CN210274591U - 一种基于温度反馈和相控阵的实现微波加热曲线的设备 - Google Patents

一种基于温度反馈和相控阵的实现微波加热曲线的设备 Download PDF

Info

Publication number
CN210274591U
CN210274591U CN201822118128.4U CN201822118128U CN210274591U CN 210274591 U CN210274591 U CN 210274591U CN 201822118128 U CN201822118128 U CN 201822118128U CN 210274591 U CN210274591 U CN 210274591U
Authority
CN
China
Prior art keywords
heating
temperature
microwave
curve
control module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201822118128.4U
Other languages
English (en)
Inventor
黄卡玛
朱铧丞
杨阳
刘长军
陈星�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201822118128.4U priority Critical patent/CN210274591U/zh
Application granted granted Critical
Publication of CN210274591U publication Critical patent/CN210274591U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Constitution Of High-Frequency Heating (AREA)

Abstract

本实用新型涉及微波加热领域,是一种基于温度反馈和相控阵的实现微波加热曲线的设备,解决了现有技术中加热均匀性差和食品品质差的问题。本实用新型包括微波馈入源,还包括用于调整微波辐射方向的天线装置、用于反馈加热腔体内温度的红外温度热像反馈装置和用于预设加热温度曲线、控制微波辐射方向和强度的智能控制模块;所述智能控制模块连接红外温度热像反馈装置和微波源;天线装置通过同轴电缆连接微波馈入源;智能控制模块包括预设加热温度曲线的加热曲线存储单元。本实用新型在保证加热均匀性的前提下,可根据食材或者菜单都进行不同的加热曲线加热,提高食物口感,保持营养成分。

Description

一种基于温度反馈和相控阵的实现微波加热曲线的设备
技术领域
本实用新型涉及微波加热领域,特别是指一种基于温度反馈和相控阵的实现微波加热曲线的设备。
背景技术
随着现代科技的飞速发展,微波能作为一种新型的高效率、清洁能源,已广泛应用于工业生产、日常生活等各个领域。
但微波加热的应用中存在被加热物的加热均匀性差和加热食材的品质差的问题;对于同时均匀加热不同被加热物的需求更加难以解决。
亟待出现一种可解决上述问题的新型的可预设加热温度曲线的均匀加热的方法。
实用新型内容
本实用新型提出一种基于温度反馈和相控阵的实现微波加热曲线的设备,解决了现有技术中加热均匀性差和食品品质差的问题。
本实用新型的技术方案是这样实现的:一种基于温度反馈和相控阵的实现微波加热曲线的设备,包括微波源,还包括用于调整微波辐射方向的天线装置、用于反馈加热腔体内温度的红外温度热像反馈装置和用于预设加热温度曲线、控制微波辐射方向和强度的智能控制模块;所述智能控制模块连接红外温度热像反馈装置和微波源;所述天线装置通过同轴电缆连接微波源;所述智能控制模块包括预设加热温度曲线的加热曲线存储单元。
所述微波源为六路以上输出、相位和功率可控的固态源。
进一步地,所述智能控制模块包括:用于存储训练后的深层神经网络数据的数据存储单元;控制加热时间、微波源功率和相位输出的加热单元;用于实时采集红外温度热像反馈数据的温度检测单元。
进一步地,所述天线装置为能够形成相控阵波束的4×4贴片天线阵列;所述贴片天线阵列在2.41GHz~2.49GHz频率范围内,S11<-10dB。
本实用新型公开的一种基于温度反馈和相控阵的实现微波加热曲线的方法及设备,在保证加热均匀性的前提下,可根据食材或者菜单都进行不同的加热曲线加热,提高食物口感,保持营养成分。
附图说明
为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1:实用新型的模块示意图;
图2:卷积神经网络算法预测结构框图;
图3:各区域加热温度与设定温度对比曲线图;
图4:第15秒的切片温度图;
图5:第65秒的切片温度图;
图6:第90秒的切片温度图;
图7:天线单元结构图;
图8:天线单元S参数图;
其中:1、红外温度热像反馈装置;2、贴片天线;3、同轴电缆;4、微波源;5、控制总线;6、智能控制模块;7、加热腔体。
具体实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
本实用新型公开的一种基于温度反馈和相控阵的实现微波加热曲线的设备,包括微波源4,还包括用于调整微波辐射方向的天线装置、用于反馈加热腔体7内温度的红外温度热像反馈装置1和用于预设加热温度曲线、控制微波辐射方向和强度的智能控制模块6;所述智能控制模块6连接红外温度热像反馈装置1和微波源4;所述天线装置通过同轴电缆3连接微波源4;所述智能控制模块6包括预设加热温度曲线的加热曲线存储单元;所述微波源4为六路以上输出、相位和功率可控的固态源。
进一步地,所述智能控制模块6包括:用于存储训练后的深层神经网络数据的数据存储单元;控制加热时间、微波源4功率和相位输出的加热单元;用于实时采集红外温度热像反馈数据的温度检测单元。
进一步地,如图7天线单元结构图和图8天线单元S参数图所示,所述天线装置为能够形成相控阵波束的4×4贴片天线2阵列;所述贴片天线2阵列,即单个天线单元在2.41GHz~2.49GHz频率范围内,S11<-10dB。
一种基于温度反馈和相控阵的实现微波加热曲线的方法,包括以下步骤:A、通过16单元天线阵列作为馈源对加热腔体7进行馈电,将加热空间分成四个区域,仿真采集关于16个天线单元相位和对应四个区域加热温度效果的数据,通过FEM算法和相控阵理论建立指向性和多源相位值的对应关系,并将结果存储于智能控制模块6的存储单元;B、给定一个短时间和功率对四个区域分别进行加热,采集实时温度数据;C、对采集的数据和预设数据进行分析,智能控制模块6的加热单元分别对四个区域进行加热时间、微波源4功率和相位进行控制,并对温度进行实时监控;D、根据实时采集的温度数据,即当前温度反馈的数据Tc与温升曲线函数T(t)在当前时刻下的温度T′c做对比将温差ΔT=T′c-Tc加入到四个区域的CNN算法中,作为输入温度Ti=ΔT+Tp,Tp为前一时刻的采集温度;E、动态输出,调整还需加热的时间、功率,以及相位。
进一步地,所述步骤B和C之间还包括步骤E:改变加热的时间和功率分别对四个区域进行加热,对于温度数据进行实时反馈,通过卷积神经网络对数据进行学习。
通过16单元天线阵列作为馈源对加热腔体7进行馈电,同时将加热空间分成四个区域,通过改变16个天线馈源的相位,控制微波波束的指向,对四个加热空间分别进行加热,再由红外温度热像反馈装置1对温度进行实时监测反馈,得到对应四个区域的温度分布情况,此过程可以结合FEM算法进行实现,并仿真采集得到大量关于16个天线单元相位和对应四个区域加热温度效果的数据,并将这些数据作为训练样本集对深度学习中的深层神经网络(DNN)进行训练。网络的输入向量为四个区域,即需要指定加热的区域I、II、III、IV,对应的输出向量为16个天线单元的相位值。例如:当采集的训练集的数据表示I区域的温度比较高,其他区域温度较低时,表示对一区域进行指向性加热。此时对应的16单元天线阵列的相位值作为神经网络的输出向量,而对应的加热区域作为输入向量,即输入向量可表示为[1,0,0,0]。因此网络的输入神经元个数应为4个,输出神经元个数为16个。通过结合FEM算法得到的带有标签的训练样本集,对神经网络进行训练,得到一个具有较好预测性的网络,在实际应用中,就可以通过输入想要加热的区域,输出需要设定的16单元天线阵列的各个天线单元的相位值。
能够实现指向性加热,即能够对所需要的区域进行加热,通过控制各个区域加热的时间和输入功率,能够达到四个区域最终的加热温度一致的效果,从而实现均匀加热;
在实现指向性加热的基础上,首先对I区域给定一个短时间和功率进行加热,由温度采集得到四个区域的温度分布情况,即通过扫描规模为12×16的红外温度热像反馈可以采集得到192组数据。再通过指向性加热可以对II区域在给定的短时间和功率下进行加热,采集各区域的温度分布数据,以此类推,可以得到12×16×4组温度数据。再分别改变加热的时间和功率,可以得到大量的关于各区域加热温度效果和加热时间和功率的数据。因采集的数据量较大,采用深度学习中更为重要的算法:如图2卷积神经网络算法预测结构框图所示的卷积神经网络(CNN)来实现。
需要4个决策算法来实现分别对四个区域的加热时间、功率和相位的控制。以I区域的决策算法为例:将采集得到的大量数据作为训练数据集可以对深度学习的CNN网络进行训练,当I区域加热时,输入向量为当前区域以及其他三个区域的温度分布数据TI,TII,TIII,TIV。输出向量为实现指向性加热的16个馈电天线的相位φ1,φ2,φ3...φ16,以及加热时间t,和供给功率P共18个向量。其原理图如图2所示。对I区域进行加热时,I区域的输入温度向量TI为想要实现均匀加热的设定温度值T0,其他三个区域的的输入TII,TIII,TIV可以通过random 函数在比设定温度低一半的范围内进行随机分配。通过输入想要设定加热的各区域的温度值,可以得到在该区域需要多大的功率P和加热时间t来达到所需温度,最后当对四个区域分别加热时,某一特定的区域在四个区域都加热完成以后加热温度总和相等。
Figure DEST_PATH_GDA0002341670620000061
其中,i表示对第i个区域进行指向性加热时,当前区域的温度值。从而实现对四个区域都加热完后,四个区域所得到的温度值相等,在对温度进行实时采集的过程中,采集到的当前时刻的四个区域的温度需要对网络结构进行实时反馈调整,作为输入向量,输出得到还需要加热的时间、相位、功率值。最后使得四个区域加热完成后各区域的最终温度一致,从而实现均匀加热。
在实现均匀的情况下,可以针对不同加热要求的特定加热曲线,按照给定加热曲线的方式实现更好的加热。在通过深度学习算法来实现对四块区域设定一定温度实现均匀加热的基础上,将实时采集回来的当前温度反馈的数据Tc与温升曲线函数T(t)在当前时刻下的温度T′c做对比,将温差ΔT=T′c-Tc加入到四个区域的CNN算法中,作为输入温度Ti=ΔT+Tp,Tp为前一时刻的采集温度。再动态输出,调整还需加热的时间t、功率P,以及相位φ。从而可以根据当前的温度反馈,可以实现按照给定的温升曲线来实现品质加热,使得加热的效果更加灵活和高效。
使用16单元相控阵天线阵列进行模拟加热仿真,单路100W功率,首先将空间分为四个区域1~4,四个区域分别放有不同材料的食物,介电常数分别为:水80-12*j、土豆65-20*j、生牛肉52-20*j、米饭50-10*j,由于材料不同,其吸收微波能力不同,温升的效果也就不同,基于相控阵理论,通过改变天线相位,形成具有指向性的微波波束,先对四个区域分别进行短时间加热,通过算法,根据预设温升曲线对各区域中的材料进行指向性加热并使用红外温度热像反馈装置1实时反馈温度:
加热区域温度、时间变化表(单位:degC)
时间(s) 1区水温度 2区温度 3区生牛肉温度 4区米饭温度
0 20.000 20.000 20.000 20.000
5 21.230 20.651 20.196 20.530
10 21.988 22.300 20.600 20.875
15 22.478 22.925 22.321 21.936
20 23.066 23.500 23.468 24.249
35 23.462 24.702 30.050 26.548
50 25.611 27.373 32.373 27.975
65 26.889 29.647 40.938 33.098
80 30.706 39.559 45.420 35.834
90 34.109 42.495 47.664 37.714
如图3各区域加热温度与设定温度对比曲线图、图4第15秒的切片温度图、图5第65秒的切片温度图、图6第90秒的切片温度图所示,各区的加热温度曲线与预设温度曲线趋近一致,最后实现分区温度曲线加热的功能。
本实用新型可根据食材或者菜单都预设一个最优的加热曲线,按照该曲线的加热方式加热的食物口感好,营养成本保持好;当多种食材同时加热时,比如饭和牛奶一起加热,为了保持好的营养可以设置饭60度,牛奶85度,这样就可以对不同食材应用不同的加热曲线分别进行加热,实现一锅出。
当然,在不背离本实用新型精神及其实质的情况下,熟悉本领域的技术人员应该可以根据本实用新型作出各种相应的改变和变形,但这些相应的改变和变形都应属于本实用新型所附的权利要求的保护范围。

Claims (4)

1.一种基于温度反馈和相控阵的实现微波加热曲线的设备,包括微波源,其特征在于:
还包括用于调整微波辐射方向的天线装置、用于反馈加热腔体内温度的红外温度热像反馈装置和用于预设加热温度曲线、控制微波辐射方向和强度的智能控制模块;所述智能控制模块连接红外温度热像反馈装置和微波源;
所述天线装置通过同轴电缆连接微波源;
所述智能控制模块包括预设加热温度曲线的加热曲线存储单元。
2.根据权利要求1所述的一种基于温度反馈和相控阵的实现微波均匀加热的设备,其特征在于:所述微波源为六路以上输出、相位和功率可控的固态源。
3.根据权利要求1所述的一种基于温度反馈和相控阵的实现微波均匀加热的设备,其特征在于:所述智能控制模块包括:
用于存储训练后的深层神经网络数据的数据存储单元;
控制加热时间、微波源功率和相位输出的加热单元;
用于实时采集红外温度热像反馈数据的温度检测单元。
4.根据权利要求1所述的一种基于温度反馈和相控阵的实现微波均匀加热的设备,其特征在于:所述天线装置为能够形成相控阵波束的4×4贴片天线阵列;所述贴片天线阵列在2.41GHz~2.49GHz频率范围内,S11<-10dB。
CN201822118128.4U 2018-12-17 2018-12-17 一种基于温度反馈和相控阵的实现微波加热曲线的设备 Active CN210274591U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201822118128.4U CN210274591U (zh) 2018-12-17 2018-12-17 一种基于温度反馈和相控阵的实现微波加热曲线的设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201822118128.4U CN210274591U (zh) 2018-12-17 2018-12-17 一种基于温度反馈和相控阵的实现微波加热曲线的设备

Publications (1)

Publication Number Publication Date
CN210274591U true CN210274591U (zh) 2020-04-07

Family

ID=70011103

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201822118128.4U Active CN210274591U (zh) 2018-12-17 2018-12-17 一种基于温度反馈和相控阵的实现微波加热曲线的设备

Country Status (1)

Country Link
CN (1) CN210274591U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110351918A (zh) * 2018-12-17 2019-10-18 四川大学 一种基于温度反馈和相控阵的实现微波加热曲线的方法及设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110351918A (zh) * 2018-12-17 2019-10-18 四川大学 一种基于温度反馈和相控阵的实现微波加热曲线的方法及设备

Similar Documents

Publication Publication Date Title
CN110056913B (zh) 一种可视化操作的智能微波炉及其加热方法
CN109511191A (zh) 一种基于温度反馈和相控阵的实现微波均匀加热的方法及设备
Wang et al. Industrial-scale radio frequency treatments for insect control in walnuts: I: Heating uniformity and energy efficiency
CN210112318U (zh) 一种基于温度反馈和相控阵的实现微波均匀加热的设备
CN110351918A (zh) 一种基于温度反馈和相控阵的实现微波加热曲线的方法及设备
Li et al. Uniformity issue in microwave drying
CN210274591U (zh) 一种基于温度反馈和相控阵的实现微波加热曲线的设备
Dounis et al. A direct adaptive neural control for maximum power point tracking of photovoltaic system
US3865912A (en) Method for controlling wall thickness during a blow-moulding operation
CN108668398A (zh) 一种采用相位扫描的微波加热装置
CN111031621B (zh) 一种基于时频空域综合调制的微波分区加热方法、系统和装置
CN210267369U (zh) 一种可视化操作的智能微波炉
JP3232568U (ja) 加熱体およびマルチ領域温度制御が可能な真空焼結炉
CN108563121A (zh) 基于历史数据的微波加热温度场智能监控方法
CN105231346A (zh) 一种三阶段常压微波喷动干燥快速制备果蔬脆粒的方法
CN104613743A (zh) 一种温度智能控制的烘干装置
CN103941584A (zh) 一种基于模糊自适应控制器的温度控制方法
CN104457197B (zh) 一种自动测量和自动调节参数的烘干机
Mohamed-Kazim et al. Efficient maximum power point tracking based on reweighted zero-attracting variable stepsize for grid interfaced photovoltaic systems
CN110944422B (zh) 一种利用单固态源调频实现均匀加热的方法及设备
CN109743806A (zh) 一种提升微波加热均匀性的方法及其双端口微波加热装置
CN111457715A (zh) 一种加热体及多区域控温的真空炉
Altamimi et al. Maximum Power Point Tracking Technique Using Combined Incremental Conductance and Owl Search Algorithm
CN104642415B (zh) 一种自动控制的食品干燥器
CN212158107U (zh) 一种加热体及多区域控温的真空炉

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant