CN210741516U - 谐振式传感器 - Google Patents

谐振式传感器 Download PDF

Info

Publication number
CN210741516U
CN210741516U CN201921158457.XU CN201921158457U CN210741516U CN 210741516 U CN210741516 U CN 210741516U CN 201921158457 U CN201921158457 U CN 201921158457U CN 210741516 U CN210741516 U CN 210741516U
Authority
CN
China
Prior art keywords
end cover
sensing
resonant
cover
sensitive body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201921158457.XU
Other languages
English (en)
Inventor
杨斌堂
刘鲁楠
杨诣坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lingji Shanghai Drive Technology Center LP
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201921158457.XU priority Critical patent/CN210741516U/zh
Application granted granted Critical
Publication of CN210741516U publication Critical patent/CN210741516U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

本实用新型提供了一种谐振式传感器,包括谐振元件(1)、激励线圈(2)、敏感体(5)、壳体(7)、前端盖(8)、后端盖(10)、占位圆柱(11)以及感测件(14);谐振元件(1)输出力和位移并作用于敏感体(5),敏感体(5)输出第一检测信号;感测件(14)感测到外界物理量的变化使得谐振元件(1)的固有频率发生变化时,谐振元件(14)输出的力和位移发生变化,敏感体输出第二检测信号,从而实现不同物理量的检测。本实用新型创新性地使用智能材料作为谐振元件和敏感体,将被测量直接转化为敏感体的输出,提高了传感器的灵敏度、结构紧凑度和传感精度。

Description

谐振式传感器
技术领域
本实用新型涉及检测传感器技术领域,具体地,涉及一种谐振式传感器。
背景技术
谐振式传感器通过被测量调制谐振元件的谐振频率、幅值或者相位进行测量。谐振式传感器具有大的动态范围,很高的灵敏度、重复性和很小的滞后。利用谐振式传感器进行精密传感成为一个很有潜力的领域。
专利文献CN208902313U公开了一种谐振式压力传感器,包括硅晶圆,薄膜部分,谐振部分,谐振部分固定点,背孔,盖帽,吸气剂层,支撑硅层,埋层氧化层,顶层硅薄膜,多晶硅薄膜和氧化层薄膜交替淀积膜;SOI晶圆是由顶层硅薄膜、埋层氧化层和支撑硅层组成;以硅晶圆或是SOI晶圆作为衬底,形成谐振式压力传感器的薄膜部分,或者在SOI晶圆衬底上由顶层硅薄膜和多晶硅薄膜和氧化层薄膜交替淀积膜,形成谐振式压力传感器的薄膜部分。一种谐振式压力传感器的制作工艺,谐振部分是通过淀积外延/多晶硅层实现的,衬底通过刻蚀工艺形成流体进入到薄膜的通道-谐振式压力传感器的背孔。但该谐振式传感器加工复杂、成本高。
专利文献CN105203234B公开了一种谐振式压力传感器。该包括:传感器本体,在该传感器本体的底部形成压力敏感膜;在该压力敏感膜上形成有两谐振器-第一谐振器和第二谐振器,其中,该两谐振器具有相同的固有频率,且两者对作用于压力敏感膜上的压力P的灵敏度大小相等,第一谐振器位于压力敏感膜的中央位置,第二敏感膜位于压力敏感膜的边缘位置,但该设计检测量单一。
实用新型内容
针对现有技术中的缺陷,本实用新型的目的是提供一种谐振式传感器。
根据本实用新型提供的一种谐振式传感器,包括谐振元件1、激励线圈2、敏感体5、壳体7、前端盖8、后端盖10、占位圆柱11以及感测件14;
所述壳体7、前端盖8、后端盖10围成容纳空间16;
谐振元件1、敏感体5、感测件14依次设置在容纳空间16中,感测件14延伸至前端盖8的外侧;
占位圆柱11设置在容纳空间16中并设置在谐振元件1的外侧;
激励线圈2缠绕在谐振元件1上;
谐振元件1和敏感体5为同一元件或不同元件。
优选地,还包括导磁后盖9、永磁体13、碟簧15;
导磁后盖9设置在谐振元件1与后端盖10之间;
导磁后盖9分别与谐振元件1与后端盖10接触连接;
永磁体13设置在谐振元件1和占位圆柱11之间并设置在导磁后盖9上;
碟簧15设置在前端盖8和感测件14之间;
碟簧15的两端分别与前端盖8和感测件14紧固连接。
优选地,还包括感测体4和球形外壳12;
感测体4与感测件14紧固连接;
感测体4和球形外壳12共同围成球形;
壳体7、前端盖8、后端盖10设置在感测体4和球形外壳12的内部。
优选地,还包括传导件6,传导件6设置在占位圆柱11和感测件14之间并与敏感体5间隙连接。
优选地,还包括感测体4和球形外壳12;
感测体4与感测件14紧固连接;
感测体4和球形外壳12共同围成球形;
壳体7、前端盖8、后端盖10设置在感测体4和球形外壳12的内部。
优选地,还包括感应线圈3。
优选地,还包括导磁后盖9、永磁体13、碟簧15;
导磁后盖9设置在谐振元件1与后端盖10之间;
导磁后盖9分别与谐振元件1与后端盖10接触连接;
永磁体13设置在谐振元件1和占位圆柱11之间并设置在导磁后盖9上;
碟簧15设置在前端盖8和感测件14之间;
碟簧15的两端分别与前端盖8和感测件14紧固连接。
根据本实用新型提供的一种谐振式传感器,包括谐振元件1、感应线圈3、敏感体5、壳体7、前端盖8、后端盖10、占位圆柱11以及感测件14;
所述壳体7、前端盖8、后端盖10围成容纳空间16;
谐振元件1、敏感体5、感测件14依次设置在容纳空间16中,感测件14延伸至前端盖8的外侧;
占位圆柱11设置在容纳空间16中并设置在谐振元件1的外侧;
感应线圈3缠绕在敏感体5上;
谐振元件1和敏感体5为同一元件或不同元件。
优选地,还包括导磁后盖9;
导磁后盖9设置在谐振元件1与后端盖10之间;
导磁后盖9分别与谐振元件1与后端盖10接触连接。
优选地,还包括感测体4和球形外壳12;
感测体4与感测件14紧固连接;
感测体4和球形外壳12共同围成球形;
壳体7、前端盖8、后端盖10设置在感测体4和球形外壳12的内部。
与现有技术相比,本实用新型具有如下的有益效果:
1、将被测量的物理量直接转化为敏感体的输出,降低了加工难度和成本。
2、能够实现多种物理量的测量。
3、提高了传感器的灵敏度、结构紧凑度和传感精度。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本实用新型的其它特征、目的和优点将会变得更明显:
图1为设置有激励线圈的谐振式传感器的结构示意图;
图2为设置有激励线圈、永磁体、碟簧的谐振式传感器的结构示意图;
图3为设置有激励线圈、永磁体、碟簧的谐振式传感器且安装球形外壳的结构示意图;
图4为设置有感应线圈的谐振式传感器的结构示意图;
图5为设置有感应线圈、导磁后盖的谐振式传感器的结构示意图;
图6为设置有感应线圈、导磁后盖的谐振式传感器且安装球形外壳的结构示意图;
图7设置有激励线圈、传导件的谐振式传感器的结构示意图;
图8设置有激励线圈、传导件、导磁后盖的谐振式传感器的结构示意图;
图9设置有激励线圈、传导件、导磁后盖的谐振式传感器且安装球形外壳的结构示意图;
图10设置有激励线圈、感应线圈的谐振式传感器的结构示意图;
图11设置有激励线圈、感应线圈、导磁后盖的谐振式传感器的结构示意图;
图12设置有激励线圈、感应线圈、导磁后盖的谐振式传感器且安装球形外壳结构示意图;
图13设置有激励线圈、传导件的谐振式传感器且通激励电流的结构示意图;
图14设置有激励线圈、传导件、碟簧的谐振式传感器的结构示意图;
图15设置有激励线圈、传导件、碟簧的谐振式传感器且安装球形外壳的结构示意图;
图16设置有敏感体的谐振式传感器的结构示意图;
图17设置有敏感体、导磁后盖、感测件的谐振式传感器的结构示意图;
图18设置有敏感体、导磁后盖、感测件的谐振式传感器且安装球形外壳的结构示意图。
图中示出:
Figure DEST_PATH_GDA0002391513820000041
具体实施方式
下面结合具体实施例对本实用新型进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本实用新型,但不以任何形式限制本实用新型。应当指出的是,对本领域的普通技术人员来说,在不脱离本实用新型构思的前提下,还可以做出若干变化和改进。这些都属于本实用新型的保护范围。
根据本实用新型提供的一种谐振式传感器,包括谐振元件1、激励线圈2、敏感体5、壳体7、前端盖8、后端盖10、占位圆柱11以及感测件14;壳体7、前端盖 8、后端盖10围成容纳空间16;谐振元件1、敏感体5、感测件14依次设置在容纳空间16中,感测件14延伸至前端盖8的外侧;占位圆柱11设置在容纳空间16中并包围在谐振元件1的外侧;激励线圈2设置在谐振元件1上,谐振元件1和敏感体5为同一元件或不同元件。当激励线圈2输入Ie时,谐振元件1输出力和位移作用于敏感体5,敏感体5输出第一检测信号;当感测件14接触被测物体时驱使谐振元件1输出不同的力和位移作用于敏感体5,此时敏感体5输出第二检测信号。
实施例一:
谐振元件1为磁致伸缩材料的谐振元件,敏感体5为压电材料的谐振元件,如图1所示,给激励线圈2通激励电流Ie,谐振元件1在激励线圈2的作用下产生高频振动,振动频率为其固有频率,振动力作用在压电材料5上使其产生感应电压V;当感测件14接触到外界介质,感测件14受到外界介质的作用,驱使谐振元件1的固有频率变化,此时,敏感体5的感应电压V发生变化,通过获得的不同的感应电压V从而实现介质物理量的检测。
实施例二:
实施例二为实施例一的变化例,如图2所示,包括谐振元件1、激励线圈2、敏感体5、壳体7、前端盖8、导磁后盖9、后端盖10、占位圆柱11、永磁体13、感测件14以及碟簧15,其中,导磁后盖9设置在谐振元件1与后端盖10之间,并与谐振元件1与后端盖10接触连接,永磁体13设置在谐振元件1和占位圆柱11之间并设置在导磁后盖9上,碟簧15设置在前端盖8和感测件14之间,碟簧15的两端分别与前端盖8和感测件14紧固连接;永磁体13以及碟簧15分别为谐振元件1提供偏置磁场和预应力,增大其输出位移,当外界物质粘附导致感测件14质量变化、粘附的物质组分不同时,感测件14驱使谐振元件1的振动频率变化,从而作用于敏感体5,使敏感体5输出的感应电压V发生变化,从而可以检测质量、物质组分等物理量。
实施例三:
实施例三为实施例二的变化例,如图3所示,包括谐振元件1、激励线圈2、感测体4、压电材料5、壳体7、前端盖8、导磁后盖9、后端盖10、占位圆柱11、球形外壳12、永磁体13、感测件14以及碟簧15,其中,感测体4与感测件14紧固连接;感测体接触检测介质并将外界作用力通过感测件14作用于谐振元件1;感测体4和球形外壳12共同围成球形;壳体7、前端盖8、后端盖10设置在感测体4 和球形外壳12的内部。永磁体13、碟簧15分别为谐振元件1提供偏置磁场和预应力,增大谐振元件1的输出位移,外壳7为球形,便于埋入混凝土等建筑结构中进行测量,可以检测感测体4受到的外力等物理量,从而通过敏感体5输出感应电压 V的变化实现对外力的检测。
实施例四:
谐振元件1采用压电材料的谐振元件;如图4所示,包括谐振元件1、感应线圈3、敏感体5、壳体7、前端盖8、后端盖10、占位圆柱11以及感测件14,谐振元件5采用压电材料的谐振元件,敏感体5采由磁致伸缩材料的敏感体,谐振元件 1在激励电压Ve的作用下产生高频振动,振动频率为其固有频率,振动作用在谐振元件1上,由于逆磁致伸缩效应,谐振元件1产生交变磁场,在感应线圈3上产生感应电压V;当感测件14感受到外界物理量的作用,谐振元件的固有频率变化,使得感应线圈3的感应电压V发生变化,从而实现物理量的检测。
实施例五:
在实施例四的一个变化例中,如图5所示,包括谐振元件1、感应线圈3、敏感体5、壳体7、前端盖8、导磁后盖9、后端盖10、占位圆柱11以及感测件14,其中,当外界物质粘附导致感测件14质量变化、粘附的物质组分不同时,可以检测质量、物质组分等物理量。谐振元件1在激励电压Ve的作用下产生高频振动,振动频率为其固有频率,振动作用在谐振元件1上,由于逆磁致伸缩效应,谐振元件 1产生交变磁场,在感应线圈3上产生感应电压V;当外界物质粘附导致感测件14 质量变化、粘附的物质组分不同时,谐振元件的固有频率变化,使得感应线圈3的感应电压V发生变化,从而实现外界物质质量、组分的检测。
实施例六:
实施例四的另一个变化例,如图6所示,包括谐振元件1、感应线圈3、感测体 4、敏感体5、壳体7、前端盖8、导磁后盖9、后端盖10、占位圆柱11、球形外壳 12以及感测件14,谐振元件1在激励电压Ve的作用下产生高频振动,振动频率为其固有频率,振动作用在谐振元件1上,由于逆磁致伸缩效应,谐振元件1产生交变磁场,在感应线圈3上产生感应电压V;其中,球形外壳12为球形,便于埋入混凝土等建筑结构中进行测量,当感测件14通过感测体4感测到外力的作用,致使感应线圈3上产生的感应电压V发生变化,从而实现混凝土等建筑结构中受力等物理量的测量。
实施例七:
如图7所示,包括谐振元件1、激励线圈2、敏感体5、传导件6、壳体7、前端盖8、后端盖10、占位圆柱11以及感测件14,传导件6设置在占位圆柱11和感测件14之间并与敏感体5间隙连接。谐振元件1采用压电材料的谐振元件,敏感体5采用磁致伸缩材料的敏感体,传导件6采用隧道磁阻材料的传导件,谐振元件 1在激励电压Ve的作用下产生高频振动,振动频率为其固有频率,振动作用在敏感体5上,由于逆磁致伸缩效应,敏感体5产生交变磁场,通过传导件6检测此磁场,产生感应电压V;当感测件14感受到外界物理量的作用,谐振元件1的固有频率变化,使得传导件6的感应电压V变化,从而实现外界物质物理量的检测;隧道磁阻材料具有很高的磁场灵敏度,从而提高了传感器检测的灵敏度。
实施例八:
实施例八为实施例七的变化例,如图8所示,包括,谐振元件1、激励线圈2、敏感体5、传导件6、壳体7、前端盖8、导磁后盖9、后端盖10、占位圆柱11以及感测件14,谐振元件1采用压电材料的谐振元件,敏感体5采用磁致伸缩材料的敏感体,传导件6采用隧道磁阻材料的传导件,谐振元件1在激励电压Ve的作用下产生高频振动,振动频率为其固有频率,振动作用在敏感体5上,由于逆磁致伸缩效应,敏感体5产生交变磁场,通过传导件6检测此磁场,产生感应电压V;当外界物质粘附导致感测件14质量变化、粘附的物质组分不同时,传导件6检测磁场产生不同的感应电压V,可以检测质量、物质组分等物理量。
实施例九:
实施例九为实施例七的另一个变化例,如图9所示,包括谐振元件1、激励线圈2、感测体4、敏感体5、传导件6、壳体7、前端盖8、导磁后盖9、后端盖10、占位圆柱11、球形外壳12以及感测件14,谐振元件1采用压电材料的谐振元件,敏感体5采用磁致伸缩材料的敏感体,传导件6采用隧道磁阻材料的传导件,谐振元件1在激励电压Ve的作用下产生高频振动,振动频率为其固有频率,振动作用在敏感体5上,由于逆磁致伸缩效应,敏感体5产生交变磁场,通过传导件6检测此磁场,产生感应电压V;球形外壳12为球形,便于埋入混凝土等建筑结构中进行测量,当外力作用于感测体4,感测体4与感测件14紧固连接,感测件14致使谐振元件1固有频率发生变化,使敏感体5产生交变磁场发生变化,传导件6的感应电压V发生变化,从而检测到受到的外力等物理量。
实施例十:
如图10所示,包括谐振元件1、激励线圈2、感应线圈3、敏感体5、壳体7、前端盖8、后端盖10、占位圆柱11以及感测件14,具体地,谐振元件1、敏感体5 为一体连接且均采用磁致伸缩材料。给激励线圈2通激励电流Ie,敏感体5在激励线圈2的作用下产生高频振动,振动频率为其固有频率,由于逆磁致伸缩效应,敏感体5产生交变磁场,在感应线圈3上产生感应电压V,当感测件14感受到外界物理量的作用,谐振元件1的固有频率变化,使得敏感体5的感应电压V变化,从而实现物理量的检测;此实施例的优点为谐振元件和敏感体为同一元件,提高了传感器的结构紧凑度。在一个优选例中,如图11所示,包括谐振元件1、激励线圈2、感应线圈3、敏感体5、壳体7、前端盖8、导磁后盖9、后端盖10、占位圆柱11、永磁体13、感测件14、碟簧15,永磁体13以及碟簧15分别为谐振元件1提供偏置磁场和预应力,增大其输出位移。当感测件14感测外界粘附物质的质量变化、粘附的物质组分不同时,可以检测质量、物质组分等物理量。在另一个变化例中,如图12所示,包括谐振元件1、激励线圈2、感应线圈3、感测体4、敏感体5、壳体7、前端盖8、导磁后盖9、后端盖10、占位圆柱11、球形外壳12、永磁体13、感测件14以及碟簧15,其中,永磁体13、碟簧15分别为谐振元件1提供偏置磁场和预应力,增大其输出位移,球形外壳12为球形,便于埋入混凝土等建筑结构中进行测量。可以检测感测件14受到的外力等物理量。
实施例十一:
如图13所示,谐振元件1、激励线圈2、敏感体5、传导件6、壳体7、前端盖 8、后端盖10、占位圆柱11以及感测件14,谐振元件1和敏感体5均采用磁致伸缩材料,谐振元件1和敏感体5为一体连接,给激励线圈2通激励电流Ie,谐振元件1在激励线圈2的作用下产生高频振动,振动频率为其固有频率。由于逆磁致伸缩效应,敏感体5产生交变磁场,通过传导件6检测此磁场,产生感应电压V。当感测件14感受到外界物理量的作用,谐振元件1的固有频率变化,使得传导件6 的感应电压V变化,从而实现物理量的检测;此实施例的优点为谐振元件1和敏感体5为同一元件,提高了传感器的结构紧凑度,传导件6采用隧道磁阻材料,具有很高的磁场灵敏度,提高了传感器的灵敏度。在一个变化例中,如图14所示,谐振元件1、激励线圈2、敏感体5、传导件6、壳体7、前端盖8、导磁后盖9、后端盖10、占位圆柱11、永磁体13、感测件14、碟簧15,其中,谐振元件1、敏感体 5为同一元件且均为磁致伸缩材料,永磁体13以及碟簧15分别为谐振元件1提供偏置磁场和预应力,增大其输出位移,给激励线圈2通激励电流Ie,谐振元件1在激励线圈2的作用下产生高频振动,振动频率为其固有频率。由于逆磁致伸缩效应,敏感体5产生交变磁场,通过传导件6检测此磁场,产生感应电压V。当感测件14 感测到外界物质粘附导致的质量变化、粘附的物质组分不同时,可以检测质量、物质组分等物理量。在另一个变化例中,如图15所示,包括谐振元件1、激励线圈2、感测体4、敏感体5、传导件6、壳体7、前端盖8、导磁后盖9、后端盖10、占位圆柱11、球形外壳12、永磁体13、感测件14以及碟簧15,其中,永磁体13、碟簧15分别为谐振元件提供偏置磁场和预应力,增大谐振元件1的输出位移。球形外壳12为球形,便于埋入混凝土等建筑结构中进行测量,可以检测感测件受到的外力等物理量。
实施例十二:
具体地,如图16所示,包括谐振元件1、敏感体5、壳体7、前端盖8、后端盖 10、占位圆柱11以及感测件14,其中,谐振元件1和敏感体5都采用压电材料,谐振元件1在激励电压Ve的作用下产生高频振动,振动频率为其固有频率,振动作用在敏感体5上使其产生感应电压V,当感测件14感受到外界物理量的变化,例如外力的作用,又例如外界物质粘附导致其质量增加、不同组分的物质粘附时,谐振元件的固有频率变化,使得敏感体5的感应电压V变化,进而检测力、质量、物质组分等物理量。在一个变化例中,如图17所示,包括谐振元件1、敏感体5、壳体7、前端盖8、导磁后盖9、后端盖10、占位圆柱11以及感测件14,其中,当感测件14感测到外界物质粘附导致质量变化、粘附的物质组分不同时,可以检测质量、物质组分等物理量。在另一个变化例中,如图18所示,包括谐振元件1、感测体4、敏感体5、壳体7、前端盖8、导磁后盖9、后端盖10、占位圆柱11、球形外壳12以及感测件14,其中,球形外壳12为球形,便于埋入混凝土等建筑结构中进行测量,能够检测感测件14受到的外力等物理量。
本实用新型创新地将压电材料、磁致伸缩材料、隧道磁阻材料等应用于谐振元件和敏感体,将被测量的物理量直接转化为敏感体的输出,降低了加工难度和成本,并且能够实现多种物理量的测量;同时,提高了传感器的灵敏度、结构紧凑度和传感精度。
在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
以上对本实用新型的具体实施例进行了描述。需要理解的是,本实用新型并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本实用新型的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (10)

1.一种谐振式传感器,其特征在于,包括谐振元件(1)、激励线圈(2)、敏感体(5)、壳体(7)、前端盖(8)、后端盖(10)、占位圆柱(11)以及感测件(14);
所述壳体(7)、前端盖(8)、后端盖(10)围成容纳空间(16);
谐振元件(1)、敏感体(5)、感测件(14)依次设置在容纳空间(16)中,感测件(14)延伸至前端盖(8)的外侧;
占位圆柱(11)设置在容纳空间(16)中并设置在谐振元件(1)的外侧;
激励线圈(2)缠绕在谐振元件(1)上;
谐振元件(1)和敏感体(5)为同一元件或不同元件。
2.根据权利要求1所述的谐振式传感器,其特征在于,还包括导磁后盖(9)、永磁体(13)、碟簧(15);
导磁后盖(9)设置在谐振元件(1)与后端盖(10)之间;
导磁后盖(9)分别与谐振元件(1)与后端盖(10)接触连接;
永磁体(13)设置在谐振元件(1)和占位圆柱(11)之间并设置在导磁后盖(9)上;
碟簧(15)设置在前端盖(8)和感测件(14)之间;
碟簧(15)的两端分别与前端盖(8)和感测件(14)紧固连接。
3.根据权利要求2所述的谐振式传感器,其特征在于,还包括感测体(4)和球形外壳(12);
感测体(4)与感测件(14)紧固连接;
感测体(4)和球形外壳(12)共同围成球形;
壳体(7)、前端盖(8)、后端盖(10)设置在感测体(4)和球形外壳(12)的内部。
4.根据权利要求1所述的谐振式传感器,其特征在于,还包括传导件(6),传导件(6)设置在占位圆柱(11)和感测件(14)之间并与敏感体(5)间隙连接。
5.根据权利要求4所述的谐振式传感器,其特征在于,还包括感测体(4)和球形外壳(12);
感测体(4)与感测件(14)紧固连接;
感测体(4)和球形外壳(12)共同围成球形;
壳体(7)、前端盖(8)、后端盖(10)设置在感测体(4)和球形外壳(12)的内部。
6.根据权利要求1所述的谐振式传感器,其特征在于,还包括感应线圈(3)。
7.根据权利要求6所述的谐振式传感器,其特征在于,还包括导磁后盖(9)、永磁体(13)、碟簧(15);
导磁后盖(9)设置在谐振元件(1)与后端盖(10)之间;
导磁后盖(9)分别与谐振元件(1)与后端盖(10)接触连接;
永磁体(13)设置在谐振元件(1)和占位圆柱(11)之间并设置在导磁后盖(9)上;
碟簧(15)设置在前端盖(8)和感测件(14)之间;
碟簧(15)的两端分别与前端盖(8)和感测件(14)紧固连接。
8.一种谐振式传感器,其特征在于,包括谐振元件(1)、感应线圈(3)、敏感体(5)、壳体(7)、前端盖(8)、后端盖(10)、占位圆柱(11)以及感测件(14);
所述壳体(7)、前端盖(8)、后端盖(10)围成容纳空间(16);
谐振元件(1)、敏感体(5)、感测件(14)依次设置在容纳空间(16)中,感测件(14)延伸至前端盖(8)的外侧;
占位圆柱(11)设置在容纳空间(16)中并设置在谐振元件(1)的外侧;
感应线圈(3)缠绕在敏感体(5)上;
谐振元件(1)和敏感体(5)为同一元件或不同元件。
9.根据权利要求8所述的谐振式传感器,其特征在于,还包括导磁后盖(9);
导磁后盖(9)设置在谐振元件(1)与后端盖(10)之间;
导磁后盖(9)分别与谐振元件(1)与后端盖(10)接触连接。
10.根据权利要求9所述的谐振式传感器,其特征在于,还包括感测体(4)和球形外壳(12);
感测体(4)与感测件(14)紧固连接;
感测体(4)和球形外壳(12)共同围成球形;
壳体(7)、前端盖(8)、后端盖(10)设置在感测体(4)和球形外壳(12)的内部。
CN201921158457.XU 2019-07-19 2019-07-19 谐振式传感器 Active CN210741516U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201921158457.XU CN210741516U (zh) 2019-07-19 2019-07-19 谐振式传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201921158457.XU CN210741516U (zh) 2019-07-19 2019-07-19 谐振式传感器

Publications (1)

Publication Number Publication Date
CN210741516U true CN210741516U (zh) 2020-06-12

Family

ID=71006296

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201921158457.XU Active CN210741516U (zh) 2019-07-19 2019-07-19 谐振式传感器

Country Status (1)

Country Link
CN (1) CN210741516U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110243394A (zh) * 2019-07-19 2019-09-17 上海交通大学 基于智能材料的谐振式传感器
CN114563113A (zh) * 2022-03-03 2022-05-31 中国工程物理研究院总体工程研究所 空心谐振式应力组件及应力计

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110243394A (zh) * 2019-07-19 2019-09-17 上海交通大学 基于智能材料的谐振式传感器
CN110243394B (zh) * 2019-07-19 2024-02-27 上海交通大学 基于智能材料的谐振式传感器
CN114563113A (zh) * 2022-03-03 2022-05-31 中国工程物理研究院总体工程研究所 空心谐振式应力组件及应力计
CN114563113B (zh) * 2022-03-03 2023-11-21 中国工程物理研究院总体工程研究所 空心谐振式应力组件及应力计

Similar Documents

Publication Publication Date Title
CN110243394B (zh) 基于智能材料的谐振式传感器
US4887032A (en) Resonant vibrating structure with electrically driven wire coil and vibration sensor
JP7188824B2 (ja) 磁気抵抗慣性センサ・チップ
JP4347951B2 (ja) マイクロマシニング磁界センサおよびその製造方法
US4806859A (en) Resonant vibrating structures with driving sensing means for noncontacting position and pick up sensing
US6429652B1 (en) System and method of providing a resonant micro-compass
US6631643B2 (en) Accelerometer
US6668627B2 (en) Sensor apparatus with magnetically deflected cantilever
JPH09502274A (ja) 定電界で駆動されるマイクロビームによる共振ゲージ
CN210741516U (zh) 谐振式传感器
Meydan Recent trends in linear and angular accelerometers
Kadar et al. Integrated resonant magnetic-field sensor
US7013733B2 (en) Silicon resonant type pressure sensor
CN116338536A (zh) 磁场测量传感器、系统及方法
CN109752120B (zh) 压阻拾振的微谐振器、激振/拾振电路及压力传感器
US20160116552A1 (en) Magnetic field measuring device with vibration compensation
JPWO2004070408A1 (ja) 磁気センサ
JP4801881B2 (ja) 共振型磁気センサとこれを用いた磁場検出装置
CN115856725B (zh) 磁传感器
CN209605842U (zh) 一种磁电阻惯性传感器芯片
US20230192477A1 (en) Mems environmental sensor and preparation method therefor
JP2002090432A (ja) 磁場検出装置
Hetrick A vibrating cantilever magnetic-field sensor
Choi et al. A magnetically excited and sensed MEMS-based resonant compass
JP2770488B2 (ja) 半導体圧力計

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220804

Address after: 200240 Building 1, No. 600, Jianchuan Road, Minhang District, Shanghai

Patentee after: Shanghai LINGJI Intelligent Technology Co.,Ltd.

Address before: 200240 No. 800, Dongchuan Road, Shanghai, Minhang District

Patentee before: SHANGHAI JIAO TONG University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230530

Address after: 200240 No. 800, Dongchuan Road, Shanghai, Minhang District

Patentee after: SHANGHAI JIAO TONG University

Address before: 200240 Building 1, No. 600, Jianchuan Road, Minhang District, Shanghai

Patentee before: Shanghai LINGJI Intelligent Technology Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230718

Address after: Room 402, room 811, 64, Dongchuan Road, Minhang District, Shanghai

Patentee after: Yang Bintang

Address before: 200240 No. 800, Dongchuan Road, Shanghai, Minhang District

Patentee before: SHANGHAI JIAO TONG University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230914

Address after: 201109 Building 1, No. 600, Jianchuan Road, Minhang District, Shanghai

Patentee after: Lingji (Shanghai) Drive Technology Center (L.P.)

Address before: Room 402, room 811, 64, Dongchuan Road, Minhang District, Shanghai

Patentee before: Yang Bintang

TR01 Transfer of patent right