CN210419850U - 一种催化热解有机固体废弃物制取气体燃料的反应系统 - Google Patents

一种催化热解有机固体废弃物制取气体燃料的反应系统 Download PDF

Info

Publication number
CN210419850U
CN210419850U CN201920173694.7U CN201920173694U CN210419850U CN 210419850 U CN210419850 U CN 210419850U CN 201920173694 U CN201920173694 U CN 201920173694U CN 210419850 U CN210419850 U CN 210419850U
Authority
CN
China
Prior art keywords
pyrolysis
gas
chamber
catalytic cracking
drying chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201920173694.7U
Other languages
English (en)
Inventor
余昭胜
唐芳芳
梁建怡
马晓茜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201920173694.7U priority Critical patent/CN210419850U/zh
Application granted granted Critical
Publication of CN210419850U publication Critical patent/CN210419850U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

本实用新型公开了一种催化热解有机固体废弃物制取气体燃料的反应系统,具体包括一级干燥室、二级干燥室、热解炉、粉碎机、燃烧室、催化裂解室、冷凝器、CO2吸收塔和储气瓶;所述一级干燥室、二级干燥室和热解炉依次连接,热解炉设置气体出口与固体残渣出口,所述热解炉的气体出口与催化裂解室连接,所述热解炉的固体残渣出口与粉碎机连接,所述粉碎机出口与燃烧室连接;催化裂解室、冷凝器、CO2吸收塔和储气瓶依次连接。采用有机固体废弃物为原料制取高品质的热解气体燃料,原料来源广泛,反应过程中产生的烟气提供催化裂解和热解所需热量,制取过程连续且低消耗。

Description

一种催化热解有机固体废弃物制取气体燃料的反应系统
技术领域
本实用新型涉及固体废弃物的反应系统,具体是一种催化热解有机固体废弃物制取气体燃料的反应系统。
背景技术
有机固体废弃物通常包括农林废弃物、城市生活垃圾、工业有机废弃物、污泥、餐厨垃圾等。我国人口众多,随着消费水平的提升,有机固体废弃物数量连年增长。有数据统计,仅2015年我国生活垃圾达2.48亿t,农业固体废物中秸秆的年产量突破8 000万t,餐厨垃圾产生量超过8 000万t,畜禽废弃物排放总量38亿t,市政污泥(含水率80%)产生量接近3 500万t,目前有机废弃物每年仍以8%~10%的速度递增。
有机固体废弃物具有资源性与危害性并存的特点。其资源性体现在:有机固体废弃物中蕴含着大量的生物质能,若能将有机固体废弃物完全实现资源化利用, 必将形成巨大的生态效益及经济效益。危害性则表现在:若不妥善处置,将散发恶臭、滋生细菌、产生携带病原体微生物的粉尘等,给生态环境造成极大地危害。
对于有机固体废弃物的无害化处理,国内主要的方式为填埋、焚烧、堆肥和热解。填埋法大量占用土地资源、污染环境,能量回收率较低;燃烧法无法实现较好资源化利用,且易产生二噁英和重金属污染;堆肥处理则由于有机固体废弃物成分复杂,难以保证堆肥效果和环境友好性。热解是指在无氧或缺氧环境下,对有机固体废弃物进行高温热分解,使得有机物发生热化学转化反应,改变原有分子结构形态,使之转变成不同相态碳氢化合物的过程。其气态产物包括甲烷、一氧化碳、氢、焦油、水蒸汽等混合气体,其比例依据垃圾中的各种成分比例而不同。其过程如下方程所示:
Figure DEST_PATH_GDA0002347518940000011
有机固体废弃物热解技术在二噁英和氮硫氧化物的排放上更具优势,同时还具有减容量大、无害化显著、资源化充分、二次污染小等特点,在现在提倡保护生态环境,二氧化碳减排和低碳生活的大环境下,热解有机固体废弃物技术极具发展前景。
然而,由于有机固体废弃物组分复杂,传统的热解方式得到的热解产物中,较多的焦油、杂质气体如HCl、SO2、CO2的存在导致难以得到较为纯净且高热值的气体燃料。并且,热解需要消耗大量的能量进行前期烘干以及维持热解高温, 如何减少热解过程的耗能也是热解处理有机固体废弃物急需解决的问题。
实用新型内容
本实用新型的目的是为了解决现有有机固体废弃物资源化处理困难的难题,从而提供一种连续、高效、低消耗且能制得较为纯净的气体燃料的有机固体废弃物热解反应系统。通过附着于蜂窝状催化剂载体上的新型二维柱撑分子筛的催化作用,在有机固体废弃物完全转化的同时,得到高品质的混合气体燃料。
本实用新型通过下述技术方案实现,一种催化热解有机固体废弃物制取气体燃料的反应系统,包括进行晾干有机固体废弃物的一级干燥室,进行烘干的二级干燥室,进行热解反应的热解装置,对热解碳进行粉碎的粉碎装置,对热解碳和辅助燃料进行燃烧的燃烧装置,对热解气体和液体进行催化裂解的催化裂解装置,对裂解后气体进行冷凝的冷凝装置,对制得气体进行CO2脱除的气体净化装置以及储存气体的储气瓶。且所述一级干燥室、二级干燥室和热解炉依次连接,热解炉设置气体出口与固体残渣出口,所述热解炉的气体出口与催化裂解室连接,所述热解炉的固体残渣出口与粉碎机连接,所述粉碎机出口与燃烧室连接;催化裂解室、冷凝器、CO2吸收塔和储气瓶依次连接。
进一步的,所述一级干燥室和二级干燥室均设置气体出口,且分别通过第一风机和第二风机与燃烧室连接。
进一步的,所述一级干燥室与二级干燥室均设置有污水出口,所述污水出口均与污水处理装置相连接。
二级干燥室的出料口与热解炉的进料口之间设置螺旋给料机,二级干燥室干燥后的有机固体废弃物通过螺旋给料机进入热解炉,热解炉的气液出口与催化裂解室的进口之间设置风机,热解生成的气液混合物通过风机进入催化裂解室,热解炉的底部设置固体残渣出口,热解炉的固体残渣出口与粉碎机之间设置螺旋出料机,所述燃烧室还与辅助燃料罐或热解炉的热解气出口连接,热解炉中生成的热解碳从所述固体残渣出口排出并通过搅动装置到达出料口,通过螺旋出料机进入粉碎机进行破碎,进入燃烧室与辅助燃料一起燃烧。所述辅助燃料通过风机吹入燃烧室中。所述辅助原料选自热解炉中产生的热解气或辅助燃料罐中的燃料。
所述催化裂解室内布置有蜂窝煤状的催化剂载体,催化剂载体选用白云石,其主要成分为CaMg(CO3)2,催化剂附着在所述载体的孔表面内,催化剂载体的开孔率为200~400目/inch2
所述催化裂解室与冷凝器之间设置有真空泵,催化裂解室引出的气体通过真空泵进入冷凝器中。冷凝器的冷却水进口与水箱通过水泵连接,水箱中的冷却水通过水泵打入冷凝器内,对催化裂解室引出的气体进行冷却。冷凝器出口热水可以用作商业用途。
冷凝器的液体出口与油箱连接,所述油箱与催化裂解室通过油泵连接,冷凝后的液体进入油箱中,通过油泵打入催化裂解室再次进行热解。
所述CO2吸收塔的中下部设置微孔曝气板,所述曝气板的上层设置喷淋装置,采用乙醇胺水溶液对CO2进行吸收。所述CO2吸收塔与储气瓶之间设置第二布袋除尘器。
燃烧室连接燃烧用鼓风机,空气通过鼓风机进入燃烧室内,燃烧室烟气出口与热风炉连接,且热风炉与热解炉和催化裂解室的烟气管道连通,燃烧室中产生的烟气进入热风炉后分别被引送至热解炉、催化裂解室的烟气管道内以提供热解和裂解所需要的热量;热解炉和催化裂解室的烟气管道与二级干燥室的烟气管道连通,将热解炉和催化裂解室中排出的烟气引入二级干燥室的烟气管道对固体废弃物进行加热烘干;最后,二级干燥室的烟气管道依次与第一布袋除尘器、引风机和烟囱连接,烟气通过第一布袋除尘器除尘净化达标后通过引风机进入烟囱后排放。
一种有机固体废弃物热解和气液两相产物在经二维柱撑分子筛催化后制取气体燃料的方法,包括以下内容:
将收集到的废弃物除去无机成分如玻璃、砖瓦、陶瓷等。卸料小车将剩余有机固体废弃物卸入一级干燥室内进行生物干燥,此过程为3到5天,根据废弃物的含水率而定。
行车抓斗将一级干燥室内物料抓入二级干燥室中。
一级干燥室和二级干燥室产生的污水均引入污水处理装置进行净化。二级干燥室中干燥时间控制在10~24h。一级干燥室与二级干燥室内产生的气体均通过风机引入燃烧室进行燃烧。
干燥后的物料通过螺旋给料机送入热解炉内,保持热解炉内温度为600℃,热解碳通过搅动装置送至出料口,通过螺旋出料机进入粉碎机破碎后进入燃烧室进行燃烧。进一步,采用真空泵控制热解炉的真空度,将有机固体废弃物的热解反应置于无氧或极低氧条件下。
燃烧室内辅助燃料气体通过风机吹入燃烧室与热解碳一同燃烧。
热解炉产生的热解气通过风机引入催化裂解室,催化室的温度为650℃,热解气在二维柱撑分子筛的催化作用下进行再次裂解。所述催化裂解室内布置有蜂窝煤状的催化剂载体,催化剂载体选用白云石,其主要成分为CaMg(CO3)2。二维柱撑分子筛附着在孔表面内,催化剂载体的开孔率为200-400目/inch2
催化裂解室引出的气体通过背压阀进入冷凝器中,在冷凝器冷凝至该压力下水的饱和温度以下,以防止水蒸气混入其中。
冷凝后的热解气体进入CO2吸收装置中吸收塔中下部的微孔曝气板的上层,采用乙醇胺水溶液(MEA)对CO2进行吸收,冷凝后的液体进入油箱中,通过油泵打入催化裂解装置再次进行热解。
除去CO2的热解气进入布袋除尘器除去固体颗粒后,装入储气瓶。
燃烧室燃烧产生的烟气通过暖风机引入热风炉中,再由热风炉分别引入热解炉和催化裂解室的烟气管道内对其进行加热,加热后的烟气引入二级干燥室烟气管道对有机固体废弃物进行加热烘干。
为了制得高品质的气体燃料,本发明中采用二维柱撑分子筛作为催化剂催化热解气体和液体的方式进行精炼。该分子筛是在超薄2D沸石分层结构材料之间插入金属或金属氧化物共同构成具有酸碱双功能的催化活性位。其合成方法可参考文献:Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalyst,CHOIM,NA K,KIM J,et al.Nature,2009,461(7261):246-U120。二维柱撑分子筛中柱撑指的是二维片层状沸石晶体之间形成的intergrown crystals,这些 intergrown crystals可以作为柱子支撑片层状的沸石晶体。同时,二维片层状沸石晶体之间不完全坍塌,形成层间介孔,增大了分子筛的比表面积。这类材料具有氧空穴和可变价金属位,是基于沸石晶体的最小结晶单位,一个晶格的厚度为 2-3nm创建的柱撑结构,所以催化剂具有极高的外表面积和多级孔道,可以增加与反应物的接触面从而加快其催化反应速度。这些独特的结构和表面特征使催化剂表面孔隙度大幅度增加,热解气更容易和及时进入催化剂内部,同时由于层间隙之内含有金属或金属氧化物作为层间距柱撑材料,含氧物质通过材料表面时,通过氧传递机制使得活性氧将被释放出来,能在较低的温度下发生反应。此外,超薄2D沸石材料的层内骨架结构可同时含有布朗斯特
Figure DEST_PATH_GDA0002347518940000051
和路易斯 (Lewis)酸性位点;而层间隙之内引入金属氧化物或金属作为层间距柱撑材料,其中金属氧化物支柱可提供碱性活性位点,吸附在金属表面H2断裂形成酸性位点。层内的沸石微孔和层隙间的介孔可引入超小的金属颗粒材料。所以这个催化剂可同时具备酸-碱,酸-金属,碱-金属双功能或者酸-碱-金属多功能活性,在增强活性点的可接触性同时,促进热解气的进一步分解,从而提升热解气的品质,实现净化和充分利用的目标。最后,柱撑的结构使得纳米级尺寸的2D沸石合成微米或者毫米级尺寸的催化剂颗粒,有助于催化剂的再生利用,并避免催化剂的流失。
为了制得高品质的气体燃料,采用二维柱撑分子筛催化热解气体和液体的方式进行精炼。在超薄2D沸石分层结构材料之间插入金属、金属氧化物共同构成具有酸碱双功能的催化活性位,这类材料具有氧空穴和可变价金属位。是基于沸石晶体的最小结晶单位,一个晶格的厚度为2-3nm创建的柱撑结构,所以催化剂具有极高的外表面积和多级孔道,可以增加与反应物的接触面从而加快其催化反应速度。这些独特的结构和表面特征使催化剂表面孔隙度大幅度增加,热解气更容易和及时进入催化剂内部,同时由于层间隙之内含有金属氧化物作为层间距柱撑材料,含氧物质通过材料表面时,通过氧传递机制使得活性氧将被释放出来,能在较低的温度下发生反应。此外,超薄2D沸石材料的层内骨架结构可同时含有布朗斯特
Figure DEST_PATH_GDA0002347518940000052
和路易斯(Lewis)酸性位点;层间隙之内含有金属氧化物或金属的层间距柱撑材料,其中金属氧化物支柱可提供碱性活性位点,吸附在金属表面H2断裂形成酸性位点。层内的沸石微孔和层隙间的介空可引入超小的金属颗粒材料。所以这个催化剂可同时具备酸-碱,酸-金属,碱-金属双功能或者酸- 碱-金属多功能活性,在增强活性点的可接触性同时,促进热解气的进一步分解,从而提升热解气的品质,实现净化和充分利用的目标。最后,柱撑的结构使得纳米级尺寸的2D沸石合成微米或者毫米级尺寸的催化剂颗粒,有助于催化剂的再生利用,并避免催化剂的流失。
与现有技术相比,本实用新型具有以下有益效果:
(1)采用有机固体废弃物为原料制取高品质的热解气体燃料,将废弃物资源化利用,可以缓解化石能源日益短缺及其利用产生的相关环境问题;
(2)有机固体废弃物本身来源广泛,收集方便,以此为原料,可以显著降低原料成本;
(3)采用生物干燥的方式沥干水分,可以节约干燥时的部分能量;
(4)烘干时利用燃烧产生的烟气,可以节约能量;
(5)热解时,采用真空泵控制热解炉的真空度,可以将有机固体废弃物的热解反应置于无氧或极低氧条件下;同时,降低了热解气的沸点,便于热解气更快的逸出,有助于获得更多可用的有机热解气,能够提高气体燃料的产量;
(6)热解后的气体和液体蒸汽均进行二次催化裂解,热解气体经过CO2吸收塔,有利于获得更多高热值气体燃料;
(7)采用二维柱撑分子筛作为催化剂,一方面是通过催化剂上活性位将热解气中易结焦的重质组分催化裂解成轻质组分,从而提高热解气中可燃组分含量,从而提高热解气热值;另一方面是通过CO2捕集催化重整催化剂处理热解产生的 CO2,从而降低不可燃组分含量,将热解气定向高效转化为高值燃气;
(8)催化载体选择白云石,廉价易获得,其形状为蜂窝煤状,耐热性、耐热冲击性、机械强度和抗热分解性良好,而且对催化剂耐腐蚀性高,可以长期稳定地使用;
(9)热解碳进入燃烧室进行燃烧,并为热解炉和干燥室提供热量,减少了外部能量的供给,而且整个制取过程连续。
附图说明
图1是本实用新型的反应系统的示意图;
图中:1、第一风机;2、一级干燥室;3、卸料小车;4、移动抓斗;5、螺旋给料机;6、第一布袋除尘器;7、热解炉;8、引风机;9、第二暖风机;10、烟囱;11、热风炉;12、第一暖风机;13、真空泵;14、微孔曝气板;15、第二布袋除尘器;16、储气罐;17、CO2吸收塔;18、水箱;19、冷水泵;20、油箱; 21、冷凝器;22、催化裂解室;23、辅助燃料储罐;24、燃烧室;25、燃烧用鼓风机;26、粉碎机;27、螺旋出料机;28、二级干燥室;29、第二风机;30、污水处理装置。
具体实施方式
下面结合具体实施例对本实用新型作进一步具体详细描述。
实施例1
如图1所示,一种催化热解有机固体废弃物制取气体燃料的反应系统,包括进行晾干有机固体废弃物的一级干燥室2,进行烘干的二级干燥室28,进行热解反应的热解炉7,对热解碳进行粉碎的粉碎机26,对热解碳和辅助燃料进行燃烧的燃烧室24,对热解气体和液体进行催化裂解的催化裂解室22,对裂解后气体进行冷凝的冷凝器21,对制得气体进行CO2脱除的CO2吸收塔17以及储存气体的储气瓶16。且所述一级干燥室2、二级干燥室28和热解炉7依次连接,热解炉7设置气体出口与固体残渣出口,所述热解炉7的气体出口与催化裂解室22 连接,所述热解炉7的固体残渣出口与粉碎机26连接,所述粉碎机26出口与燃烧室24连接;催化裂解室22、冷凝器21、CO2吸收塔17和储气瓶16依次连接。
进一步的,所述一级干燥室2和二级干燥室28均设置气体出口,且分别通过第一风机1和第二风机29与燃烧室24连接。
进一步的,所述一级干燥室与二级干燥室均设置有污水出口,所述污水出口均与污水处理装置相连接。
二级干燥室28的出料口与热解炉7的进料口之间设置螺旋给料机5,二级干燥室28干燥后的有机固体废弃物通过螺旋给料机5进入热解炉7,热解炉7 的气液出口与催化裂解室22的进口之间设置风机,热解生成的气液混合物通过风机进入催化裂解室22,热解炉7的底部设置固体残渣出口,热解炉的固体残渣出口与粉碎机之间设置螺旋出料机27,所述燃烧室还与辅助燃料罐连接,热解炉中生成的热解碳从所述固体残渣出口排出并通过搅动装置到达出料口,通过螺旋出料机27进入粉碎机26进行破碎,进入燃烧室24与辅助燃料罐23中的辅助燃料一起燃烧。所述辅助燃料通过风机吹入燃烧室中。辅助燃料也可以选自热解炉7中产生的热解气。
所述催化裂解室内布置有蜂窝煤状的催化剂载体,催化剂载体选用白云石,其主要成分为Ca(MgCO3)2,金属或金属氧化物材料选择作为活性部位加载到二维柱撑分子筛的二维柱撑分子筛作为催化剂附着在所述载体的孔表面内,催化剂载体的开孔率为200目/inch2
所述催化裂解室22与冷凝器21之间设置有真空泵13,催化裂解室引出的气体通过真空泵13进入冷凝器中。冷凝器21的冷却水进口与水箱18通过水泵19连接,水箱18中的冷却水通过水泵19打入冷凝器21内,对催化裂解室22 引出的气体进行冷却。冷凝器21出口热水可以用作商业用途。
冷凝器21的液体出口与油箱20连接,所述油箱20与催化裂解室22通过油泵
连接。
所述CO2吸收塔17的中下部设置微孔曝气板,所述曝气板的上层设置喷淋装置,采用乙醇胺水溶液对CO2进行吸收。所述CO2吸收塔17与储气瓶16之间设置第二布袋除尘器15。
燃烧室24连接燃烧用鼓风机25,且燃烧室24烟气出口与热风炉11连接,然后热风炉11与热解炉7和催化裂解室22的烟气管道连接以提供热解和裂解所需要的热量,即燃烧室24内的烟气通过暖风机引入热风炉11中,由热风炉11 分别引送至热解炉7、催化裂解室22的烟气管道内,热解炉7和催化裂解室22 的烟气出口与二级干燥室28的烟气管道连通,热解炉7和催化裂解室22排出的烟气,引入二级干燥室28的烟气管道对固体废弃物进行加热烘干,最后二级干燥室28的烟气出口与第一布袋除尘器6连接,然后通过引风机8与烟囱10连接,将除尘净化后的烟气通过烟囱10排放。
以上所述,仅为本实用新型的较佳实施例而已,并非对本实用新型做任何形式上的限定。凡本领域的技术人员利用本实用新型的技术方案对上述实施例作出的任何等同的变动、修饰或演变等,均仍属于本实用新型技术方案的范围内。

Claims (9)

1.一种催化热解有机固体废弃物制取气体燃料的反应系统,其特征在于:包括一级干燥室(2)、二级干燥室(28)、热解炉(7)、粉碎机(26)、燃烧室(24)、催化裂解室(22)、冷凝器(21)、CO2吸收塔(17)和储气瓶(16);所述一级干燥室(2)、二级干燥室(28)和热解炉(7)依次连接,热解炉(7)设置气体出口与固体残渣出口,所述热解炉(7)的气体出口与催化裂解室(22)连接,所述热解炉(7)的固体残渣出口与粉碎机(26)连接,所述粉碎机(26)出口与燃烧室(24)连接;催化裂解室(22)、冷凝器(21)、CO2吸收塔(17)和储气瓶(16)依次连接。
2.根据权利要求1所述的反应系统,其特征在于,所述一级干燥室(2)和二级干燥室(28)均设置气体出口,且分别通过第一风机(1)和第二风机(29)与燃烧室(24)连接。
3.根据权利要求1所述的反应系统,其特征在于,所述一级干燥室(2)和二级干燥室(28)均设置污水出口,所述污水出口均与污水处理装置(30)连接。
4.根据权利要求1所述的反应系统,其特征在于:所述二级干燥室(28)的出料口与热解炉(7)的进料口之间设置螺旋给料机(5),热解炉(7)的气液出口与催化裂解室(22)的进口之间设置风机,热解炉(7)的固体残渣出口与粉碎机(26)之间设置螺旋出料机(27),所述燃烧室(24)还与辅助燃料罐(23)或热解炉(7)的热解气出口连接。
5.根据权利要求1所述的反应系统,其特征在于:所述催化裂解室(22)内布置有蜂窝煤状的催化剂载体,金属和金属氧化物材料选择作为活性部位加载到分子筛的二维柱撑分子筛作为催化剂附着在所述载体的孔表面内。
6.根据权利要求1所述的反应系统,其特征在于:所述催化裂解室(22)与冷凝器(21)之间设置有真空泵(13);冷凝器(21)的冷却水进口与水箱(18)通过水泵(19)连接,水箱(18)中的冷却水通过水泵(19)打入冷凝器(21)内,对催化裂解室(22)引出的气体进行冷却。
7.根据权利要求1所述的反应系统,其特征在于:冷凝器(21)的液体出口与油箱(20)连接,所述油箱(20)与催化裂解室(22)通过油泵连接,冷凝后的液体进入油箱(20)中,通过油泵打入催化裂解室(22)再次进行热解。
8.根据权利要求1所述的反应系统,其特征在于:所述CO2吸收塔(17) 的中下部设置微孔曝气板(14),所述曝气板的上层设置喷淋装置;所述CO2吸收塔(17)与储气瓶(16)之间设置第二布袋除尘器(15)。
9.根据权利要求1所述的反应系统,其特征在于:燃烧室(24)连接燃烧用鼓风机(25),燃烧室(24)烟气出口与热风炉(11)连接,且热风炉(11)与热解炉(7)和催化裂解室(22)的烟气管道连通,热解炉(7)和催化裂解室(22)的烟气管道与二级干燥室(28)的烟气管道连通,从而将烟气用于对固体废弃物进行加热烘干,二级干燥室(28)的烟气管道依次与第一布袋除尘器(6)、引风机(8)和烟囱(10)连接,将烟气进行除尘净化达标后排放。
CN201920173694.7U 2019-01-31 2019-01-31 一种催化热解有机固体废弃物制取气体燃料的反应系统 Active CN210419850U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201920173694.7U CN210419850U (zh) 2019-01-31 2019-01-31 一种催化热解有机固体废弃物制取气体燃料的反应系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201920173694.7U CN210419850U (zh) 2019-01-31 2019-01-31 一种催化热解有机固体废弃物制取气体燃料的反应系统

Publications (1)

Publication Number Publication Date
CN210419850U true CN210419850U (zh) 2020-04-28

Family

ID=70360398

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201920173694.7U Active CN210419850U (zh) 2019-01-31 2019-01-31 一种催化热解有机固体废弃物制取气体燃料的反应系统

Country Status (1)

Country Link
CN (1) CN210419850U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109679672A (zh) * 2019-01-31 2019-04-26 华南理工大学 一种催化热解有机固体废弃物制取气体燃料的反应系统及其方法
CN112174473A (zh) * 2020-11-06 2021-01-05 重庆科技学院 一种污泥热解气化系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109679672A (zh) * 2019-01-31 2019-04-26 华南理工大学 一种催化热解有机固体废弃物制取气体燃料的反应系统及其方法
CN112174473A (zh) * 2020-11-06 2021-01-05 重庆科技学院 一种污泥热解气化系统
CN112174473B (zh) * 2020-11-06 2022-05-17 重庆科技学院 一种污泥热解气化系统

Similar Documents

Publication Publication Date Title
CN201240980Y (zh) 有机污泥资源转化装置
CN109679672A (zh) 一种催化热解有机固体废弃物制取气体燃料的反应系统及其方法
CN104028547B (zh) 一种城市生活垃圾极度减量化和高度资源化处理过程和装备
CN105737162B (zh) 基于过程解耦和洗气燃烧的生活垃圾低温热解系统及方法
JP2014534402A (ja) 高分子物質の効率的でクリーンな燃焼方法及び装置
CN1888017B (zh) 一种裂解气化重整炉
CN105710114B (zh) 一种生活垃圾及农林废弃物炭化循环综合处理系统及方法
CN103666505A (zh) 一种生活垃圾或有机废弃物减量化和能源化的设备
CN104560072A (zh) 有机废弃物热解系统和热解方法
CN210419850U (zh) 一种催化热解有机固体废弃物制取气体燃料的反应系统
CN101993733A (zh) 一种新型城市固体废弃物热解气化炉
CN110746070A (zh) 生物质气炭联产耦合污泥深度处置系统及方法
CN101508902A (zh) 生物质燃料循环气化装置及其方法
Adeniyi et al. Conversion of biomass to biochar using top‐lit updraft technology: a review
CN110437858A (zh) 一种催化剂可再生的微波辅助催化快速热解生活垃圾的方法与装置
CN214457774U (zh) 移动式农林秸秆微波辅助快速热解多联产的装置
CN107202325A (zh) 回转式可控热解炭化窑
CN109355071A (zh) 城市生活垃圾处理方法及处理系统
CN202717749U (zh) 生物质热解炭化系统设备
CN107629819A (zh) 一种生物质热解联产高品质热解气和生物炭的工艺
CN205710623U (zh) 一种实现垃圾炭资源化的系统
CN209702302U (zh) 一种用于处理含pvc塑料垃圾的脱氯制氢装置
CN106495153B (zh) 生产碳材料的方法
CN105602630A (zh) 一种废弃物气化气催化提质的工艺
CN211079359U (zh) 一种基于有机固废为燃料熔浴床的工业废盐电解制钠装置

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant