CN210803269U - 原位高压吸收光谱测量系统 - Google Patents

原位高压吸收光谱测量系统 Download PDF

Info

Publication number
CN210803269U
CN210803269U CN201921612343.8U CN201921612343U CN210803269U CN 210803269 U CN210803269 U CN 210803269U CN 201921612343 U CN201921612343 U CN 201921612343U CN 210803269 U CN210803269 U CN 210803269U
Authority
CN
China
Prior art keywords
pressure
unit
sample
measurement system
absorption spectroscopy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201921612343.8U
Other languages
English (en)
Inventor
潘凌云
张宇
黄晓丽
黄艳萍
崔田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201921612343.8U priority Critical patent/CN210803269U/zh
Application granted granted Critical
Publication of CN210803269U publication Critical patent/CN210803269U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本实用新型公开了一种原位高压吸收光谱测量系统,其包括:光源单元,至少用于提供对待测样品进行照射的入射光束;扩束准直单元,至少用于对所述入射光束进行扩束准直以形成平行光束;第一显微物镜单元,至少用于将经扩束准直后的光束导入高压样品容置单元的高压腔内;高压样品容置单元,至少用于为待测样品提供高压测量环境;第二显微物镜单元,至少用于将所述高压样品容置单元的高压腔内的待测样品出射的出射光束导入光谱处理单元;光谱处理单元,至少用于对所述的出射光束进行光谱检测并对获得的光谱进行分析处理。本实用新型提供的原位高压吸收光谱测量系统能够在高压条件下测量物质紫外‑可见吸收光谱,具有很高的稳定性、准直性和灵活性。

Description

原位高压吸收光谱测量系统
技术领域
本实用新型涉及一种光谱测量系统,特别涉及一种原位高压吸收光谱测量系统,属于光学设备技术领域。
背景技术
随着高压技术的发展日渐成熟,金刚石压砧(diamond anvil cell,DAC)可以提供高达几百 GPa(1GPa=109Pa,常温常压为1.01x105Pa,Pa:帕斯卡)的压力并进行完全的原位物理性质测量,而金刚石本身的(金刚石在紫外区的吸收波长最大为320nm)范围透明的为我们提供了一个光学测量窗口,可以对禁带宽度<5eV的材料进行紫外-可见吸收光谱的测量。随着压力的逐渐增加,物质的性质会与在常压环境下相比发生很大的变化,比如电磁特性、物理结构、化学性质、晶体和非晶体转变等等。光谱学通过光与物质相互作用过程,结果揭示物质内部结构,是探讨高压作用下的物性演化趋势,并进行高压作用机理探讨的有力工具之一。
紫外-可见吸收光谱属于分子光谱,是一种简便直观的光谱测试手段,其主要内容是测量物质吸收度;当紫外-可见波段光场照射到物质表面时,物质中原本处于低能级(基态)的粒子通过吸收这一波段内对应自身能级能量的光子跃迁到高能级(激发态),因此通过物质的出射光场会在不同波长处出现不同程度的光吸收情况,形成吸收谱图。通过变换物理、化学参数,探讨吸收谱图的变化,可以对物质的结构、组成、含量进行分析。紫外-可见光谱广泛应用于生物,材料体系等的研究中,是实验室必备技术手段之一;但是目前实验室中常见的紫外-可见吸收测量装置均是针对常压下的物质吸收,大部分只需要将光源、比色皿、光谱仪连接即可。但是,现有的普通光路系统并不适合在DAC装置中进行原位高压下的紫外-可见吸收光谱测量。
实用新型内容
本实用新型的主要目的在于提供一种原位高压吸收光谱测量系统,通过引入长工作距离显微物镜组,可实时切换样品腔内视光路;利用光阑达到对测试样品进行选区的目的,从而实现长工作距离下DAC腔内高压原位紫外-可见吸收光谱的采集,进而克服现有技术中的不足。
为实现前述实用新型目的,本实用新型采用的技术方案包括:
本实用新型实施例提供了一种原位高压吸收光谱测量系统,其包括:
光源单元,至少用于提供对待测样品进行照射的入射光束;
扩束准直单元,至少用于对所述入射光束进行扩束准直以形成平行光束;
第一显微物镜单元,至少用于将经扩束准直后的光束导入高压样品容置单元的高压腔内;
高压样品容置单元,至少用于为待测样品提供高压测量环境;
第二显微物镜单元,至少用于将所述高压样品容置单元的高压腔内的待测样品出射的出射光束导入光谱处理单元,以及,
光谱处理单元,至少用于对所述的出射光束进行光谱检测并对获得的光谱进行分析处理;
其中,所述扩束准直单元与第一显微物镜单元依次设置在入射光束的光路上,所述第二显微物镜单元与光谱处理单元依次设置在出射光束的光路上。
在一些较为具体的实施方案中,所述入射光束为紫外-可见光波段的光束。
在一些较为具体的实施方案中,所述入射光束的波长为200nm-2400nm。
在一些较为具体的实施方案中,所述扩束准直单元包括间隔设置在所述入射光束的光路上的第一全反射镜和两个以上的透镜,所述第一全反射镜至少用于对所述入射光束进行准直,所述两个以上的透镜至少用于将准直后的光束进行扩束并形成平行光束。
在一些较为具体的实施方案中,所述的透镜为平凸透镜,相邻两个平凸透镜中相对设置一侧面同为平面或凸面。
在一些较为具体的实施方案中,所述平凸透镜的通光孔径为23.9mm,焦距为50-100mm。
在一些较为具体的实施方案中,所述第一显微物镜单元和第二显微物镜单元均包括长工作距离显微物镜。
在一些较为具体的实施方案中,所述第一显微物镜单元和第二显微物镜单元的放大倍数为 10-20倍,数值孔径为0.23-0.33,工作距离为13.50-50.00mm。
在一些较为具体的实施方案中,所述的原位高压吸收光谱测量系统还包括第一光阑,所述第一光阑设置于所述扩束准直单元和所述第一显微物镜单元之间,并至少用于调节入射至所述第一显微物镜单元的入射光束的直径。
在一些较为具体的实施方案中,所述第一光阑的通光孔径为1.0mm-11mm。
在一些较为具体的实施方案中,所述的原位高压吸收光谱测量系统还包括第二光阑,所述第二光阑设置在所述第二显微物镜单元的光束输出端,并至少用于对第二显微物镜单元输出的出射光束的部分进行阻隔,仅使由高压腔内的预设区域出射的出射光束通过并导入光谱处理单元;该预设区域包括具有待检测样品的样品区域以及不具有待检测样品的背底区域。
在一些较为具体的实施方案中,所述第二光阑的通光孔径为1.0mm-11mm。
在一些较为具体的实施方案中,所述的原位高压吸收光谱测量系统还包括成像单元,所述成像单元包括第二全反射镜以及成像装置,所述第二全反射镜设置在所述出射光束的光路上,并至少用于改变所述出射光束的预设传输路径而将所述的出射光束导入成像装置。
进一步地,所述的成像装置为CCD成像装置。
在一些较为具体的实施方案中,所述第二全反射镜设置在所述第二光阑与光谱处理单元之间。
进一步地,所述的光谱处理单元包括光谱仪,光谱仪可以与电脑连接。
在一些较为具体的实施方案中,所述高压样品容置单元包括四维组合调节支架以及设置在所述四维组合调节支架上的高压样品容置机构,所述四维组合调节支架能够调节所述高压样品容置机构的空间位置。
在一些较为具体的实施方案中,所述高压样品容置机构包括金刚石压砧装置。
在一些较为具体的实施方案中,所述四维组合调节支架包括自上到下依次设置的夹持器、三维组合平移台和旋转台;所述夹持器至少用于固定所述金刚石压砧装置;所述三维组合平移台至少用于调节所述高压样品容置机构的空间位置;所述旋转台至少用于使高压样品容置机构的端面与经由所述第一显微物镜单元导出的入射光束保持垂直。
具体的,自上到下依次组装的夹持器、三维组合平移台和旋转台通过各自固定座上的沉孔固定在一起,所述旋转台用于调整放在所述夹持器上的所述DAC装置与所述入射光束的角度以实现所述DAC装置的端面与所述入射光束垂直,所述三维组合平移台通过千分丝杆调节所述DAC 装置中样品的聚焦,以及调节所述DAC装置相对于所述第一显微物镜单元导出的所述入射光束上下、左右的空间位置。
在一些较为具体的实施方案中,所述的原位高压吸收光谱测量系统还包括光学笼式系统,所述光源单元、扩束准直单元、第一显微物镜单元以及第二显微物镜单元设置于所述光学笼式系统中。
与现有技术相比,本实用新型实施例提供的原位高压吸收光谱测量系统,能够在高压条件下测量物质紫外-可见吸收光谱,具有很高的稳定性,准直性和灵活性。
附图说明
图1是本实用新型一典型实施案例中一种高压原位紫外-可见吸收光谱测量系统的光路结构示意图;
图2是本实用新型一典型实施案例中装有待测罗丹明B样品的DAC装置;
图3是本实用新型一典型实施案例中罗丹明B样品在常压下的紫外-可见吸收光谱;
图4是本实用新型一典型实施案例中位于DAC装置中的罗丹明B样品未施压时,其在CCD 成像装置上的图像;
图5是本实用新型一典型实施案例中位于DAC装置中的罗丹明B样品加压结束时,其在 CCD成像装置上的图像;
图6是本实用新型一典型实施案例中位于DAC装置中的罗丹明B样品加压过程中,在不同高压下的紫外-可见吸收光谱图像;
图7是本实用新型一典型实施案例中位于DAC装置中的罗丹明B样品卸压过程中,在不同压高压下的紫外-可见吸收光谱图像;
附图标记说明:1-光源;2-第一光纤;3-平凸透镜;4-第一光阑;5-平凸透镜;6-第一全反射镜;7-平凸透镜;8-第一显微物镜;9-四维组合调节支架;10-第二显微物镜;11-第二光阑;12- 第二全反射镜;13-CCD成像装置;14-第二光纤;15-光谱仪;16-电脑;20-DAC装置;21-DAC 装置施压部分;22-金刚石的台面;23-金刚石的砧面;24-钢片;25-待测样品罗丹明B;26-传压介质;27-标压介质红宝石;28-样品腔;29-金刚石对顶砧。
具体实施方式
鉴于现有技术中的不足,本案实用新型人经长期研究和大量实践,得以提出本实用新型的技术方案。如下将对该技术方案、其实施过程及原理等作进一步的解释说明。
DAC装置(金刚石压砧,下同)中的施压体系是一对砧面直径几百甚至几十微米(10-6m)的金刚石对顶砧,砧面之间放入中空钢片,中空钢片作为样品腔,是由钢片被DAC装置加压到一定厚度后打孔而成,其压至厚度约为60gm,中空直径约为120μm到160μm,该直径尺寸随施压范围而变化,随压力升高而递减。因此,样品腔对应的通光孔径为常压光路的1/10到1/100,需要借助显微物镜将光路引入压机样品腔;DAC装置中,端面到对顶砧之间样品腔的距离为 13.50mm,因此要求显微物镜为长工作距离物镜(工作距离至少为13.50mm);金刚石对顶砧折射率为2.42,因此会对入射光产生折射;同理,经过样品出射的光也会再次在金刚石对顶砧处发生折射,因此在光路搭建过程中,需要高于常压光路的准直性;高压实验中需要标定样品腔内的压力,因此样品腔内除样品外还会有标压介质(红宝石),而红宝石在紫外-可见波段有吸收,因此在实验中需要避免入射光通过红宝石。
请参阅图1,本实用新型一典型实施案例中一种原位高压紫外-可见吸收光谱测量系统包括沿光路传输方向依次设置的光源1、第一光纤2、平凸透镜3、第一光阑4、平凸透镜5、第一全反射镜6、平凸透镜7、第一显微物镜8、四维组合调节支架9和DAC装置20、第二显微物镜 10、第二光阑11、第二全反射镜12、CCD成像装置13、第二光纤14、光谱仪15、电脑16。
具体的,平凸透镜3、第一光阑4、平凸透镜5、第一全反射镜6、平凸透镜7、第一显微物镜8设置在第一光学笼式系统中,第二显微物镜10、第二光阑11、第二全反射镜12、CCD成像装置13设置在第二光学笼式系统中,光源1经第一光纤2与第一光学笼式系统连接,以将光源提供的入射光束转接入第一光学笼式系统中,光谱仪15经第二光纤14与第二光学笼式系统连接,以将出射光束导出至光谱仪15中;其中该第一光学笼式系统、第二光学笼式系统主要由钢制支杆和钢制支柱组成,四维组合调节支架9设置在第一光学笼式系统、第二光学笼式系统之间且位于第一显微物镜8、第二显微物镜10之间。其中,第一光学笼式系统与第二光学笼式系统也可以一体设置。
具体的,采用该原位高压紫外-可见吸收光谱测量系统进行原位高压紫外-可见吸收光谱测量的步骤包括:
1)提供如图1中所述的一种原位高压紫外-可见吸收光谱测量系统,将光源1提供的入射光束用第一光纤2转接入第一光学笼式系统中并进行光路准直;
2)其中的平凸透镜3设置于第一光纤2之后并用于对入射光束进行扩束,利用第一全反射镜6和两个可变光阑对已经扩束后的光束进行裸光路准直,准直后撤去两个可变光阑;
3)安装平凸透镜5和平凸透镜7,调整两个平凸透镜间的距离使得扩束准直后的光束变为平行光入射至第一显微物镜8;考虑到透镜的折射,平凸透镜3、5、7在安装到光学笼式系统时平面对平面,凸面对凸面,以保证光束平行;
4)将第一显微物镜8、第二显微物镜10、第二光阑11、第二全反射镜12、CCD成像装置 13和光谱15仪接入光学笼式系统中进行光路准直;
5)将第一光阑4设置于平凸透镜3与平凸透镜5之间,以调节入射至第一显微物镜8的入射光束的直径;DAC装置的端面到对顶砧之间样品腔的距离为13.50mm,选取工作距离为 23.75mm的长工作距离显微物镜作为第一显微物镜8和第二显微物镜10;
6)将图2所示的装有罗丹明B样品的DAC装置20放在四维组合调节支架9的夹持器上;调节四维组合调节支架9的旋转台将经第一显微物镜8导出的入射光束与DAC的端面保持垂直后固定旋转台的位置,调节四维组合调节支架9的三维组合平移台微调DAC装置20的空间位置,直到经第二显微物镜10导出的出射光束可以将DAC装置20中的样品完整清晰的成像;
7)通过移入第二全反射12镜将样品的像反射到CCD成像装置13中进行观察,可以看到图4所示的DAC装置20中待测样品罗丹明B25的完整图像;通过调节设置在第二显微物镜10 和第二全反射镜12之间第二光阑11的通光孔径的大小和放置DAC装置20的四维组合调节支架9,选择具有待检测样品的样品区域以及不具有待检测样品的背底区域;移出第二全反射镜12,经过选区之后的子光束(由于第二光阑设置在第二显微物镜的光束输出端,并能够对第二显微物镜输出的出射光束的部分进行阻隔,仅使由高压腔内的预设区域出射的出射光束通过;此处的子光束即被阻隔后剩余的部分光束,该预设区域包括具有待检测样品的样品区域以及不具有待检测样品的背底区域)通过第二光纤14输入光谱仪15,并通过电脑16进行数据处理。
其中,四维组合调节支架9包括自下到上依次设置的旋转台、三维组合平移台和夹持器,其设置在将第一显微物镜8和第二显微物镜10之间,DAC装置20中的金刚石对顶砧29作为施压体系,是一对砧面23直径为300微米(10-6m)的金刚石,样品腔28由钢片24被DAC装置20加压到一定厚度后打孔而成,其压至厚度约为60μm,中空直径约为130μm,样品腔28内部填入待测样品罗丹明B 25,标压介质红宝石27,传压介质26;可以通过DAC装置20的DAC装置施压部分21对待测样品罗丹明B 25进行加压。
具体IDE,本实用新型提供的测量系统,能够通过第二光阑11对第二显微物镜10输出的出射光束的部分进行阻隔,并通过四维组合调节支架9的三维组合平移台微调DAC装置20的空间位置,选择具有待检测样品的样品区域以及不具有待检测样品的背底区域时均不掺入红宝石。
实施例1
(1)将图2所示的装有待测样品罗丹明B 25的DAC装置20放在四维组合调节支架9的夹持器上,移入第二全反射镜12,调节四维组合调节支架9的三维组合平移台直到在CCD成像装置13中可以看到完整清晰的图像(如图4和图5);
(2)移入第二全反射镜12,调节第二光阑11的通光孔径的大小,通过观察CCD成像装置 13,微调放有DAC装置的四维组合调节支架9的三维组合平移台,选取无待测样品的背底,移出第二全反射镜12,通过光谱仪15测量无待测样品的背底区域的吸收数据;
(3)移入第二全反射镜12,不改变第二光阑11的通光孔径的大小,通过观察CCD成像装置13,微调放有DAC装置的四维组合调节支架9的三维组合平移台,选取有待测样品的样品区域,移出第二全反射镜12,通过光谱仪15测量待测样品的吸收数据,得到紫外-可见吸收光谱图像(如图6和图7);
(4)罗丹明B样品在一个压力点下的紫外-可见吸收光谱测量结束后,用DAC装置20进行加压,并通过标压介质红宝石27标压,然后重复(1)(2)的步骤即可;
(5)图6、图7给出的分别是利用诉述原位高压紫外-可见吸收测量系统测得的装在DAC 装置中的罗丹明B加压、卸压过程中在不同高压下的紫外-可见吸收光谱图像。
应当理解,上述实施例仅为说明本实用新型的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本实用新型的内容并据以实施,并不能以此限制本实用新型的保护范围。凡根据本实用新型精神实质所作的等效变化或修饰,都应涵盖在本实用新型的保护范围之内。

Claims (18)

1.一种原位高压吸收光谱测量系统,其特征在于包括:
光源单元,至少用于提供对待测样品进行照射的入射光束;
扩束准直单元,至少用于对所述入射光束进行扩束准直以形成平行光束;
第一显微物镜单元,至少用于将经扩束准直后的光束导入高压样品容置单元的高压腔内;
高压样品容置单元,至少用于为待测样品提供高压测量环境;
第二显微物镜单元,至少用于将所述高压样品容置单元的高压腔内的待测样品出射的出射光束导入光谱处理单元;以及,
光谱处理单元,至少用于对所述的出射光束进行光谱检测并对获得的光谱进行分析处理;
其中,所述扩束准直单元与第一显微物镜单元依次设置在入射光束的光路上,所述第二显微物镜单元与光谱处理单元依次设置在出射光束的光路上。
2.根据权利要求1所述的原位高压吸收光谱测量系统,其特征在于:所述入射光束为紫外-可见光波段的光束。
3.根据权利要求2所述的原位高压吸收光谱测量系统,其特征在于:所述入射光束的波长为200nm-2400nm。
4.根据权利要求1所述的原位高压吸收光谱测量系统,其特征在于:所述扩束准直单元包括间隔设置在所述入射光束的光路上的第一全反射镜和两个以上的透镜,所述第一全反射镜至少用于对所述入射光束进行准直,所述两个以上的透镜至少用于将准直后的光束进行扩束并形成平行光束。
5.根据权利要求4所述的原位高压吸收光谱测量系统,其特征在于:所述的透镜为平凸透镜,相邻两个平凸透镜的相对的一侧面同为平面或凸面。
6.根据权利要求5所述的原位高压吸收光谱测量系统,其特征在于:所述平凸透镜的通光孔径为23.9mm,焦距为50-100mm。
7.根据权利要求1所述的原位高压吸收光谱测量系统,其特征在于:所述第一显微物镜单元和第二显微物镜单元均包括长工作距离显微物镜。
8.根据权利要求7所述的原位高压吸收光谱测量系统,其特征在于:所述第一显微物镜单元和第二显微物镜单元的放大倍数为10-20倍,数值孔径为0.23-0.33,工作距离为13.50-50.00mm。
9.根据权利要求1所述的原位高压吸收光谱测量系统,其特征在于还包括第一光阑,所述第一光阑设置于所述扩束准直单元和所述第一显微物镜单元之间,并至少用于调节入射至所述第一显微物镜单元的入射光束的直径。
10.根据权利要求9所述的原位高压吸收光谱测量系统,其特征在于:所述第一光阑的通光孔径为1.0mm-11mm。
11.根据权利要求1所述的原位高压吸收光谱测量系统,其特征在于还包括第二光阑,所述第二光阑设置在所述第二显微物镜单元的光束输出端,并至少用于对第二显微物镜单元输出的出射光束的部分进行阻隔,仅使由高压腔内的预设区域出射的出射光束通过并导入光谱处理单元;该预设区域包括具有待检测样品的样品区域以及不具有待检测样品的背底区域。
12.根据权利要求11所述的原位高压吸收光谱测量系统,其特征在于:所述第二光阑的通光孔径为1.0mm-11mm。
13.根据权利要求11所述的原位高压吸收光谱测量系统,其特征在于还包括成像单元,所述成像单元包括第二全反射镜以及成像装置,所述第二全反射镜设置在所述出射光束的光路上,并至少用于改变所述出射光束的预设传输路径而将所述的出射光束导入成像装置。
14.根据权利要求13所述的原位高压吸收光谱测量系统,其特征在于:所述第二全反射镜设置在所述第二光阑与光谱处理单元之间。
15.根据权利要求1所述的原位高压吸收光谱测量系统,其特征在于:所述高压样品容置单元包括四维组合调节支架以及设置在所述四维组合调节支架上的高压样品容置机构,所述四维组合调节支架能够调节所述高压样品容置机构的空间位置。
16.根据权利要求15所述的原位高压吸收光谱测量系统,其特征在于:所述高压样品容置机构包括金刚石压砧装置。
17.根据权利要求16所述的原位高压吸收光谱测量系统,其特征在于:所述四维组合调节支架包括自上到下依次设置的:
夹持器,至少用于固定所述金刚石压砧装置;
三维组合平移台,至少用于调节所述高压样品容置机构的空间位置;
旋转台,至少用于使高压样品容置机构的端面与经由所述第一显微物镜单元导出的入射光束保持垂直。
18.根据权利要求1所述的原位高压吸收光谱测量系统,其特征在于还包括光学笼式系统,至少所述光源单元、扩束准直单元、第一显微物镜单元以及第二显微物镜单元设置于所述光学笼式系统中。
CN201921612343.8U 2019-09-26 2019-09-26 原位高压吸收光谱测量系统 Active CN210803269U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201921612343.8U CN210803269U (zh) 2019-09-26 2019-09-26 原位高压吸收光谱测量系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201921612343.8U CN210803269U (zh) 2019-09-26 2019-09-26 原位高压吸收光谱测量系统

Publications (1)

Publication Number Publication Date
CN210803269U true CN210803269U (zh) 2020-06-19

Family

ID=71231881

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201921612343.8U Active CN210803269U (zh) 2019-09-26 2019-09-26 原位高压吸收光谱测量系统

Country Status (1)

Country Link
CN (1) CN210803269U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110514612A (zh) * 2019-09-26 2019-11-29 吉林大学 原位高压吸收光谱测量系统
CN113567442A (zh) * 2021-01-04 2021-10-29 东北林业大学 一种基于红外热波及图像处理的窑筒体缺陷在线检测方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110514612A (zh) * 2019-09-26 2019-11-29 吉林大学 原位高压吸收光谱测量系统
CN113567442A (zh) * 2021-01-04 2021-10-29 东北林业大学 一种基于红外热波及图像处理的窑筒体缺陷在线检测方法

Similar Documents

Publication Publication Date Title
CA2956728C (en) Airy beam light sheet and airy beam light sheet microscope
CN210803269U (zh) 原位高压吸收光谱测量系统
CN106574899B (zh) 用于样品的显微镜检查的方法和装置
CN106290284A (zh) 结构光照明的双光子荧光显微系统与方法
CN113161851A (zh) 用于在时间上拉伸/压缩光学脉冲的空间啁啾腔室
KR20160119805A (ko) 다중 스팟 주사 수집 광학장치
EP2442316A1 (en) Method and apparatus for measuring the optical forces acting on a particle
KR102623898B1 (ko) 재료들 내부에서의 레이저 가공
Trägårdh et al. A simple but precise method for quantitative measurement of the quality of the laser focus in a scanning optical microscope
US7385693B2 (en) Microscope apparatus
Murphy et al. Focal ratio degradation and transmission in VIRUS-P optical fibers
CN115398190A (zh) 用于减少具有准直的样品光束的光学谱探针中的干扰的设备和方法
CN112945927A (zh) 一种原位高压共焦拉曼光谱测量系统
CN110736721A (zh) 基于衍射光栅的玻璃平板折射率均匀性检测装置及检测方法
Ohyama et al. Optical interferometry for measuring instantaneous thickness of transparent solid and liquid films
CN202216766U (zh) 准直光束的检测装置
Merola et al. Fabrication and test of polymeric microaxicons
CN110514612A (zh) 原位高压吸收光谱测量系统
CN106940291B (zh) 高分辨率的双光栅单色仪光路装置
Filipkowski et al. World-smallest fiber-GRIN lens system for optofluidic applications
DE19923563C2 (de) Vorrichtung zur tiefenauflösenden Totalreflexionsfluorometrie mikroskopischer Proben
Kalyoncu et al. Fast dispersive laser scanner by using digital micro mirror arrays
CN214749720U (zh) 高压z扫描光学测试系统
JP2009145102A (ja) エバネッセント波発生装置及びそれを用いた観察装置
CN110186563A (zh) 基于柱面光栅的分光波导模块和集成光谱仪及制作方法

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant