁长轴向的相对的两侧并通过若干腹杆连接。
3.根据权利要求2所述的空中轨道交通系统,其特征在于,所述桁架梁内形成有沿所述桁架梁长度方向延伸的容置空间,所述容置空间用于放置配电设备。
4.根据权利要求2所述的空中轨道交通系统,其特征在于,所述轨道梁的顶面与底面之间的距离为a,0.1m≤a≤0.4m,所述轨道梁的横截面的宽度为b,0.1m≤b≤0.4m。
5.根据权利要求1所述的空中轨道交通系统,其特征在于,所述立柱与所述桁架梁的连接处设置有一冲力传递机构,所述冲力传递机构包括一对液压缸和一连接杆,一对所述液压缸上的油嘴通过一细管连接,以使得两所述液压缸的状态不能发生突变,所述连接杆固定安装在所述立柱上,且所述连接杆的前后两端还分别与所述立柱两端的两个所述桁架梁连接,一对所述液压缸中的其中一者的底座固定安装在所述立柱上,一对所述液压缸中的另一者的底座固定安装在所述连接杆的一端,且两所述液压缸的活塞抵接在同一所述桁架梁上。
6.根据权利要求1所述的空中轨道交通系统,其特征在于,所述升降机构包括悬挂板、卷扬机构和吊索;所述悬挂板设置于所述车厢的顶部,与所述车厢通过若干吊索可分离式连接,且当所述车厢靠近所述悬挂板时,所述车厢与所述悬挂板无缝接触,所述悬挂板用于支撑和安装所述行走机构,所述悬挂板的前端或后端设置一与所述悬挂板连接的安装基板,所述卷扬机构安装在所述安装基板上;若干所述吊索的一端与所述车厢连接,若干所述吊索的另一端卷绕在所述卷扬机构上。
7.根据权利要求6所述的空中轨道交通系统,其特征在于,所述卷扬机构包括卷扬轮和与所述卷扬轮传动连接的卷扬驱动器,若干所述吊索包括与所述车厢靠近所述卷扬机构所在一端连接的第一吊索和与所述车厢远离所述卷扬机构所在一端连接的第二吊索,所述第二吊索的上端沿所述悬挂板延伸至所述卷扬轮。
8.根据权利要求6所述的空中轨道交通系统,其特征在于,所述车辆系统还包括一防摆动机构,所述防摆动机构包括一设置在所述车厢上的伸缩杆和设置在所述伸缩杆的自由端的磁铁块,所述磁铁块的两侧分别设置有一导向轮,当所述伸缩杆伸出所述箱体时,所述导向轮沿与所述车厢相对的所述立柱滚动,所述磁铁块与所述立柱之间产生具有一定力度的非接触磁吸力,所述磁吸力垂直于所述立柱。
9.根据权利要求1所述的空中轨道交通系统,其特征在于,所述车辆系统还包括减振机构,所述减振机构包括悬挂轴、悬挂固定罩、直线电机驱动机构以及检测装置,所述悬挂固定罩与所述车厢连接,所述悬挂固定罩的底部开口处设置有一托板,所述悬挂轴的上端与所述行走机构连接,所述悬挂轴的下端穿过所述悬挂固定罩的空腔与所述托板连接,且所述悬挂轴可在所述悬挂固定罩中上下滑动,所述悬挂固定罩内还设置有可套在所述悬挂轴上的弹性件;所述直线电机驱动机构用于根据车体或所述轨道在竖直方向上的微幅的起伏变化为所述悬挂固定罩提供竖直方向上的上反驱动力,所述检测装置用于检测所述车厢在竖直方向上的位移或加速度的微幅变化量,所述检测装置与所述直线电机驱动机构电性连接。
10.根据权利要求9所述的空中轨道交通系统,其特征在于,所述弹性件为空气弹簧,所述车厢上还设置有与所述空气弹簧的内腔连通的气囊,所述气囊的体积远大于所述弹性件的体积。
11.根据权利要求1所述的空中轨道交通系统,其特征在于,所述车厢的头部和/或尾部覆设具有气囊结构的柔性壳体;当所述柔性壳体处于展开状态时,所述车厢整体呈流线型结构。
12.根据权利要求11所述的空中轨道交通系统,其特征在于,所述车厢的顶部还具有前后延伸的套筒,所述套筒中设置可沿所述套筒前后滑动的活动杆,所述活动杆的后端与所述柔性壳体连接。
13.根据权利要求11所述的空中轨道交通系统,其特征在于,所述行走机构包括分别与所述车厢的顶部前后两端分别连接的主动轮机构和从动轮机构,所述主动轮机构和所述从动轮机构上分别设置有一连接件和一连接配合件,当前后所述车厢靠近时,后方所述车厢上方的连接件与前方所述车厢上方的连接配合件自动连接在一起,所述柔性壳体中的空气释放出来成收缩状态,以使得前后所述车厢无缝连接成为列车。
14.根据权利要求13所述的空中轨道交通系统,其特征在于,所述连接件包括一咬合机构,所述连接配合件包括一连接块;所述咬合机构包括两相对设置的咬合片,两所述咬合片之间形成与所述连接块相适配的咬合空间,两所述咬合片之间可相对枢转运动,以打开或闭合所述咬合空间,且所述咬合空间与所述咬合片的长度延伸方向相垂直的两侧呈开放结构,以使得所述连接块从所述咬合空间内可侧滑分离。
15.根据权利要求14所述的空中轨道交通系统,其特征在于,所述连接件上设置有与所述行走机构的电力驱动系统电性连接的第一电触头,所述连接配合件上设置有与所述行走机构的电力驱动系统电性连接的第二电触头,当所述连接件与连接配合件连接时,所述第一电触头与所述第二电触头电性连接。
16.根据权利要求1所述的空中轨道交通系统,其特征在于,所述轨道系统中还包括一停靠系统,所述停靠系统包括设置于主车道至少一侧的一泊车架,所述泊车架包括两引道和若干停车道,两所述引道的一端分别与所述主车道上的前后两个位置对接,两所述引道的另一端自所述主车道横向向一侧延伸,每一所述停车道的两端分别与两引道连接,所述停车道用于集中悬挂停靠轨道车,所述轨道车可通过所述引道进出于任一所述停车道。
17.根据权利要求1所述的空中轨道交通系统,其特征在于,沿所述轨道梁延伸方向,前后相邻两段所述轨道梁的行驶面的相对的端部分别设置一斜面,两所述斜面相对呈“八”字形设置,所述轨道系统还包括一无缝驳接系统,其包括一设置于两所述斜面之间的楔形驳接块,通过所述驳接块将两段所述轨道梁的行驶面无缝对接在一起,所述驳接块的两侧分别与所相对的两所述斜面之间设置有滑动连接结构,通过所述滑动连接结构,所述驳接块可沿两所述斜面在水平面内滑动,以使得两段所述轨道梁相对靠近或远离;所述驳接块上分别与两所述斜面相邻的侧边的长度小于所述斜面的长度,以使得所述驳接块在两段所述轨道梁的行驶面范围内滑动。
18.根据权利要求1所述的空中轨道交通系统,其特征在于,还包括一对行驶在轨道梁上的车辆进行实时定位的移动定位系统,所述移动定位系统包括若干编码色带组和一检测系统;若干所述编码色带组其沿所述轨道梁的延伸方向间隔设置,每一所述编码色带组包括若干条并行设置且具有不同的颜色排序的色带;所述检测系统安装在所述行走机构上,其包括一支撑板,所述支撑板上设置有若干组色带检测模组,每一所述色带检测模组分别与所述编码色带组内的其中一条所述色带相对应,每一所述色带检测模组包括若干色带检测器,若干所述色带检测器用于检测所述色带反射的光的颜色,以判断所对应的所述色带的颜色。
19.根据权利要求18所述的空中轨道交通系统,其特征在于,所述检测系统还包括在彼此相邻的两所述色带检测模组之间设置的遮光板,所述遮光板用于分割两彼此相邻的所述色带检测模组的光线接收空间。
20.根据权利要求19所述的空中轨道交通系统,其特征在于,所述检测系统还包括设置在所述支撑板前方用于将所述色带反射的混色光分解为单色光的光线处理元件,和位于所述光线处理元件与所述编码色带组之间的透光板,所述透光板上设置有若干分别与每一所述色带相对应的夹缝,光线通过所述夹缝后形成一光带。
21.根据权利要求20所述的空中轨道交通系统,其特征在于,所述透光板与所述光线处理元件之间还设置有一聚光板,所述聚光板上设置有若干分别与所述透光板上的每一所述夹缝相对应的聚光镜。
CN201921220139.1U 2019-07-30 2019-07-30 空中轨道交通系统 Active CN211281000U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201921220139.1U CN211281000U (zh) 2019-07-30 2019-07-30 空中轨道交通系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201921220139.1U CN211281000U (zh) 2019-07-30 2019-07-30 空中轨道交通系统

Publications (1)

Publication Number Publication Date
CN211281000U true CN211281000U (zh) 2020-08-18

Family

ID=72030987

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201921220139.1U Active CN211281000U (zh) 2019-07-30 2019-07-30 空中轨道交通系统

Country Status (1)

Country Link
CN (1) CN211281000U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110329281A (zh) * 2019-07-30 2019-10-15 东莞开道科技有限公司 空中轨道交通系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110329281A (zh) * 2019-07-30 2019-10-15 东莞开道科技有限公司 空中轨道交通系统
WO2021017762A1 (zh) * 2019-07-30 2021-02-04 东莞开道科技有限公司 空中轨道交通系统

Similar Documents

Publication Publication Date Title
WO2021017762A1 (zh) 空中轨道交通系统
JP5330836B2 (ja) 車輌用ライン
KR101069525B1 (ko) 튜브 카, 튜브 네트워크, 개인용 운송 시스템 및 이들의 제어 시스템 및 제어 방법
US4690064A (en) Side-mounted monorail transportation system
US6431078B2 (en) Autonomous transport system
US4791871A (en) Dual-mode transportation system
CN109532868B (zh) 一种微轨交通系统
US6263799B1 (en) Vehicle guideway adaptor for a personal rapid transit system
JP5148318B2 (ja) 高速道路車両搬送設備及びそれを利用する自動車車両
EP2814711B1 (en) Modular transportation vehicle
CN107554534A (zh) 一种新能源空地两用共享空中轨道交通系统及运行方法
WO2004068438A1 (fr) Systeme de circulation de mini-vehicules sur des rails
CN107839696B (zh) 一种永磁轴式直驱空地共享立体快速轨道交通系统
KR101011467B1 (ko) 수평과 경사지 주행가능한 브이 가이드 파이프 레일 운행 시스템
CN109532875B (zh) 一种微轨轨道系统
CN211281000U (zh) 空中轨道交通系统
CN111731108B (zh) 超导磁悬浮与导向的内堪式低跨座空轨交通系统
WO2018228161A1 (zh) 轨道车辆控制系统、轨道车辆、轨道系统以及运输系统
CN1894118B (zh) 通过沟槽在地面引导车辆并给车辆供电的装置
CN109537376B (zh) 一种微轨轨道结构
CN112498400B (zh) 一种无人驾驶多式联运钢轨车及多式联运复合轨道系统
CN112109618B (zh) 一种多式联运车及多式联运复合轨道运输系统
CN100450843C (zh) 全自动交通系统
CN114144346A (zh) 一种多轨道变轨系统及其变轨方法、可变轨车辆
US6237500B1 (en) System for automated transport of passenger cabins, automobile platforms and other load-carriers

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant