CN210296507U - 一种侧面进气的燃料电池电堆 - Google Patents

一种侧面进气的燃料电池电堆 Download PDF

Info

Publication number
CN210296507U
CN210296507U CN201920996264.5U CN201920996264U CN210296507U CN 210296507 U CN210296507 U CN 210296507U CN 201920996264 U CN201920996264 U CN 201920996264U CN 210296507 U CN210296507 U CN 210296507U
Authority
CN
China
Prior art keywords
channel
air
hydrogen
section
flow channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201920996264.5U
Other languages
English (en)
Inventor
马骁
王国文
张娜
章丹亭
申帅帅
于继胜
孙凤焕
陈红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Aerospace Innovation Patent Investment Center (limited Partnership)
Beijing Aerospace Petrochemical Technology and Equipment Engineering Corp Ltd
Original Assignee
Beijing Aerospace Innovation Patent Investment Center (limited Partnership)
Beijing Aerospace Petrochemical Technology and Equipment Engineering Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Aerospace Innovation Patent Investment Center (limited Partnership), Beijing Aerospace Petrochemical Technology and Equipment Engineering Corp Ltd filed Critical Beijing Aerospace Innovation Patent Investment Center (limited Partnership)
Priority to CN201920996264.5U priority Critical patent/CN210296507U/zh
Application granted granted Critical
Publication of CN210296507U publication Critical patent/CN210296507U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

本实用新型涉及一种侧面进气的燃料电池电堆。该燃料电池电堆为依次堆叠在一起的首端板、首端缓冲板、首端绝缘板、首端导电板、多个并列放置的燃料电池单体、末端导电板、末端绝缘板、末端缓冲板和末端板;燃料电池单体包括依次堆叠放置在一起的:水空流场板、膜电极和氢气流场板,膜电极位于水空流场板和氢气流场板之间。

Description

一种侧面进气的燃料电池电堆
技术领域
本实用新型型专利属于燃料电池领域,具体涉及到一种侧面进气的燃料电池电堆。
背景技术
流场是在双极板上加工的各种形状的沟槽,为反应剂及反应产物提供进出通道。流场设计要求如下:(1)流场设计的基本原则是保证在一定的反应及供应量情况下,电极各处均能获得充足的反应剂;(2)依据电极与双极板材料的导电特性,流畅沟槽的面积应有一个最优值;(3)流场结构所决定的反应剂在流场内部的流动状态,应有利于反应剂经电极扩散层向催化层反应电的传递,并能促进反应产物的顺利排出;(4)在一定流量下,反应剂通过流场的压力降要适中。
所以,在进行流场设计过程中,需保证在一定的反应及供应量情况下,电极各处均能获得充足的反应剂;双极板的开孔率(沟槽面积和电极总面积之比)应由一个最优值,应在40~75%之间;在一定流量下,反应剂通过流场的压力降要适中。
现有的流场板在保证反应量充沛的情况下,流场板的导电性及流阻难以满足需求。
实用新型内容
本实用新型的技术解决问题是:克服现有技术的不足,提供了一种侧面进气的燃料电池电堆。
一种侧面进气的燃料电池电堆,该燃料电池电堆为依次堆叠在一起的首端板、首端缓冲板、首端绝缘板、首端导电板、多个并列放置的燃料电池单体、末端导电板、末端绝缘板、末端缓冲板和末端板;
燃料电池单体包括依次堆叠放置在一起的:水空流场板(7)、膜电极(9)和氢气流场板(8),膜电极(9)位于水空流场板(7)和氢气流场板(8)之间;
水空流场板(7)包括空气进气通道(1)、空气排气通道(2)、冷却液进入通道(5)、冷却液排出通道(6);氢气流场板(8)包括氢气进气通道(3)和氢气排气通道(4);
水空流场板(7)的一侧面设置有冷却液流动通道、冷却液导流槽和空气导流槽,另一侧面设置有空气流动通道,氢气流场板(8)的一侧面为氢气流动通道,另一侧面设置有氢气导流槽;
水空流场板(7)设置有冷却液流动通道的一侧面与氢气流场板(8)设置有氢气导流槽的一侧面粘合在一起,水空流场板(7)设置有空气流动通道的一侧面与膜电极(9)的阴极面贴合在一起;膜电极(9)的阳极面与氢气流场板(8)设置有氢气流动通道的一侧面贴合在一起;
冷却液从冷却液进入通道(5)流入,依次经过冷却液导流槽、冷却液流动通道以及冷却液导流槽后,从冷却液排出通道(6)流出;
空气从空气进气通道(1)流入,依次经过空气导流槽、空气流动通道以及空气导流槽后,从空气排气通道(2)流出;
氢气从氢气进气通道(3)流入,依次经过氢气导流槽、氢气流动通道以及氢气导流槽后,从氢气排气通道(4)流出。
冷却液导流槽、冷却液流动通道、冷却液进入通道(5)以及冷却液排出通道(6)位于水空流场板(7)的同一侧;空气进气通道(1)、空气排气通道(2)以及空气导流槽位于水空流场板(7)的同一侧,空气流动通道位于另外一侧;氢气进气通道(3)、氢气排气通道(4)以及氢气导流槽位于氢气流场板(8)的同一侧,氢气流动通道位于另外一侧。
空气进气通道(1)与空气排气通道(2)分布于水空流场板(7)左右边缘,冷却液进入通道(5)和冷却液排出通道(6)分布于水空流场板(7)上下边缘;氢气进气通道(3)和氢气排气通道(4)分布于氢气流场板(8)左右边缘;冷却液流动通道为下端流入、上端流出。
冷却液流动通道为直流道;空气流动通道和氢气流动通道均为Z字形流道,且呈X状交错。
空气流动通道包括进气段、排气段以及连接进气段和排气段的过渡段,进气段、排气段与过渡段之间均为90°夹角且过渡段与进气段、排气段连接处均有倒角,空气流动通道的横截面为矩形,空气流动通道的深度为0.3-0.5mm,宽度为0.8-1.5mm,相邻空气流动通道之间的脊宽为0.5-1mm,倒角圆弧半径为0.5-1mm。
空气流动通道进气段最大长度为160-140mm,最小长度为0.8-2mm,最大长度和最小长度之间均匀变化,空气流动通道进气段的长度与流道顺序成一次负相关,其斜率为-1;空气流动通道过渡段长度恒定,为80-85mm,空气流动通道排气段最小长度为0.8-2mm,最大长度为130-150mm,最小长度和最大长度之间均匀变化,空气流动通道排气段的长度与流道顺序成一次正相关,其斜率为1;且空气流动通道排气段按照从小到大的排列顺序与进气段从大到小的排列顺序一一对应。
氢气流动通道包括进气段、排气段以及连接进气段和排气段的过渡段,进气段、排气段与过渡段之间均为90°夹角且过渡段与进气段、排气段连接处均有倒角,氢气流动通道的横截面为矩形,氢气流动通道的深度为0.4-0.7mm,宽度为1-1.5mm,相邻氢气流动通道之间的脊宽为0.8-1.2mm,倒角圆弧半径为0.5-1mm。
氢气流动通道进气段最大长度为130-140mm,最小长度为1.5-2mm,最大长度和最小长度之间均匀变化,氢气流动通道进气段的长度与流道顺序成一次正相关,其斜率为0.99,氢气流动通道过渡段长度均匀变化,为120-140mm,过渡段的长度与流道顺序成一次正相关,其斜率为0.73;氢气流动通道排气段最小长度为0.5-1mm,最大长度为120-140mm,最小长度和最大长度和间均匀变化,氢气流动通道排气段的长度与流道顺序成一次负相关,其斜率为-1。
本实用新型与现有技术相比的有益效果是:
(1)流道宽度设计合理,质子交换膜与流道脊充分接触的前提下,得到足够的支撑,降低了接触电阻,增加了反应面积;
(2)流道深度设计合理,在保证流场板足够薄的前提下,满足流阻需求。
附图说明
图1为本实用新型一种侧面进气的燃料电池电堆的水空板空气侧流道;
图2为本实用新型一种侧面进气的燃料电池电堆的水空板水侧流道;
图3为本实用新型一种侧面进气的燃料电池电堆的氢气板氢气流道;
图4为本实用新型一种侧面进气的燃料电池电堆单体的三维示意模型;
图5为100片组成的电堆进行了性能测试结果示意图。
具体实施方式
本实用新型提出了一种侧面进气的燃料电池电堆,该燃料电池电堆为依次堆叠在一起的首端板、首端缓冲板、首端绝缘板、首端导电板、多个并列放置的燃料电池单体、末端导电板、末端绝缘板、末端缓冲板和末端板;
如图4所示,燃料电池单体包括依次堆叠放置在一起的:水空流场板7、膜电极9和氢气流场板8,膜电极9位于水空流场板7和氢气流场板8之间;
如图1、2所示,水空流场板7包括空气进气通道1、空气排气通道2、冷却液进入通道5、冷却液排出通道6;
如图3所示,氢气流场板8包括氢气进气通道3和氢气排气通道4;
如图1、2所示,水空流场板7的一侧面设置有冷却液流动通道、冷却液导流槽和空气导流槽,另一侧面设置有空气流动通道,氢气流场板8的一侧面为氢气流动通道,另一侧面设置有氢气导流槽;
水空流场板7设置有冷却液流动通道的一侧面与氢气流场板8设置有氢气导流槽的一侧面粘合在一起,水空流场板7设置有空气流动通道的一侧面与膜电极9的阴极面贴合在一起;膜电极9的阳极面与氢气流场板8设置有氢气流动通道的一侧面贴合在一起;
冷却液从冷却液进入通道5流入,依次经过冷却液导流槽、冷却液流动通道以及冷却液导流槽后,从冷却液排出通道6流出;
空气从空气进气通道1流入,依次经过空气导流槽、空气流动通道以及空气导流槽后,从空气排气通道2流出;
氢气从氢气进气通道3流入,依次经过氢气导流槽、氢气流动通道以及氢气导流槽后,从氢气排气通道4流出。
冷却液导流槽、冷却液流动通道、冷却液进入通道5以及冷却液排出通道6位于水空流场板7的同一侧;空气进气通道1、空气排气通道2以及空气导流槽位于水空流场板7的同一侧,空气流动通道位于另外一侧;氢气进气通道3、氢气排气通道4以及氢气导流槽位于氢气流场板8的同一侧,氢气流动通道位于另外一侧。
空气进气通道1与空气排气通道2分布于水空流场板7左右边缘,冷却液进入通道5和冷却液排出通道6分布于水空流场板7上下边缘;氢气进气通道3和氢气排气通道4分布于氢气流场板8左右边缘;冷却液流动通道为下端流入、上端流出。
冷却液流动通道为直流道;空气流动通道和氢气流动通道均为Z字形流道,且呈X状交错。极板设计的基本原则是保证反应介质和冷却介质在设计的反应点和压和供应量情况下,电极各处均能获得压力和流量满足要求的反应剂和换热量;根据极板材料的强度特性和加工特性,极板基底厚度应有最优值;流场结构决定反应介质在流场内部的流动状态,在满足反应介质由流道向扩散层传递和反应生成水通过流道排出的前提下,流场沟槽深度应适中;在设计工况条件下,极板介质流通的流阻要适中;通道宽度太大,将使通道内的MEA面积增加而得不到足够的机械支撑;而通道宽度小,则反应气体无法得到较多的MEA接触面积;通道深度的增加会减小通道内的压降,这样会增加极板的厚度,不利于提高体积和质量功率密度;若通道深度太小,则有可能因MEA的碳纸组成堵塞通道致使反应气体流通不畅;减小通道间的台肩宽度可以促进台肩下MEA部分的气体与水的排出,但当台肩宽度减小,电池内部的接触电阻上升,也不利于电池性能的提高。
气体在流场内部的短路是指气体流经流场台肩底部的扩散层,而不沿着流场的通道流动的一种现象。发生气体短路的原因是相邻通道存在压差,气体速率较大时更易发生。短路的结果是导致气体流速降低,使积累在通道内的液态水滴不能有效地排出,进而增加流动阻力、加重气体短路现象,这是一个恶性循环过程。
在设计流场时,可通过加大蛇形流场在拐角处台肩宽度、减小气体在通道内的流动阻力和气速、增加台肩底部阻止气体通过的能力(增加压紧力或采用孔隙率较低的碳纸等)、拐角采用圆角等方法来减小发生气体短路的可能性。
最优化的流场结构应该考虑流场与MEA的最大接触面积同时为电化学反应提供足够的反应气体。通常来说,细密化的通道和台肩对于MEA的机械支撑是有利的,因为细密化的流场减小的台肩支撑的跨度。虽然宽台肩能提高电和热传导性能,但是它增加了通道间距、减小了MEA与反应气体的接触面积、增加水在这部分气体扩散电极中的积累。
空气流动通道包括进气段、排气段以及连接进气段和排气段的过渡段,进气段、排气段与过渡段之间均为90°夹角且过渡段与进气段、排气段连接处均有倒角,空气流动通道的横截面为矩形,空气流动通道的深度为0.3-0.5mm,宽度为0.8-1.5mm,相邻空气流动通道之间的脊宽为0.5-1mm,倒角圆弧半径为0.5-1mm;
进气段最大长度为160-140mm,最小长度为0.8-2mm,最大长度和最小长度之间均匀变化,进气段的长度与流道顺序成一次负相关,其斜率为-1;过渡段长度恒定,为80-85mm,排气段最小长度为0.8-2mm,最大长度为130-150mm,最小长度和最大长度之间均匀变化,排气段的长度与流道顺序成一次正相关,其斜率为1;且排气段按照从小到大的排列顺序与进气段从大到小的排列顺序一一对应。
氢气流动通道包括进气段、排气段以及连接进气段和排气段的过渡段,进气段、排气段与过渡段之间均为90°夹角且过渡段与进气段、排气段连接处均有倒角,氢气流动通道的横截面为矩形,氢气流动通道的深度为0.4-0.7mm,宽度为1-1.5mm,相邻氢气流动通道之间的脊宽为0.8-1.2mm,倒角圆弧半径为0.5-1mm;
进气段最大长度为130-140mm,最小长度为1.5-2mm,最大长度和最小长度之间均匀变化,进气段的长度与流道顺序成一次正相关,其斜率为0.99,过渡段长度均匀变化,为120-140mm,过渡段的长度与流道顺序成一次正相关,其斜率为0.73;排气段最小长度为0.5-1mm,最大长度为120-140mm,最小长度和最大长度和间均匀变化,排气段的长度与流道顺序成一次负相关,其斜率为-1。水空流场板7和氢气流场板8的材质是石墨板。膜电极9包括阴极基底、质子交换膜和阳极基底。
本实用新型对100片组成的电堆进行了性能测试,性能测试良好,额定功率超过理论计算数值18kW,实测峰值功率达到25kW。图5所示为100片单片电压在某电流下时的单片电压数值,各个单体电压稳定,电堆性能优良。
本实用新型说明书中未作详细描述的内容属于本领域的公知技术。

Claims (8)

1.一种侧面进气的燃料电池电堆,其特征在于:该燃料电池电堆为依次堆叠在一起的首端板、首端缓冲板、首端绝缘板、首端导电板、多个并列放置的燃料电池单体、末端导电板、末端绝缘板、末端缓冲板和末端板;
燃料电池单体包括依次堆叠放置在一起的:水空流场板(7)、膜电极(9)和氢气流场板(8),膜电极(9)位于水空流场板(7)和氢气流场板(8)之间;
水空流场板(7)包括空气进气通道(1)、空气排气通道(2)、冷却液进入通道(5)、冷却液排出通道(6);氢气流场板(8)包括氢气进气通道(3)和氢气排气通道(4);
水空流场板(7)的一侧面设置有冷却液流动通道、冷却液导流槽和空气导流槽,另一侧面设置有空气流动通道,氢气流场板(8)的一侧面为氢气流动通道,另一侧面设置有氢气导流槽;
水空流场板(7)设置有冷却液流动通道的一侧面与氢气流场板(8)设置有氢气导流槽的一侧面粘合在一起,水空流场板(7)设置有空气流动通道的一侧面与膜电极(9)的阴极面贴合在一起;膜电极(9)的阳极面与氢气流场板(8)设置有氢气流动通道的一侧面贴合在一起;
冷却液从冷却液进入通道(5)流入,依次经过冷却液导流槽、冷却液流动通道以及冷却液导流槽后,从冷却液排出通道(6)流出;
空气从空气进气通道(1)流入,依次经过空气导流槽、空气流动通道以及空气导流槽后,从空气排气通道(2)流出;
氢气从氢气进气通道(3)流入,依次经过氢气导流槽、氢气流动通道以及氢气导流槽后,从氢气排气通道(4)流出。
2.根据权利要求1所述的一种侧面进气的燃料电池电堆,其特征在于:冷却液导流槽、冷却液流动通道、冷却液进入通道(5)以及冷却液排出通道(6)位于水空流场板(7)的同一侧;空气进气通道(1)、空气排气通道(2)以及空气导流槽位于水空流场板(7)的同一侧,空气流动通道位于另外一侧;氢气进气通道(3)、氢气排气通道(4)以及氢气导流槽位于氢气流场板(8)的同一侧,氢气流动通道位于另外一侧。
3.根据权利要求1所述的一种侧面进气的燃料电池电堆,其特征在于:空气进气通道(1)与空气排气通道(2)分布于水空流场板(7)左右边缘,冷却液进入通道(5)和冷却液排出通道(6)分布于水空流场板(7)上下边缘;氢气进气通道(3)和氢气排气通道(4)分布于氢气流场板(8)左右边缘;冷却液流动通道为下端流入、上端流出。
4.根据权利要求1所述的一种侧面进气的燃料电池电堆,其特征在于:冷却液流动通道为直流道;空气流动通道和氢气流动通道均为Z字形流道,且呈X状交错。
5.根据权利要求4所述的一种侧面进气的燃料电池电堆,其特征在于:空气流动通道包括进气段、排气段以及连接进气段和排气段的过渡段,进气段、排气段与过渡段之间均为90°夹角且过渡段与进气段、排气段连接处均有倒角,空气流动通道的横截面为矩形,空气流动通道的深度为0.3-0.5mm,宽度为0.8-1.5mm,相邻空气流动通道之间的脊宽为0.5-1mm,倒角圆弧半径为0.5-1mm。
6.根据权利要求4所述的一种侧面进气的燃料电池电堆,其特征在于:空气流动通道进气段最大长度为160-140mm,最小长度为0.8-2mm,最大长度和最小长度之间均匀变化,空气流动通道进气段的长度与流道顺序成一次负相关,其斜率为-1;空气流动通道过渡段长度恒定,为80-85mm,空气流动通道排气段最小长度为0.8-2mm,最大长度为130-150mm,最小长度和最大长度之间均匀变化,空气流动通道排气段的长度与流道顺序成一次正相关,其斜率为1;且空气流动通道排气段按照从小到大的排列顺序与进气段从大到小的排列顺序一一对应。
7.根据权利要求4所述的一种侧面进气的燃料电池电堆,其特征在于:氢气流动通道包括进气段、排气段以及连接进气段和排气段的过渡段,进气段、排气段与过渡段之间均为90°夹角且过渡段与进气段、排气段连接处均有倒角,氢气流动通道的横截面为矩形,氢气流动通道的深度为0.4-0.7mm,宽度为1-1.5mm,相邻氢气流动通道之间的脊宽为0.8-1.2mm,倒角圆弧半径为0.5-1mm。
8.根据权利要求4所述的一种侧面进气的燃料电池电堆,其特征在于:氢气流动通道进气段最大长度为130-140mm,最小长度为1.5-2mm,最大长度和最小长度之间均匀变化,氢气流动通道进气段的长度与流道顺序成一次正相关,其斜率为0.99,氢气流动通道过渡段长度均匀变化,为120-140mm,过渡段的长度与流道顺序成一次正相关,其斜率为0.73;氢气流动通道排气段最小长度为0.5-1mm,最大长度为120-140mm,最小长度和最大长度和间均匀变化,氢气流动通道排气段的长度与流道顺序成一次负相关,其斜率为-1。
CN201920996264.5U 2019-06-28 2019-06-28 一种侧面进气的燃料电池电堆 Active CN210296507U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201920996264.5U CN210296507U (zh) 2019-06-28 2019-06-28 一种侧面进气的燃料电池电堆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201920996264.5U CN210296507U (zh) 2019-06-28 2019-06-28 一种侧面进气的燃料电池电堆

Publications (1)

Publication Number Publication Date
CN210296507U true CN210296507U (zh) 2020-04-10

Family

ID=70099533

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201920996264.5U Active CN210296507U (zh) 2019-06-28 2019-06-28 一种侧面进气的燃料电池电堆

Country Status (1)

Country Link
CN (1) CN210296507U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115149024A (zh) * 2022-09-05 2022-10-04 苏州中车氢能动力技术有限公司 燃料电池双极板结构及燃料电池电堆

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115149024A (zh) * 2022-09-05 2022-10-04 苏州中车氢能动力技术有限公司 燃料电池双极板结构及燃料电池电堆
CN115149024B (zh) * 2022-09-05 2022-11-18 苏州中车氢能动力技术有限公司 燃料电池双极板结构及燃料电池电堆

Similar Documents

Publication Publication Date Title
CN101937997B (zh) 质子交换膜燃料电池金属双极板及其构成的单池和电堆
CN111146473A (zh) 一种燃料电池金属双极板及燃料电池
CN108155400B (zh) 燃料电池双极板冷却流场结构
CN113097525A (zh) 双极板及包含其的单电池
CN113823809A (zh) 一种燃料电池双极板的流场结构
CN210296506U (zh) 一种z字形的燃料电池流场板
CN210296507U (zh) 一种侧面进气的燃料电池电堆
CN115513486B (zh) 一种单极板、双极板、电堆及燃料电池
CN115020738B (zh) 一种单极板、双极板及电堆
KR20150056206A (ko) 연료전지용 분리판 및 이를 이용한 연료전지
CN114361502B (zh) 一种基于叶脉衍化的仿生学质子交换膜燃料电池
CN114744233B (zh) 一种双极板及燃料电池
CN217035679U (zh) 一种金属双极板及质子交换膜燃料电池
CN113258093B (zh) 一种阴极单板、阳极单板、导流极板及含其的燃料电池
CN113346101B (zh) 一种无双极板的多孔流场燃料电池单体及串并联电堆结构
CN216528962U (zh) 一种电池极板及双极板
CN115207389A (zh) 一种双极板及燃料电池
CN210805927U (zh) 一种燃料电池双极板
CN113013437B (zh) 一种具有渐缩坡面结构的燃料电池阴极流道
KR20160017316A (ko) 연료전지용 분리판 및 이를 갖는 고온형 고분자 전해질 연료전지
CN210837954U (zh) 燃料电池的极板结构、电池单体、电池电堆及电池单元
CN110289431A (zh) 一种z字形的燃料电池流场板
CN114678556B (zh) 一种流场沟槽深部不均的双极板及燃料电池
CN219393428U (zh) 一种带有多孔金属分配区和集合区的燃料电池流场板
CN116864728B (zh) 燃料电池双极板结构及燃料电池堆

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant