CN210009523U - Light energy wave graphene chip - Google Patents
Light energy wave graphene chip Download PDFInfo
- Publication number
- CN210009523U CN210009523U CN201920635195.5U CN201920635195U CN210009523U CN 210009523 U CN210009523 U CN 210009523U CN 201920635195 U CN201920635195 U CN 201920635195U CN 210009523 U CN210009523 U CN 210009523U
- Authority
- CN
- China
- Prior art keywords
- graphene
- chip
- light energy
- sheet
- coating material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 41
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 40
- 239000000463 material Substances 0.000 claims abstract description 42
- 238000000576 coating method Methods 0.000 claims abstract description 13
- 239000011248 coating agent Substances 0.000 claims abstract description 12
- 239000000758 substrate Substances 0.000 claims abstract description 8
- 239000004020 conductor Substances 0.000 claims abstract description 5
- -1 graphite alkene Chemical class 0.000 claims abstract description 5
- 238000005253 cladding Methods 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 4
- 229910000838 Al alloy Inorganic materials 0.000 claims description 3
- 229910001069 Ti alloy Inorganic materials 0.000 claims description 3
- 210000003298 dental enamel Anatomy 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 14
- 230000036541 health Effects 0.000 abstract description 13
- 230000005540 biological transmission Effects 0.000 abstract 1
- 229910002804 graphite Inorganic materials 0.000 abstract 1
- 239000010439 graphite Substances 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 abstract 1
- 230000017531 blood circulation Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 210000005260 human cell Anatomy 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 210000003423 ankle Anatomy 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000020411 cell activation Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 210000001061 forehead Anatomy 0.000 description 1
- 239000012767 functional filler Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 150000003346 selenoethers Chemical class 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
Images
Landscapes
- Radiation-Therapy Devices (AREA)
Abstract
Description
技术领域technical field
本实用新型涉及一种半导体,特别是指一种可供散发光能波及产生共振吸收作用的光能波石墨烯芯片。The utility model relates to a semiconductor, in particular to a light energy wave graphene chip that can emit light energy waves and generate resonance absorption.
背景技术Background technique
众所皆知,波动本身是一种能量的传递,换言之,波动本身即带有能量,根据研究显示,量子就是一种有非连续运动能量波的微粒子,具有两大特性,即“微粒子特性”和“高频能量波特性”,可以与人体细胞的磁场能量波形成共振和传导,藉以促进血液循环,并且通过释放的能量补充细胞能量,提高人体生命力。As we all know, the wave itself is a transfer of energy. In other words, the wave itself has energy. According to the research, quantum is a kind of particle with discontinuous motion energy wave, which has two characteristics, namely "particle characteristics". And "high-frequency energy wave characteristics", can form resonance and conduction with the magnetic field energy wave of human cells, so as to promote blood circulation, and replenish cell energy through the released energy, improve human vitality.
更进一步说,由于量子的共振特性,通过量子能量与人体产生共振可以达到治疗、保健的效果。例如本案创作人先前申请的中国实用新型专利号ZL200620043133.8号“光能波半导体芯片构造”专利,即揭示有可散发特定波长的能量波或光能波的一种芯片,可供应用于各种保健器材上,而可藉以对人体产生上述的共振作用,以达到治疗、保健的效果。Furthermore, due to the resonance characteristics of quantum, the effect of treatment and health care can be achieved by resonating with the human body through quantum energy. For example, the Chinese Utility Model Patent No. ZL200620043133.8 previously applied by the author of this case for "Structure of Optical Energy Wave Semiconductor Chip" discloses a chip that can emit energy waves or optical energy waves of specific wavelengths, which can be applied to various It can be used to produce the above-mentioned resonance effect on the human body, so as to achieve the effect of treatment and health care.
同时,我们也发现,随着科技的进步及各种先进材料的发现与发明,可被运用来提升上述能量传递与共振效果,例如,近年来越来越多的石墨烯被应用于各种产业领域,特别是石墨烯被发现具有许多珍贵的特性,包括它是目前世界上最薄却也是最坚硬的奈米材料,且几乎是完全透明的,只吸收了2.3%的光,导热系数高达5300W/m·k,高于奈米碳管和金刚石,也是世界上电阻率最小的材料,因此,它是一种透明且极为优良的导体,着眼于上述特殊甚至是优异的物理特性,已渐渐地受到重视或商业化运用。At the same time, we also found that with the advancement of science and technology and the discovery and invention of various advanced materials, they can be used to improve the above-mentioned energy transfer and resonance effects. For example, in recent years, more and more graphene has been used in various industries. In the field, graphene in particular was found to have many precious properties, including that it is currently the thinnest yet hardest nanomaterial in the world, and is almost completely transparent, absorbing only 2.3% of light, and has a thermal conductivity of up to 5300W /m·k, higher than carbon nanotubes and diamond, and the material with the smallest resistivity in the world. Therefore, it is a transparent and extremely good conductor. Focusing on the above-mentioned special and even excellent physical properties, it has gradually valued or commercialized.
例如,可作为功能性填料,开发出各种导电、导热、耐热、气体阻隔与结构增强的高分子复合材料,或制成高透光性的PVA、PET膜。也可被制成各种导热或导电涂料,或添加于电极材料中以提升锂电池的循环寿命与稳定性、电容量。还可以运用于太阳能电池、超级电容、催化剂、生物传感器、湿度传感器、生物医学、抗菌材料、散热材料、电子组件等等。For example, it can be used as a functional filler to develop various polymer composite materials with electrical conductivity, thermal conductivity, heat resistance, gas barrier and structure enhancement, or to make PVA and PET films with high light transmittance. It can also be made into various thermal or conductive coatings, or added to electrode materials to improve the cycle life, stability and electrical capacity of lithium batteries. It can also be used in solar cells, supercapacitors, catalysts, biosensors, humidity sensors, biomedicine, antibacterial materials, heat dissipation materials, electronic components, etc.
因此,本案创作人认为若能够好好运用该石墨烯本身的特性,特别是良好导热、导电特性,必然可以大幅地提升先前创作中的光能波半导体结构所能达到的效能,并进一步被运用于各种保健器材上,冀希能够对于人体健康或保健提供更大的帮助。Therefore, the creator of this case believes that if the characteristics of graphene itself, especially the good thermal conductivity and electrical conductivity, can be well used, the performance of the previously created PEW semiconductor structure can be greatly improved, and it can be further used in On all kinds of health care equipment, I hope that it can provide greater help for human health or health care.
实用新型内容Utility model content
本实用新型主要目的在于提供一种光能波石墨烯芯片,可通过散发更强的光能波,使该光能波石墨烯芯片及其应用的保健器材发挥更好的治疗或保健效果。The main purpose of the utility model is to provide a light energy wave graphene chip, which can make the light energy wave graphene chip and the applied health care equipment exert better therapeutic or health care effects by emitting stronger light energy waves.
为了实现上述目的,本实用新型提供一种光能波石墨烯芯片,其主要特点是,包括:In order to achieve the above-mentioned purpose, the utility model provides a kind of light energy wave graphene chip, and its main features are, including:
薄板状基材,由可供发热的铝合金、珐琅质、钛合金三种低膨胀系数材料任一或混合所制成,且具有二个相对应的外表面;The thin plate-shaped base material is made of any one or a combination of three low-expansion coefficient materials of aluminum alloy, enamel, and titanium alloy that can be heated, and has two corresponding outer surfaces;
至少一披覆材,为导电材料,且被均匀地披覆或喷附于所述薄板状基材至少任一外表面上;At least one coating material, which is a conductive material, is uniformly coated or sprayed on at least any outer surface of the thin plate-like substrate;
至少一石墨烯层,形成于所述披覆材外表面,可与该薄板状基材及披覆材共同形成具半导电性的芯片。At least one graphene layer is formed on the outer surface of the cladding material, and can form a semiconductive chip together with the thin plate substrate and the cladding material.
所述光能波石墨烯芯片的披覆材,其披覆厚度介于3μ至300μmm。The cladding material of the PW graphene chip has a cladding thickness ranging from 3μ to 300μmm.
所述光能波石墨烯芯片包括二个所述披覆材,且分别披覆或喷附于所述薄板状基材的二个相对应的外表面上。The PEW graphene chip includes two covering materials, which are respectively covered or sprayed on the two corresponding outer surfaces of the thin plate-shaped base material.
所述光能波石墨烯芯片包括二个所述石墨烯层,且分别形成于各披覆材外表面。The PEW graphene chip includes two graphene layers, which are respectively formed on the outer surface of each cladding material.
本实用新型的光能波石墨烯芯片,由于增加了一个具良好导电与导热特性的石墨烯层,可以提高光能波的能量传递效能,使共振效果提升,因此,可以使人体更有效地吸收能量,而达到促气血液循环、活化人体细胞、增强体力与抵抗力等诸多功效,故可应用设置于各种保健器材上供人体穿戴使用,而达到良好的治疗或保健效果。The PW graphene chip of the present invention has a graphene layer with good electrical and thermal conductivity properties added, which can improve the energy transfer efficiency of the PW and enhance the resonance effect. Therefore, the human body can absorb more effectively. It can achieve many functions such as promoting qi and blood circulation, activating human cells, enhancing physical strength and resistance, so it can be applied to various health care equipment for human body to wear and use, and achieve good therapeutic or health care effects.
附图说明Description of drawings
图1为本实用新型光能波石墨烯芯片的立体外观示意图;Fig. 1 is the three-dimensional appearance schematic diagram of the utility model PW graphene chip;
图2为本实用新型光能波石墨烯芯片的局部侧视剖面示意图;Fig. 2 is the partial side sectional schematic diagram of the PW graphene chip of the present invention;
图3为本实用新型具光能波石墨烯芯片的各种保健器材于人体上的穿戴示意图。FIG. 3 is a schematic diagram of wearing various health care equipment with a PW graphene chip on the human body according to the present invention.
具体实施方式Detailed ways
下面结合附图和实施例对本实用新型做进一步说明。The present utility model will be further described below in conjunction with the accompanying drawings and embodiments.
如图1、2所示,本实用新型提供一种光能波石墨烯芯片的较佳实施例,该光能波石墨烯芯片10包括薄板状基材11、至少一披覆材12及至少一石墨烯层13;其中:As shown in FIGS. 1 and 2 , the present invention provides a preferred embodiment of a PW graphene chip. The
所述薄板状基材11,由可供发热的铝合金、珐琅质、钛合金三种低膨胀系数材料任一或混合所制成,且具有二相对应的外表面111。The thin plate-
所述披覆材12,为导电材料,且被均匀地披覆或喷附于所述薄板状基材11至少任一外表面111上。本实施例共设置有二披覆材12,且分别披覆于所述薄板状基材11的二个所述相对应的外表面111上。The
所述石墨烯层13,形成于所述披覆材12的外表面121,可与该薄板状基材11及披覆材12共同形成具半导电性的芯片。本实施例共设置有二个呈薄膜状的石墨烯层13,且分别形成于各披覆材12的外表面121上。The
在本实施例中,该披覆材12包含有主要原料、介质与少量掺杂剂;该主要原料为有机化合物、硒化物、磷化物、硫化物任一或混合;该介质为水、甲醇、盐酸、乙醇、乙胺、三乙酸任一或混合。In this embodiment, the
在本实施例中,该披覆材12的披覆厚度介于3μ至300μmm。In this embodiment, the coating thickness of the
在本实施例中,该掺杂剂为锑、铁、氟等化合物。In this embodiment, the dopant is a compound such as antimony, iron, and fluorine.
本实用新型的光能波石墨烯芯片10相较于现有技术的光能波半导体芯片,可通过外表面增加的石墨烯层13,提高整体的传导效能,使散发的光能波更强,产生的共振效果更佳,让人体能够更有效地吸收能量,促进血液循环的效果更为明显。Compared with the PW semiconductor chip of the prior art, the
如图3所示,本实用新型的光能波石墨烯芯片10可被安装于各种器材本体20上,例如护颈、护腕、护肘、护膝、护踝、护额、眼罩或护腰带等,以形成具有至少一光能波石墨烯芯片10的各种保健器材1。As shown in FIG. 3 , the
通过以上说明可知,本实用新型的光能波石墨烯芯片10利用增加的石墨烯层13,可大幅地提高光能波放射及发热的效能,使共振的效果与吸收的能量进一步提升,同时促进血液循环、增强体力与身体抵抗力,并使修复与活化细胞的作用更好,而达到更好的治疗或保健效果。From the above description, it can be seen that the
另外,该石墨烯层13呈透明薄膜状,且质地坚硬,因此,虽然形成于所述披覆材12的外表面121,但增加的重量有限,且在一般情况下,皆毋须担心会因碰撞或挤压而受损,导致效能上受到影响。利用上述光能波石墨烯芯片10的特性与功效,可以将其应用于各种可供穿戴于人体身上的保健器材1,而达到上述治疗或保健效果。In addition, the
本实用新型上述已做了详细的说明并引证了实施例,对于本领域的普通技术人员,显然可以按照上述说明做出各种替代方案或者修改;因此所有在此基础上做出的替代方案和修改,都包括在本专利申请的精神和范围之内。The present utility model has been described in detail above and cited the embodiments, and it is obvious to those skilled in the art that various alternatives or modifications can be made according to the above description; therefore, all alternatives and modifications made on this basis and Modifications are included within the spirit and scope of this patent application.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201920635195.5U CN210009523U (en) | 2019-05-06 | 2019-05-06 | Light energy wave graphene chip |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201920635195.5U CN210009523U (en) | 2019-05-06 | 2019-05-06 | Light energy wave graphene chip |
Publications (1)
Publication Number | Publication Date |
---|---|
CN210009523U true CN210009523U (en) | 2020-02-04 |
Family
ID=69316323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201920635195.5U Expired - Fee Related CN210009523U (en) | 2019-05-06 | 2019-05-06 | Light energy wave graphene chip |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN210009523U (en) |
-
2019
- 2019-05-06 CN CN201920635195.5U patent/CN210009523U/en not_active Expired - Fee Related
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | MXene materials for advanced thermal management and thermal energy utilization | |
Ye et al. | Form-stable solar thermal heat packs prepared by impregnating phase-changing materials within carbon-coated copper foams | |
Li et al. | Biomimetic MXene textures with enhanced light‐to‐heat conversion for solar steam generation and wearable thermal management | |
Lin et al. | Application-driven high-thermal-conductivity polymer nanocomposites | |
Zhou et al. | Flexible MXene/silver nanowire-based transparent conductive film with electromagnetic interference shielding and electro-photo-thermal performance | |
Wei et al. | Dual‐network liquid metal hydrogel with integrated solar‐driven evaporation, multi‐sensory applications, and electricity generation via enhanced light absorption and Bénard–Marangoni effect | |
Cheng et al. | Highly stretchable and conductive copper nanowire based fibers with hierarchical structure for wearable heaters | |
Zhang et al. | Conductive fabric-based stretchable hybridized nanogenerator for scavenging biomechanical energy | |
Guo et al. | Fluoroalkylsilane-modified textile-based personal energy management device for multifunctional wearable applications | |
Yan et al. | Sensitive micro-breathing sensing and highly-effective photothermal antibacterial cinnamomum camphora bark micro-structural cotton fabric via electrostatic self-assembly of MXene/HACC | |
Zhu et al. | MXene/Ag doped hydrated-salt hydrogels with excellent thermal/light energy storage, strain sensing and photothermal antibacterial performances for intelligent human healthcare | |
Luo et al. | A flexible wearable phase change composite with electro-/photo-thermal heating for personal thermal management and human body motion detection | |
Liu et al. | Multifunctional AgNW@ MXene decorated polymeric textile for highly-efficient electro-/photothermal conversion and triboelectric nanogenerator | |
Hazarika et al. | Multidimensional wearable self-powered personal thermal management with scalable solar heating and a triboelectric nanogenerator | |
Xu et al. | MXene‐Based Soft Actuators with Multiresponse and Diverse Applications by a Simple Method | |
Wang et al. | Advances in carbon-based resistance strain sensors | |
CN110519978A (en) | A kind of Co-CNTs/ carbon fiber composite electromagnetic shield materials and preparation method thereof | |
Liu et al. | MXene-reduced graphene oxide sponge-based solar evaporators with integrated water-thermal management by anisotropic design | |
Liu et al. | Ti3C2/Ni2P/triphenyl phosphite as antioxidative microwave absorbers with excellent photothermal property | |
CN104921316A (en) | Self-heating thermal clothes | |
Pan et al. | Electrical/optical dual-energy-driven MXene fabric-based heater with fast response actuating and human strain sensing | |
CN110255538A (en) | A kind of preparation method of graphene cooling fin | |
Li et al. | Recent advances in passive cooling materials for thermal management in flexible electronics | |
Yan et al. | Rapid thermochromic and highly thermally conductive nanocomposite based on silicone rubber for temperature visualization thermal management in electronic devices | |
CN210009523U (en) | Light energy wave graphene chip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200204 |