CN211180052U - 一种使用高频电流互感器的电力电缆局部放电监测装置 - Google Patents

一种使用高频电流互感器的电力电缆局部放电监测装置 Download PDF

Info

Publication number
CN211180052U
CN211180052U CN201921431152.1U CN201921431152U CN211180052U CN 211180052 U CN211180052 U CN 211180052U CN 201921431152 U CN201921431152 U CN 201921431152U CN 211180052 U CN211180052 U CN 211180052U
Authority
CN
China
Prior art keywords
circuit
capacitor
band
inductor
partial discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201921431152.1U
Other languages
English (en)
Inventor
陈兴秀
任登辉
吕学宇
唐欢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xianheng International Hangzhou Electric Manufacturing Co ltd
Original Assignee
Xianheng International Hangzhou Electric Manufacturing Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xianheng International Hangzhou Electric Manufacturing Co ltd filed Critical Xianheng International Hangzhou Electric Manufacturing Co ltd
Priority to CN201921431152.1U priority Critical patent/CN211180052U/zh
Application granted granted Critical
Publication of CN211180052U publication Critical patent/CN211180052U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Relating To Insulation (AREA)

Abstract

本实用新型公开了一种电力电缆局部放电监测装置,它包括高频电流传感器、信号选通电路、滤波放大电路和主控单元,局部放电信号依次经过信号选通电路、滤波放大电路、ADC和主控单元;滤波放大电路包括滤波电路以及增益放大电路,局放信号被带通滤波电路分成若干个通道后依次经过相应的增益放大电路;滤波电路包括若干个带通滤波电路和若干个带阻滤波电路,各滤波电路并联;增益放大电路包括固定增益放大电路和可变增益放大电路,固定增益放大电路与带通滤波电路末端电连接,可变增益放大电路与带阻滤波电路末端电连接。本实用新型的有益效果是:提高了对微弱局部放电信号的探测精度;提高了特定频段放电信号的探测精度。

Description

一种使用高频电流互感器的电力电缆局部放电监测装置
技术领域
本实用新型涉及电故障的探测装置领域,尤其涉及一种使用高频电流互感器的电力电缆局部放电监测装置。
背景技术
电力电缆在工作运行中,由于外部原因以及内部原因(电场力和电流的效应、电缆制造工艺缺陷、施工损伤以及进水、气体腐蚀、外力破坏等)致使其绝缘能力下降,从而引起没有贯穿主绝缘层或者电缆接头附近的局部放电。电力电缆的局部放电属于绝缘介质的电气击穿,击穿过程中产生纳秒级别的电流,在导体上产生一个脉冲电流,然后从局部放电电源传播开来。局部放电会导致电力电缆的绝缘能力进一步恶化,甚至会进一步击穿电力电缆,从而威胁电力供应,通常使用高频电流互感器(HFCT)对电缆局部放电信号进行检测。因此,如何快速并有效地检测电力电缆局部放电对于提高供电可靠性有着较大意义。
中国专利申请号201710055326.8,公开日2018年07月31日,公开了一种电力电缆局部放电监测装置,该装置包括:交流高压发生设备与电力电缆电连接;高压电容耦合传感器与交流高压发生设备电连接;信号耦合单元设置在中间接头的金属外护层;局部放电测试仪与高压电容耦合传感器电连接;交流高压发生设备,用于向电力电缆施加低频交流电压信号以使电力电缆局部放电产生局部放电脉冲信号;多个信号耦合单元,用于在电力电缆局部放电时将局部放电脉冲信号耦合至电力电缆全线;高压电容耦合传感器用于获取电力电缆上的局部放电脉冲信号;局部放电测试仪用于根据上述局部放电脉冲信号计算所述电力电缆的局部放电量,本发明可以实现局部放电脉冲信号在电力电缆全线传输,提高局部放电量的计算精度。但是,上述专利并不能在全部放电射频区域对电力电缆局部放电进行高精度监测,在部分频段的放电信号可能湮没在噪声中。
实用新型内容
本实用新型要解决的技术问题是如何全部放电射频区域对电力电缆局部放电进行高精度监测。
本实用新型为解决上述问题所采用的技术方案是:一种使用高频电流互感器的电力电缆局部放电监测装置,包括高频电流传感器、信号选通电路、滤波放大电路、模拟数字转换器和主控单元,高频电流传感器获取的局部放电信号依次经过信号选通电路、滤波放大电路、模拟数字转换器和主控单元;滤波放大电路包括至少一个滤波电路以及至少一个增益放大电路,经过信号选通电路后的局部放电信号被若干个带通滤波电路分成若干个通道后依次经过相应的增益放大电路;滤波电路包括若干个带通滤波电路和若干个带阻滤波电路,各个滤波电路并联在局部放电信号输入端和主控单元输入端之间;增益放大电路包括固定增益放大电路和可变增益放大电路,固定增益放大电路与带通滤波电路末端电连接,可变增益放大电路与带阻滤波电路末端电连接。通过若干个带通滤波电路和若干个带阻滤波电路将局部放电信号分成若干个通道,再根据不同通道信号的强度选择合适的放大电路,能够将通常均匀并且较强的信号通过带通滤波电路挑选出来,然后经过固定增益放大电路进行信号放大;同时将通常较弱的信号通过带阻滤波通道挑选出来,然后经过可变增益放大电路增大增益,然后进行信号放大。从而避免较弱的信号湮没在噪声之中,进而提高了局部放电信号的探测精度。对特定频段的信号具有选择作用,然后进行放大处理,从而能够提高特定频段的探测精度。
作为优选,该监测装置还包括包络检波电路,位于滤波放大电路和模拟数字转换器之间。使用包络检波电路能够进一步提高对信噪比较低的信号的识别能力,进而提高了探测精度。
作为优选,该监测装置还包括罗氏线圈和相位处理电路,罗氏线圈和相位处理电路依次电连接,相位处理电路两端连接在罗氏线圈和主控单元之间。罗氏线圈是均匀缠绕在非铁磁性材料上的环形线圈,输出信号为电流对时间的微分,线圈与传感器设备电连接,不含铁磁性材料,无磁滞效应,几乎为零的相位误差;无磁饱和现象,因而测量范围可从数安培到数百千安的电流;结构简单,并且和被测电流之间没有直接的电路联系,罗氏线圈具有测量范围宽,精度高,稳定可靠,响应频带宽,同时具有测量和继电保护功能。相位处理电路,该部分由双路运放构成,第一路运放构成积分电路,对罗氏线圈输出的电压信号进行积分,还原真实的交流电流,第二路运放为电流相位边沿电路,通过过零比较得到信号相位信息。相位处理电路连接在易于现场安装使用的罗氏线圈输出端,能将相位信息完全反映到设备中,并且能将放电信号与相位信息对比分析。
作为优选,带通滤波电路为通带为1MHz~60MHz的带通滤波电路,带阻滤波电路为带阻为1MHz~60MHz的带阻滤波电路。通过设置以上滤波电路,使得1MHz~60MHz带宽内的信号被固定增益放大电路放大,而0~1MHz的低频信号和60MHz以上的较高频信号则通过可变增益放大电路进行放大,从而提高了装置对于低频信号和较高频信号的探测精度。
作为优选,带通滤波电路电路为以下电路,射频信号依次经过电容C4和电感L3,电容C2和电感L1串联后与电感L3并联,电容C2的一端与C4的一端连接;电容C6和电感L4串联后与电感L1并联,电容C6的一端与C2的一端连接;电容C3和电容C5串联后与电感L4并联,电容C3的一端与C6的一端连接;电感L2和电容C31串联后与电容C5并联,电感L2的一端与C3的一端连接;电感L5和电容C32串联后与电容C31并联,电感L5的一端与L2的一端连接;电感L13和电容C33串联后与电容C32并联,电感L13的一端与L5的一端连接;电感L13和电容C33的连接处为输出端,该输出端与固定增益放大电路的输入端连接。
作为优选,固定增益放大电路为以下电路,射频信号通过电容C16连接至SBB2089Z的RF_IN端,SBB2089Z的RF_OUT端通过电容L7连接在电容C17的第一端,电容C17的第一端与电感L6第一端连接,电容C14和电容C15并联在电感L6的第二端和接地线之间,+5V电源连接在电感L6的第二端,射频信号输出端为电容C17的第二端。
作为优选,可变增益放大电路为使用AD8367ARUZ芯片的可变增益放大电路。AD8367ARUZ芯片带有可控制线性增益的高性能45dB可变增益放大器,并可以在任意低频到500MHz的频率范围内稳定工作,从而增加了探测频宽。
作为优选,该监测装置还包括通信单元和存储单元,均受控于主控单元。存储单元采用SRAM,用于实时数据快速存储,外部采用FSMC总线形式扩展出SRAM,SRAM型号为IS61WV102416BLL,存储空间为1024K。
作为优选,该监测装置还包括供电单元,供电单元为信号选通电路、滤波放大电路、包络检波电路、主控单元和通信单元供电,包括3.3V、4V和±5V三种直流电源。
作为优选,通信单元为LoRa模块或GPRS模块。由LoRa形成低功耗局域网,传输距离能达到2-5公里,大大降低了部署成本,频率433MHZ,采用AES128加密保障数据安全。
本实用新型的有益效果是:1、提高了对微弱局部放电信号的探测精度;2、对特定频段的信号具有选择作用,然后进行放大处理,提高了特定频段的探测精度;3、准确地提取相位信息,保证检测的局放信号与实际的相位信息进行对比,进而分析得到设备的运行状态。
附图说明
图1为本实用新型的结构框图。
图2为本实用新型的可变增益放大电路图。
图3为本实用新型的固定增益放大电路图。
图4为本实用新型的相位处理电路。
图1中:1、信号选通电路,2、滤波放大电路,3、包络检波电路,4、主控单元,5、罗氏线圈,6、相位处理电路,7、通信单元,8、存储单元,9、供电单元。
具体实施方式
下面通过具体实施例,并结合附图,对本实用新型的具体实施方式作进一步具体说明。
本实用新型为解决上述问题所采用的技术方案是:图1为本实用新型的结构示意图,该电力电缆局部放电监测装置包括多个HFCT、信号选通电路1、滤波放大电路2、包络检波电路3、模拟数字转换器(ADC)、主控单元4、罗氏线圈5、相位处理电路6、通信单元7、存储单元8和供电单元9,n个HFCT获取的局部放电信号依次经过信号选通电路1、滤波放大电路2、包络检波单路3、ADC和主控单元4,信号经过获取、滤波放大、包络检测和模数转换后被主控单元处理,然后处理后的数据被存储和数据传输至服务器。
滤波放大电路2包括滤波电路以及增益放大电路,滤波电路包括一个带通滤波电路和一个带阻滤波电路,增益放大电路包括固定增益放大电路和可变增益放大电路,带通滤波电路和固定增益放大电路串联成A路,带阻滤波电路和可变增益放大电路串联形成B路,A路和B路并联在信号选通电路1输入端和包络检波电路3输入端之间。带通滤波电路为通带为1MHz~60MHz的带通滤波电路,带阻滤波电路为带阻为1MHz~60MHz的带阻滤波电路。通过设置以上滤波电路,使得1MHz~60MHz带宽内的信号被固定增益放大电路放大,而0~1MHz的低频信号和60MHz以上的较高频信号则通过可变增益放大电路进行放大,从而提高了装置对于低频信号和较高频信号的探测精度。进一步的,滤波电路还可以设置为可变带通滤波电路,与可变增益放大电路串联成C路,C电路与A路并联,C路能够对特定频段信号进行滤波放大,从而实现指定频段的高精度分析。进一步的,经过信号选通电路1后的局部放电信号被若干个带通滤波电路分成若干个通道后依次经过相应的增益放大电路,或者通过若干个带通滤波电路和若干个带阻滤波电路将局部放电信号分成若干个通道,再根据不同通道信号的强度选择合适的放大电路,能够将通常均匀并且较强的信号通过带通滤波电路挑选出来,然后经过固定增益放大电路进行信号放大;同时将通常较弱的信号通过带阻滤波通道挑选出来,然后经过可变增益放大电路增大增益,然后进行信号放大。从而避免较弱的信号湮没在噪声之中,进而提高了局部放电信号的探测精度。对特定频段的信号具有选择作用,然后进行放大处理,从而能够提高特定频段信号的探测精度。
主控单元4的主控芯片采用低功耗高性能芯片STM32L151ZDT6,设备整体实测功耗极低,对外部供电要求降低,能满足不同场合需要,可以使用小体积3W太阳能板供电以及CT自取电供电等多种方式,对电缆沟环境尤其适合。
图2为本实用新型的可变增益放大电路图,可变增益放大电路为使用AD8367ARUZ芯片的可变增益放大电路。AD8367ARUZ芯片带有可控制线性增益的高性能45dB可变增益放大器,并可以在任意低频到500MHz的频率范围内稳定工作,从而增加了探测频宽。AD8367主要特点:单端输入、单端输出;输入阻抗为200Ω、输出阻抗为50Ω;3dB带宽为500MHz;输入端为零电平时,输出端电平为电源电压的一半,且可调;具有增益控制特性选择和功耗关断控制功能;片上集成了律方根检波器,可以实现单片AGC应用;增益控制特性以dB成线性;可以通过外部电容将工作频率扩展到任意低频。
图3为本实用新型的固定增益放大电路图,射频信号通过电容C16连接至SBB2089Z的RF_IN端,SBB2089Z的RF_OUT端通过电容L7连接在电容C17的第一端,电容C17的第一端与电感L6第一端连接,电容C14和电容C15并联在电感L6的第二端和接地线之间,+5V电源连接在电感L6的第二端,射频信号输出端为电容C17的第二端。
包络检波电路3位于滤波放大电路2和ADC之间。使用包络检波电路3能够进一步提高对信噪比较低的信号的识别能力,进而提高了探测精度。罗氏线圈5和相位处理电路6依次电连接,相位处理电路6连接在罗氏线圈5和主控单元4之间。罗氏线圈5是均匀缠绕在非铁磁性材料上的环形线圈,输出信号为电流对时间的微分,线圈与传感器设备电连接,不含铁磁性材料,无磁滞效应,几乎为零的相位误差;无磁饱和现象,因而测量范围可从数安培到数百千安的电流;结构简单,并且和被测电流之间没有直接的电路联系,罗氏线圈5具有测量范围宽,精度高,稳定可靠,响应频带宽,同时具有测量和继电保护功能。相位处理电路6由双路运放构成,用于相位同步,第一路运放构成积分电路,对罗氏线圈输出的电压信号进行积分,还原真实的交流电流,第二路运放为电流相位边沿电路,通过过零比较得到信号相位信息,图4为相位处理电路图,第一路运放通过电阻R2连接至同步线圈信号输入端,第二路运放的第5端通过R3与第一运放的第1端连接,第二运放的第7端连接至主控单元4。相位处理电路6连接在易于现场安装使用的罗氏线圈5的输出端,能将相位信息完全反映到设备中,并且能将放电信号与相位信息对比分析。
带通滤波电路电路为以下电路,射频信号依次经过电容C4和电感L3,电容C2和电感L1串联后与电感L3并联,电容C2的一端与C4的一端连接;电容C6和电感L4串联后与电感L1并联,电容C6的一端与C2的一端连接;电容C3和电容C5串联后与电感L4并联,电容C3的一端与C6的一端连接;电感L2和电容C31串联后与电容C5并联,电感L2的一端与C3的一端连接;电感L5和电容C32串联后与电容C31并联,电感L5的一端与L2的一端连接;电感L13和电容C33串联后与电容C32并联,电感L13的一端与L5的一端连接;电感L13和电容C33的连接处为输出端,该输出端与固定增益放大电路的输入端连接。
存储单元8采用SRAM,用于实时数据快速存储,外部采用FSMC总线形式扩展出SRAM,SRAM型号为IS61WV102416BLL,存储空间为1024K。供电单元9为信号选通电路1、滤波放大电路2、包络检波电路3、主控单元4和通信单元7供电,包括3.3V、4V和±5V三种直流电源。通信单元7为LoRa模块或GPRS模块。由LoRa形成低功耗局域网,传输距离能达到2-5公里,大大降低了部署成本,频率433MHZ,采用AES128加密保障数据安全。
以上所述的实施例只是本实用新型的一种较佳的方案,并非对本实用新型作任何形式上的限制,在不超出权利要求所记载的技术方案的前提下还有其它的变体及改型。

Claims (10)

1.一种使用高频电流互感器的电力电缆局部放电监测装置,其特征在于,包括高频电流传感器、信号选通电路、滤波放大电路、模拟数字转换器和主控单元,所述高频电流传感器获取的局部放电信号依次经过信号选通电路、滤波放大电路、模拟数字转换器和主控单元;
所述滤波放大电路包括至少一个滤波电路以及至少一个增益放大电路,经过信号选通电路后的局部放电信号被若干个带通滤波电路分成若干个通道后依次经过相应的增益放大电路;
所述滤波电路包括若干个带通滤波电路和若干个带阻滤波电路,各个滤波电路并联在局部放电信号输入端和主控单元输入端之间;
所述增益放大电路包括固定增益放大电路和可变增益放大电路,所述固定增益放大电路与带通滤波电路末端电连接,所述可变增益放大电路与带阻滤波电路末端电连接。
2.根据权利要求1所述的电力电缆局部放电监测装置,其特征在于,还包括包络检波电路,位于滤波放大电路和模拟数字转换器之间。
3.根据权利要求2所述的电力电缆局部放电监测装置,其特征在于,还包括罗氏线圈和相位处理电路,所述罗氏线圈和相位处理电路依次电连接,所述相位处理电路两端连接在罗氏线圈和主控单元之间。
4.根据权利要求1所述的电力电缆局部放电监测装置,其特征在于,所述带通滤波电路为通带为1MHz~60MHz的带通滤波电路,所述带阻滤波电路为带阻为1MHz~60MHz的带阻滤波电路。
5.根据权利要求1或4所述的电力电缆局部放电监测装置,其特征在于,所述带通滤波电路为以下电路,射频信号依次经过电容C4和电感L3,电容C2和电感L1串联后与电感L3并联,电容C2的一端与C4的一端连接;电容C6和电感L4串联后与电感L1并联,电容C6的一端与C2的一端连接;电容C3和电容C5串联后与电感L4并联,电容C3的一端与C6的一端连接;电感L2和电容C31串联后与电容C5并联,电感L2的一端与C3的一端连接;电感L5和电容C32串联后与电容C31并联,电感L5的一端与L2的一端连接;电感L13和电容C33串联后与电容C32并联,电感L13的一端与L5的一端连接;电感L13和电容C33的连接处为输出端,该输出端与固定增益放大电路的输入端连接。
6.根据权利要求5所述的电力电缆局部放电监测装置,其特征在于,所述固定增益放大电路为以下电路,射频信号通过电容C16连接至SBB2089Z的RF_IN端,SBB2089Z的RF_OUT端通过电容L7连接在电容C17的第一端,电容C17的第一端与电感L6第一端连接,电容C14和电容C15并联在电感L6的第二端和接地线之间,+5V电源连接在电感L6的第二端,射频信号输出端为电容C17的第二端。
7.根据权利要求1所述的电力电缆局部放电监测装置,其特征在于,所述可变增益放大电路为使用AD8367ARUZ芯片的可变增益放大电路。
8.根据权利要求6或7所述的电力电缆局部放电监测装置,其特征在于,还包括通信单元和存储单元,均受控于主控单元。
9.根据权利要求8所述的电力电缆局部放电监测装置,其特征在于,还包括供电单元,所述供电单元为信号选通电路、滤波放大电路、包络检波电路、主控单元和通信单元供电,包括3.3V、4V和±5V三种直流电源。
10.根据权利要求8所述的电力电缆局部放电监测装置,其特征在于,所述通信单元为LoRa模块或GPRS模块。
CN201921431152.1U 2019-08-30 2019-08-30 一种使用高频电流互感器的电力电缆局部放电监测装置 Active CN211180052U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201921431152.1U CN211180052U (zh) 2019-08-30 2019-08-30 一种使用高频电流互感器的电力电缆局部放电监测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201921431152.1U CN211180052U (zh) 2019-08-30 2019-08-30 一种使用高频电流互感器的电力电缆局部放电监测装置

Publications (1)

Publication Number Publication Date
CN211180052U true CN211180052U (zh) 2020-08-04

Family

ID=71807651

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201921431152.1U Active CN211180052U (zh) 2019-08-30 2019-08-30 一种使用高频电流互感器的电力电缆局部放电监测装置

Country Status (1)

Country Link
CN (1) CN211180052U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114280432A (zh) * 2021-11-24 2022-04-05 浙江新图维电子科技有限公司 一种电缆局放监测设备及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114280432A (zh) * 2021-11-24 2022-04-05 浙江新图维电子科技有限公司 一种电缆局放监测设备及方法
CN114280432B (zh) * 2021-11-24 2023-10-13 浙江新图维电子科技有限公司 一种电缆局放监测设备及方法

Similar Documents

Publication Publication Date Title
CN106771922B (zh) 一种高压电力设备局部放电检测系统及局部放电识别方法
James et al. Application of digital filtering techniques to the determination of partial discharge location in transformers
CN106501562B (zh) 用于电磁干扰噪音源的隔离差分电压探针
CN105137292A (zh) 用于高压电缆故障定位的直流信号智能采集装置
CN104614648A (zh) 一种电声联合直流局部放电检测装置
CN102981110A (zh) 实现变压器高频超高频局放监测数据测量存储系统及方法
Farag et al. On-line partial discharge calibration and monitoring for power transformers
CN207301251U (zh) 变压器绝缘性检测装置
CN211180052U (zh) 一种使用高频电流互感器的电力电缆局部放电监测装置
CN116047172A (zh) 一种电源滤波器插入损耗在线测试计算系统
CN105372617A (zh) 一种三相电容式电压互感器误差整体检定方法
CN111044792A (zh) 一种高压电缆介质损耗带电检测系统及方法
CN203037802U (zh) 一种实现变压器高频超高频局放监测的数据测量存储系统
CN210604864U (zh) 线圈匝间绝缘检测装置
CN209746080U (zh) 一种电缆附件局部放电地电波多频带局部放电检测装置
CN205091423U (zh) 用于高压电缆故障定位的直流信号智能采集装置
KR100684741B1 (ko) 배전선로 개폐장치의 부분방전을 검출하는 장치 및 방법
CN115754585A (zh) 一种采用消磁技术的高频电流传感采集单元
CN203164353U (zh) 一种不拆头式变压器介质谱测试结构
Pinhas et al. On the development of transfer function method for fault identification in large power transformers on load
Javaid et al. High pass filter based traveling wave method for fault location in VSC-Interfaced HVDC system
Sharifinia et al. Application of a Rogowski coil sensor for separating internal and external partial discharge pulses in power transformers
KR102254776B1 (ko) 고정밀 임피던스 측정 장치
Siddiqui et al. A versatile solution for continuous on-line PD monitoring
CN105510777B (zh) 一种差分式脉冲磁体绝缘故障探测装置

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant