CN210111946U - 一种微波信号分路器 - Google Patents

一种微波信号分路器 Download PDF

Info

Publication number
CN210111946U
CN210111946U CN201921182200.8U CN201921182200U CN210111946U CN 210111946 U CN210111946 U CN 210111946U CN 201921182200 U CN201921182200 U CN 201921182200U CN 210111946 U CN210111946 U CN 210111946U
Authority
CN
China
Prior art keywords
microwave signal
circuit
oscillating
oscillating circuit
signal splitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201921182200.8U
Other languages
English (en)
Inventor
孔伟成
李松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Native Quantum Computing Technology Co Ltd
Original Assignee
Hefei Native Quantum Computing Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Native Quantum Computing Technology Co Ltd filed Critical Hefei Native Quantum Computing Technology Co Ltd
Priority to CN201921182200.8U priority Critical patent/CN210111946U/zh
Application granted granted Critical
Publication of CN210111946U publication Critical patent/CN210111946U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

本实用新型公开了一种微波信号分路器;所述微波信号分路器包括第一振荡电路和若干第二振荡电路,若干所述第二振荡电路均耦合连接在所述第一振荡电路的同一端,本实用新型由于每个所述第二振荡电路与所述第一振荡电路是耦合连接,微波信号从第一振荡电路进入后将分别耦合进入每个所述第二振荡电路中,而每个第二振荡电路与第一振荡电路具有由设计参数决定的耦合系数,耦合系数代表了两个振荡电路间信号传输的速率,因而从第一振荡电路输入的微波信号将根据每个所述第二振荡电路与所述第一振荡电路间的耦合系数间的比例进行传输。

Description

一种微波信号分路器
技术领域
本实用新型属于微波元器件领域,特别是一种微波信号分路器。
背景技术
随着计算机技术与集成电路的快速发展,无线通信技术也得到了越来越广泛的应用,与之相对应的微波电路也得到了更加快速的发展与更广泛的利用。
而在无线通信系统中,尤其是微波信号通信系统中,微波信号对通道的选择性具有很高的要求,往往需要将微波信号分配并从不同的通道传输,目前亟需用于微波信号分路传输的微波信号分路传输装置。
实用新型内容
本实用新型的目的是提供一种微波信号分路器,能够实现微波信号的分路分配传输。
本实用新型采用的技术方案如下:
一种微波信号分路器,所述微波信号分路器包括第一振荡电路和若干第二振荡电路,若干所述第二振荡电路均耦合连接在所述第一振荡电路的同一端。
进一步的,每个所述第二振荡电路与所述第一振荡电路的耦合系数不相等。
进一步的,所述第一振荡电路和所述第二振荡电路均为LC振荡电路。
进一步的,所述LC振荡电路包括串联或并联的第一电容模块和第一电感模块。
进一步的,所述第一电感模块为可调电感的超导量子干涉仪装置。
进一步的,所述可调电感的超导量子干涉装置包括互感耦合连接的超导量子干涉仪和磁通调制电路。
进一步的,所述超导量子干涉仪为由若干约瑟夫森结构成的闭环装置;
所述磁通调制电路用于通过调节所述闭环装置的磁通量进而调节所述超导量子干涉仪的电感。
进一步的,每个所述第二振荡电路分别通过耦合模块与所述第一振荡电路耦合连接。
进一步的,所述微波信号分路器还包括底板,所述第一振荡电路和每个所述第二振荡电路均设置在所述底板上。
进一步的,所述底板由硅晶圆或氧化铝晶圆制成。
本实用新型的优点在于,本实用新型提供了一种微波信号分路器,所述微波信号分路器包括耦合连接的第一振荡电路和若干第二振荡电路,每个所述第二振荡电路均耦合连接在所述第一振荡电路的同一端,由于每个所述第二振荡电路与所述第一振荡电路是耦合连接,微波信号从第一振荡电路进入后将分别耦合进入每个所述第二振荡电路中,而每个第二振荡电路与第一振荡电路具有由设计参数决定的耦合系数,耦合系数代表了两个振荡电路间信号传输的速率,因而从第一振荡电路输入的微波信号将根据每个所述第二振荡电路与所述第一振荡电路间的耦合系数间的比例进行传输。基于此,我们可以设计符合设计需求的微波信号分路器。
附图说明
图1是本实用新型实施例提供的一种微波信号分路器的示意图;
图2是本实用新型实施例一种微波信号分路器的具体形式;
图3是由两个LC振荡电路耦合构成的微波信号传输系统的电路结构示意图;
图4是集总式LC振荡电路结构示意图;
图5是分布参数式LC振荡电路结构示意图;
图6是另一实施例提供的一种微波信号分路器的结构示意图。
具体实施方式
下面通过参考附图描述的实施例是示例性的,仅用于解释本实用新型,而不能解释为对本实用新型的限制。
本实用新型的实施例提供了一种微波信号分路器,如图1所示,所述微波信号分路器包括第一振荡电路100和若干第二振荡电路200,若干所述第二振荡电路200均耦合连接在所述第一振荡电路200的同一端。
本实用新型的优点在于,本实用新型提供了一种微波信号分路器,所述微波信号分路器包括耦合连接的第一振荡电路100和若干所述第二振荡电路200,每个所述第二振荡电路200均耦合连接在所述第一振荡电路100的同一端,由于每个所述第二振荡电路200与所述第一振荡电路100是耦合连接,微波信号从第一振荡电路100进入后将分别耦合进入每个所述第二振荡电路200中,而每个第二振荡电路200与第一振荡电路100具有由设计参数决定的耦合系数,耦合系数代表了两个振荡电路间信号传输的速率,因而从第一振荡电路100输入的微波信号将根据每个所述第二振荡电路200与所述第一振荡电路100间的耦合系数间的比例进行传输。基于此,我们可以设计符合设计需求的微波信号分路器。
在具体实施例的时候,所采用的所述第一振荡电路100和所述第二振荡电路200上均设有与外界微波信号进行传输的端口,可以通过端口的设置,可以方便实现其中一振荡电路与其它振荡电路之间的可拆卸耦合连接。
另外,在实施例的时候,所述第二振荡电路200的个数可以根据具体的分路器需要输出的信号路数进行设计,至少设置两个。
作为一种具体实施体现,如图2所示,为一个具有两个微波信号分路的微波信号分路器,包括2个所述第二振荡电路200,通常可以根据具体所需的微波信号分配传输需求来设计两个所述第二振荡电路200与所述第一振荡电路100间的耦合系数。
需要说明的是,两个相互耦合连接的振荡电路具有一个耦合系数,该耦合系数决定了两个振荡电路间微波信号传输的速率,耦合系数越大,两个振荡电路间微波信号传输的速率就越快。
如图3所示的由两个LC振荡电路耦合构成的微波信号传输系统,其中:LC振荡电路由电感和电容并联,两个LC振荡电路之间通过耦合电容耦合连接;耦合系数g可以通过如下表达式得到:
Figure BDA0002143899070000031
由以上可知,耦合系数受两个LC振荡电路中分别设置的电容值C1、C2和电感值L1、L2以及耦合电容值Cg参数影响,在具体实施例的时候,可以通过调节以上参数实现每个所述第二振荡电路200与所述第一振荡电路100的耦合系数的调节,可以设置每个所述第二振荡电路200与所述第一振荡电路100的耦合系数不等,进而实现各路微波信号之间的非对等传输。那么可以预见的是,若设置所述第二振荡电路200与所述第一振荡电路100的耦合系数相等,从第一振荡电路100输入的微波信号将根据等比例进行传输,均匀分配给每个所述第二振荡电路200,进而实现各路微波信号的对等传输。
作为本实施例的优选技术方案,如图4和图5所示,所述第一振荡电路100和所述第二振荡电路200均为LC振荡电路,LC振荡电路是一种常见的比较容易设计的振荡电路结构,LC振荡电路的形式也有很多,包括且不限于集总式结构以及分布参数式电路结构。
周知的,由电阻器、电容器、线圈、变压器、晶体管、运算放大器、传输线、电池、发电机和信号发生器等电气器件和设备连接而成的电路,称为实际电路。以电路电气器件的实际尺寸(d)和工作信号的波长(λ)为标准划分,实际电路又可分为集总参数电路和分布参数电路。满足d<<λ条件的电路称为集总参数电路。其特点是电路中任意两个端点间的电压和流入任一器件端钮的电流完全确定,与器件的几何尺寸和空间位置无关。不满足d<<λ条件的电路称为分布参数电路,其特点是电路中的电压和电流是时间的函数而且与器件的几何尺寸和空间位置有关,例如由波导和高频传输线组成的电路是分布参数电路的典型例子。
本实施例在实施的时候,可以将微波信号分路器设置成集总参数电路和/或分布参数电路。
本实施例提供了一种如图4所示集总参数电路的LC振荡电路,其包括并联连接的第一电容模块300和第一电感模块400。同时,本实施例还提供了一种如图5所示分布式电路的LC振荡电路,由电容101、微波谐振腔102和约瑟夫森结构依次串联构成。
在具体实施例的时候,第一电容模块300和电容101均可以设置为包括但不限于贴片电容元件、平行板电容或者交指电容等电容元件,只需按照电路预设类型设置器件尺寸即可。
而第一电感模块400可以直接采用大尺寸电感器件,也可以借助约瑟夫森结构制备。
需要说明的是,用于制备集成式LC电路的第一电感模块400的约瑟夫森结构,及分布式电路的LC振荡电路中的约瑟夫森结构,均为超导体夹以某种很薄的势垒层而构成结构,例如S(超导体)-I(半导体或绝缘体)-S(超导体)结构,简称SIS,在SIS中,超导电子可以从其中一个超导体一侧隧穿过半导体或者绝缘体到达另一侧的超导体,或称约瑟夫森效应,产生的电流称为约瑟夫森电流,约瑟夫森结具有一个等效电感,从而可以将其应用在本实用新型中实现电感模块功能。
需要说明的是,将多个约瑟夫森结连接在一起形成闭环装置时就构成了约瑟夫森干涉仪,或称超导量子干涉仪,通过调节超导量子干涉仪的上磁通量,进而可以调节超导量子干涉仪的电感,因此,超导量子干涉仪可以看做是一个可调的非线性电感器件。
更进一步,本实用新型另一实施例提供了一种微波信号分路器,在上述实施例的基础上,继续参见图5,所述第一电感模块400为可调电感的超导量子干涉仪装置,所述可调电感的超导量子干涉装置包括互感耦合连接的超导量子干涉仪103和磁通调制电路104,所述超导量子干涉仪103为由若干约瑟夫森结构成的闭环装置;所述磁通调制电路104用于通过调节所述闭环装置的磁通量进而调节所述超导量子干涉仪103的电感,从而使得两个振荡电路间的耦合系数发生变化,微波信号分配传输的比例将会变化,从而实现了微波信号可调的分配传输。
在具体设置时,所述磁通调制电路104包括依次连接的磁通调制线和用于产生偏置电流的电流装置;其中:所述磁通调制线用于传输所述偏置电流,并使所述偏置电流与所述超导量子干涉仪互感耦合。需要说明的是,所述用于产生偏置电流的电流装置可以是电流源、抑或是依次连接的可以提供所述偏置电流的电压源与电阻,本实用新型对于电流源的具体形式不加限制。
更进一步的,每个所述第二振荡电路200分别通过耦合模块700与所述第一振荡电路100耦合连接,如图6所示,其中,所述耦合模块700的结构可以是任何能够实现耦合功能的模块或器件,具体的,耦合模块700可以是电容、电感,也可以是由电容电感等构成的混连电路。耦合模块700可以是集总式结构,由并联连接的电容和电感构成;也可以是分布参数电路结构,由共面波导微波传输线谐振腔构成。其中,如果耦合模块700为集总式结构,此时耦合结构中的电容部分,可以为贴片电容元件、平行板电容或者交指电容;如果为分布参数式电路结构,此时耦合结构中的电感部分,可以由约瑟夫森结或者可调电感的超导量子干涉仪装置构成。
更进一步的,所述微波信号分路器还包括底板(图未示),所述第一振荡电路100和每个所述第二振荡电路200均设置在所述底板上,具体的,所述底板为芯片或者电路板,根据微波信号不同传输和设计需求,所述微波信号分路器的电路结构可以加工在芯片上,也可以加工在印制电路板上。
优选的,所述微波信号分路器的电路结构由超导材料制成,例如铝Al、铌Nb、氮化铌NbN、氮化钛TiN、铌钛合金NbTi、或者氮钛铌合金NbTiN,而所述底板可以使用高阻硅晶圆或者氧化铝晶圆,可以达到降低信号耗散、提高器件性能的作用。
以上依据图式所示的实施例详细说明了本实用新型的构造、特征及作用效果,以上所述仅为本实用新型的较佳实施例,但本实用新型不以图面所示限定实施范围,凡是依照本实用新型的构想所作的改变,或修改为等同变化的等效实施例,仍未超出说明书与图示所涵盖的精神时,均应在本实用新型的保护范围内。

Claims (10)

1.一种微波信号分路器,其特征在于,所述微波信号分路器包括第一振荡电路和若干第二振荡电路,若干所述第二振荡电路均耦合连接在所述第一振荡电路的同一端。
2.根据权利要求1所述的微波信号分路器,其特征在于,每个所述第二振荡电路与所述第一振荡电路的耦合系数不相等。
3.根据权利要求1所述的微波信号分路器,其特征在于,所述第一振荡电路和所述第二振荡电路均为LC振荡电路。
4.根据权利要求3所述的微波信号分路器,其特征在于,所述LC振荡电路包括串联或并联的第一电容模块和第一电感模块。
5.根据权利要求4所述的微波信号分路器,其特征在于,所述第一电感模块为可调电感的超导量子干涉仪装置。
6.根据权利要求5所述的微波信号分路器,其特征在于,所述可调电感的超导量子干涉装置包括互感耦合连接的超导量子干涉仪和磁通调制电路。
7.根据权利要求6所述的微波信号分路器,其特征在于,
所述超导量子干涉仪为由若干约瑟夫森结构成的闭环装置;
所述磁通调制电路用于通过调节所述闭环装置的磁通量进而调节所述超导量子干涉仪的电感。
8.根据权利要求1所述的微波信号分路器,其特征在于,每个所述第二振荡电路分别通过耦合模块与所述第一振荡电路耦合连接。
9.根据权利要求1所述的微波信号分路器,其特征在于,所述微波信号分路器还包括底板,所述第一振荡电路和每个所述第二振荡电路均设置在所述底板上。
10.根据权利要求9所述的微波信号分路器,其特征在于,所述底板由硅晶圆或氧化铝晶圆制成。
CN201921182200.8U 2019-07-25 2019-07-25 一种微波信号分路器 Active CN210111946U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201921182200.8U CN210111946U (zh) 2019-07-25 2019-07-25 一种微波信号分路器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201921182200.8U CN210111946U (zh) 2019-07-25 2019-07-25 一种微波信号分路器

Publications (1)

Publication Number Publication Date
CN210111946U true CN210111946U (zh) 2020-02-21

Family

ID=69566898

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201921182200.8U Active CN210111946U (zh) 2019-07-25 2019-07-25 一种微波信号分路器

Country Status (1)

Country Link
CN (1) CN210111946U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110350869A (zh) * 2019-07-25 2019-10-18 合肥本源量子计算科技有限责任公司 一种微波信号分路器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110350869A (zh) * 2019-07-25 2019-10-18 合肥本源量子计算科技有限责任公司 一种微波信号分路器

Similar Documents

Publication Publication Date Title
Edwards et al. Foundations for microstrip circuit design
US6653885B2 (en) On-chip integrated mixer with balun circuit and method of making the same
Naaman et al. On-chip Josephson junction microwave switch
CN106505962A (zh) 具有经耦合谐振器结构的阻抗匹配装置
Yu et al. A 300-GHz transmitter front end with− 4.1-dBm peak output power for sub-THz communication using 130-nm SiGe BiCMOS technology
Bücher et al. A broadband 300 GHz power amplifier in a 130 nm SiGe BiCMOS technology for communication applications
Li et al. A 250–310 GHz power amplifier with 15-dB peak gain in 130-nm SiGe BiCMOS process for terahertz wireless system
US20220261676A1 (en) Resonator, oscillator, and quantum computer
CN210111946U (zh) 一种微波信号分路器
Oberg et al. Integrated power divider for superconducting digital circuits
US4823096A (en) Variable ratio power divider/combiner
CN210111958U (zh) 一种微波信号环形传输结构
Ardemagni An optimized L-band eight-way Gysel power divider-combiner
US10122329B2 (en) Matching circuit for low noise amplifier and low noise amplifier comprising such a circuit
Chen et al. Fully-Integrated broadband GaAs MMIC load modulated balanced amplifier for Sub-6 GHz applications
Li et al. An ultrawideband GaAs MMIC microstrip directional coupler with high directivity and very flat coupling
Ranzani et al. A 4: 1 transmission-line impedance transformer for broadband superconducting circuits
KR102200380B1 (ko) 소형 저손실 밀리미터파 전력 분배 결합 장치
Verma et al. On the Use of Dual-Band SIMO and MIMO Based Defected Ground Structures in the Design, Characterization, and Validation of RF WPT System
CN110324018A (zh) 一种微波信号环形传输结构
AU2021237602B2 (en) Magnetic flux bias for pulse shaping of microwave signals
CN110350869A (zh) 一种微波信号分路器
Graninger et al. Microwave switch architecture for superconducting integrated circuits using magnetic field-tunable Josephson junctions
Rafique et al. Niobium tunable microwave filter
CN102694117B (zh) 一种基于超导纳米线的高频振荡器及其制备方法

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant