CN209841365U - 一种悬浮隧道物理模型试验装置 - Google Patents

一种悬浮隧道物理模型试验装置 Download PDF

Info

Publication number
CN209841365U
CN209841365U CN201920788457.1U CN201920788457U CN209841365U CN 209841365 U CN209841365 U CN 209841365U CN 201920788457 U CN201920788457 U CN 201920788457U CN 209841365 U CN209841365 U CN 209841365U
Authority
CN
China
Prior art keywords
rigidity
physical model
model
test device
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201920788457.1U
Other languages
English (en)
Inventor
林巍
刘凌锋
刘孟源
刘晓东
尹海卿
陈雪雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CCCC Highway Consultants Co Ltd
Original Assignee
CCCC Highway Consultants Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CCCC Highway Consultants Co Ltd filed Critical CCCC Highway Consultants Co Ltd
Priority to CN201920788457.1U priority Critical patent/CN209841365U/zh
Application granted granted Critical
Publication of CN209841365U publication Critical patent/CN209841365U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

本实用新型公开了一种悬浮隧道物理模型试验装置,包括水池以及物理模型,所述物理模型通过弹性件与浮筒/水池/固定块/底座/悬挂支架相连接,所述弹性件的刚度为悬浮隧道原型的整体/某一节段的真实刚度k0按照相似准则换算得到的模型刚度k1。本实用新型通过理论计算得到悬浮隧道原型的真实刚度k0,并按照真实刚度值和相似准则,对物理模型的模型刚度k1进行配置,使得模型刚度k1能反映原型真实刚度k0,将模型刚度k1作为输入量进行物模试验,保证了物模试验的结果的准确性;试验装置结构简单,通过调节弹性件的弹性模量能快速调整模型刚度,能快速、有效的还原悬浮隧道原型的真实刚度。

Description

一种悬浮隧道物理模型试验装置
技术领域
本实用新型涉及悬浮隧道技术领域,特别涉及一种悬浮隧道物理模型试验装置。
背景技术
水中或海中悬浮隧道,又称阿基米德桥,是一种潜浮于水面下一定深度、利用其自身浮力为支撑,通过锚索、桩柱等固定的一种新型跨水域交通方案。对于水域跨度很大或地质不稳定以至于不宜建造桥梁和水底隧道的地区,或有环境保护要求地区,采用阿基米德桥是跨越水域交通连接的优选方案。目前世界上仍然没有一座建成的水中或海中悬浮隧道。对于这种新型的交通结构来说,进行针对性的模型试验,通过对研究悬浮隧道的结构动力特性、验证结构安全性是十分重要的,能够为后续悬浮隧道提供可靠的设计与建造依据。
当前有关悬浮隧道的物理模型试验一般都没有考虑试验节段的真实刚度,而是简单地通过固定式或锚拉式进行模拟,这样试验得到的结果往往没有覆盖工程实际刚度以及自振频率,固定式物模试验得到的刚度值往往比实际刚度大,锚拉式物模试验得到的刚度值往往比实际刚度小。虽然整体式模型可以考虑结构刚度和质量,但是模型工况有限,也不能覆盖所有的设计工况。
物理模型的刚度作为悬浮隧道物模试验的基本输入,刚度的不准确性会对模拟结果的准确性造成极大的影响,因此有必要研究一种可以反映悬浮隧道真实刚度的物理模型试验装置及试验方法。
实用新型内容
本实用新型的目的在于克服现有技术中所存在的上述不足,提供一种悬浮隧道物理模型试验装置及试验方法。
为了实现上述发明目的,本实用新型提供了以下技术方案:
一种悬浮隧道物理模型试验方法,包括以下步骤:
步骤一:计算悬浮隧道原型的整体/某一节段的真实刚度k0
步骤二:根据相似准则,将所述真实刚度k0按照比尺换算成物理模型的模型刚度k1,并通过弹性件来对模型刚度k1进行模拟;
步骤三:将所述物理模型放置至水池中进行试验。
本实用新型首先通过理论计算得到悬浮隧道原型的真实刚度k0,并按照真实刚度值和相似准则,对物理模型的模型刚度k1进行配置,使得模型刚度k1能反映原型真实刚度k0,再将能反映真实刚度k0的模型刚度k1作为输入量进行物模试验,从而保证了各种物模试验的试验结果的准确性。
优选的,所述步骤一中,真实刚度k0的计算方法包括刚度定义法,可以根据悬浮隧道在某一自由度方向所受的力以及发生的位移得到该悬浮隧道的刚度值k0,刚度等于发生单位位移时对应的力:
其中,k0-真实刚度;F-在某一自由度方向所受的力;δ-在某一自由度方向发生的位移。
优选的,所述步骤一中,真实刚度k0的计算方法包括等效固有振频法,可以根据悬浮隧道在空气中或者在水中的第n阶固有频率,以及重量计算得到该悬浮隧道的刚度值k0
其中,k0-真实刚度;m-重量;T-在空气中或者在水中的第N阶固有频率,N=1~99。
优选的,所述步骤二中,所述相似准则包括柯西相似准则、重力相似准则和应变相似准则。
优选的,所述步骤二中,所述弹性件为弹簧,或缆索上串联弹簧。锚索的作用是让水深真实,弹簧的作用是让刚度真实,两者的结合,可以让物理模型反应真实情况。
优选的,所述步骤二中,所述弹簧包括水平弹簧、竖向弹簧和斜向弹簧,从而能真实模拟悬浮隧道各个方向的刚度。
优选的,所述步骤二中,所述弹簧还包括扭转弹簧,通过扭转弹簧可以直接模拟扭转刚度。
优选的,所述步骤一中,将所述真实刚度k0按照比尺换算成物理模型的模型刚度k1时,首先确定物模模型在水平和竖向的刚度,再确定物理模型的扭转刚度。首先,按照比尺,计算得到物理模型的模型刚度k1,水平弹簧、竖向弹簧就按照模型刚度k1来配置。如果水平弹簧、竖向弹簧兼用作提供扭转刚度,根据原型扭转刚度缩比尺计算物理模型的扭转刚度,并用物理模型所需的扭转刚度分别除以每个弹簧的刚度,得到力臂,再将弹簧按照力臂距离进行设置。如此,水平弹簧、竖向弹簧就可以同时兼顾水平刚度、竖向刚度和扭转刚度的模拟。另外一个办法就是直接设置扭转弹簧。
优选的,所述步骤三中的试验包括静水衰减试验、波浪试验和涡激振动试验,不限于上述三种,凡是与悬浮隧道相关的物理模拟试验均适用本实用新型的试验装置与试验方法。
本实用新型还公开了一种悬浮隧道物理模型试验装置,包括所述的水池以及物理模型,所述物理模型通过弹性件与浮筒/水池/固定块/底座/悬挂支架相连接,所述弹性件的刚度为真实刚度k0按照相似准则换算得到的模型刚度k1。其中,所述浮筒漂浮在水池水面上,所述固定块固定在水池壁上,所述底座放置在水池池底,所述悬挂支架固定在水池水面上方。
本实用新型物理模型的模型刚度k1按照真实刚度k0进行配置,使得模型刚度k1能反映真实刚度k0,再将能反映真实刚度k0的模型刚度k1作为输入量进行物模试验,从而保证了各种物模试验的试验结果的准确性;且本实用新型所述试验装置结构简单,通过调节弹性件的弹性模量能快速调整模型刚度,能快速、有效的还原悬浮隧道的真实刚度。
优选的,所述弹性件为弹簧,或缆索上串联弹簧,所述弹簧包括水平弹簧、竖向弹簧和斜向弹簧。锚索的作用是让水深真实,弹簧的作用是让刚度真实,两者的结合,可以让物理模型反应真实情况。
优选的,所述弹簧还包括扭转弹簧,通过扭转弹簧可以直接模拟扭转刚度。
优选的,所述弹性件上设有质量块,通过质量块可以使得弹性件的质量更加真实。
优选的,所述弹性件上设有测力计和拉力调节器。
与现有技术相比,本实用新型的有益效果:
本实用新型首先通过理论计算得到悬浮隧道原型的真实刚度k0,并按照真实刚度值和相似准则,对物理模型的模型刚度k1进行配置,使得模型刚度k1能反映原型真实刚度k0,再将能反映真实刚度k0的模型刚度k1作为输入量进行物模试验,从而保证了各种物模试验的试验结果的准确性。
本实用新型所述试验装置结构简单,通过调节弹性件的弹性模量能快速调整模型刚度,能快速、有效的还原悬浮隧道原型的真实刚度。
附图说明:
图1是本实用新型所述的一种悬浮隧道物理模型试验方法的流程示意图。
图2是本实用新型所述的悬浮隧道的截面图一。
图3是本实用新型所述的悬浮隧道的截面图二。
图4是本实用新型所述的悬浮隧道的截面图三。
图5是本实用新型所述的悬浮隧道的截面图四。
图6是本实用新型所述的悬浮隧道的截面图五。
图7是本实用新型所述的悬浮隧道的截面图六。
图8是本实用新型所述的悬浮隧道的截面图七。
图9是本实用新型所述的悬浮隧道的截面图八。
图10是本实用新型所述的悬浮隧道的截面图九。
图11是本实用新型所述的悬浮隧道的截面图十。
图12是本实用新型所述弹簧的布置图一(正视图)。
图13是本实用新型所述弹簧的布置图二(正视图)。
图14是本实用新型所述弹簧的布置图三(正视图)。
图15是本实用新型所述弹簧的布置图四(正视图)。
图16是本实用新型所述弹簧的布置图五(俯视图)。
图17是本实用新型所述弹簧的布置图六(俯视图)。
图18是本实用新型所述弹簧的布置图七(正视图)。
图19是本实用新型所述弹簧的布置图八(正视图)。
图20是本实用新型所述弹簧的布置图九(正视图)。
图21是本实用新型所述弹簧的布置图十(正视图)。
图22是本实用新型所述弹簧的布置图十一(正视图)。
图23是本实用新型所述弹簧的布置图十二(正视图)。
图24是本实用新型所述弹簧的布置图十三(正视图)。
图25是本实用新型所述弹簧的布置图十四(正视图)。
图26是本实用新型所述弹簧的布置图十五(正视图)。
图27是本实用新型所述弹簧的布置图十六(正视图)。
图28是本实用新型所述弹簧的布置图十七(正视图)。
图29是本实用新型所述弹簧的布置图十八(正视图)。
图30是本实用新型所述弹簧的布置图十九(正视图)。
图31是本实用新型所述弹簧的布置图二十(正视图)。
图32是本实用新型所述弹簧的布置图二十一(俯视图)。
图33是本实用新型所述弹簧的布置图二十二(俯视图)。
图34是本实用新型所述弹簧的布置图二十三(正视图)。
图35是本实用新型所述弹簧的布置图二十四(俯视图)。
图36是本实用新型所述弹簧的布置图二十五(正视图)。
图37是本实用新型所述弹簧的布置图二十六(三维图)。
图38是本实用新型实施例8所述的一种悬浮隧道物理模型试验装置的正视图。
图39是本实用新型实施例8所述的一种悬浮隧道物理模型试验装置的三维示意图。
图40是本实用新型实施例9所述的一种悬浮隧道物理模型试验装置的正视图。
图41是本实用新型实施例9所述的一种悬浮隧道物理模型试验装置的三维示意图。
图42是本实用新型实施例10所述的一种悬浮隧道物理模型试验装置的正视图。
图43是本实用新型实施例10所述的一种悬浮隧道物理模型试验装置的三维示意图。
图44是本实用新型实施例11所述的一种悬浮隧道物理模型试验装置的正视图。
图中标记:1-物理模型,2-水池,3-水平弹簧,4-竖向弹簧,5-斜向弹簧,6-缆索,7-测力计,8-拉力调节器,9-浮筒,10-扭转弹簧,11-阻尼器,12-固定块,13-底座,14-悬挂支架,15-数据传输线,16-质量块。
具体实施方式
下面结合试验例及具体实施方式对本实用新型作进一步的详细描述。但不应将此理解为本实用新型上述主题的范围仅限于以下的实施例,凡基于本实用新型内容所实现的技术均属于本实用新型的范围。
实施例1
如图1所示,一种悬浮隧道物理模型试验方法,包括以下步骤:
步骤一:计算悬浮隧道原型的整体/某一节段的真实刚度k0。真实刚度k0的计算方法包括刚度定义法和等效固有振频法。
刚度定义法中刚度等于发生单位位移时对应的力,
其中,k0-真实刚度;F-在某一自由度方向所受的力;δ-在某一自由度方向发生的位移。
等效固有振频法中根据固有频率的计算公式:
得到
其中,k0-真实刚度;m-重量;T-在空气中或者在水中的第N阶固有频率,N=1~99。
步骤二:根据相似准则(包括柯西相似准则、重力相似准则和应变相似准则),将所述真实刚度k0按照比尺换算成物理模型的模型刚度k1,并通过弹性件来对模型刚度k1进行模拟。所述弹性件为弹簧,或缆索上串联弹簧。所述弹簧包括水平弹簧、竖向弹簧和斜向弹簧,也可以包括扭转弹簧。
步骤三:将所述物理模型放置至水池中进行试验,包括静水衰减试验、波浪试验和涡激振动试验等。
实施例2
一种悬浮隧道物理模型试验装置,包括悬浮隧道某一节段的物理模型1,所述悬浮隧道可以具有不同的截面形状,如图2-图11所示,不限于圆管式构造,所述物理模型1根据相似准则对悬浮隧道进行模拟。所述物理模型1上设有弹性件,所述弹性件的刚度为悬浮隧道的真实刚度k0按照相似准则换算得到的模型刚度k1
在本实施例中,所述物理模型1通过弹性件与水池2相连接,所述弹性件为弹簧,所述弹簧包括水平弹簧3和竖向弹簧4。弹簧的布置形式多种多样,可根据悬浮隧道的真实刚度进行配置,以圆管截面为例,如图12-图17所示。
需要模拟悬浮隧道原型一个节段的水平向、竖向、绕着轴线转动(扭转)这三个方向的刚度时,方法是先确定水平刚度和竖向刚度,再确定转动方向的刚度。首先,根据水平向和竖向在悬浮隧道原型的真实刚度k0,按照比尺,计算得到物理模型1的模型刚度k1,水平弹簧3、竖向弹簧4就按照模型刚度k1来配置。如果水平弹簧3、竖向弹簧4兼用作提供扭转刚度,根据原型扭转刚度缩比尺计算物理模型1的扭转刚度,并用物理模型1所需的扭转刚度分别除以每个弹簧的刚度,得到力臂,再将弹簧按照力臂距离进行设置。如此,水平弹簧3、竖向弹簧4就可以同时兼顾水平刚度、竖向刚度和扭转刚度的模拟。另外一个办法就是直接设置扭转弹簧10,如图18-图25所示,扭转弹簧10的设置形式也是多种多样,可根据真实刚度进行配置。
实施例3
本实施例与实施例2的区别在于,所述物理模型1上的部分弹簧与浮筒9相连接,剩余弹簧与所述水池2相连接,如图26-图29所示。
实施例4
本实施例与实施例2的区别在于,所述物理模型1还通过阻尼器11与水池2相连接,所述阻尼器11用于模拟真实环境,如图30-图33所示。
实施例5
本实施例与实施例2的区别在于,所述物理模型1不直接与水池2相连接,而是在水池底部或水池壁设置有若干个固定块12,所述物理模型1通过弹性件与所述固定块12相连接,如图34-图35所示。本实施例通常适用于物理模型长度略小于水槽净宽,物理模型浸没于水中的情况。
实施例6
本实施例与实施例2的区别在于,所述物理模型1不直接与水池2相连接,所述物理模型1通过弹簧悬挂在悬挂支架14上,如图36所示。
实施例7
本实施例与实施例2的区别在于,所述物理模型1不直接与水池2相连接,而是所述水池2中设有底座13,所述物理模型1通过弹簧与所述底座13相连接,如图37所示。本实施例通常适用于物理模型长度小于水槽净宽,或物理模型放置于水池中的情况。
实施例8
如图38-图39所示,一种悬浮隧道物理模型试验装置,包括水池2以及悬浮隧道整体的物理模型1,所述物理模型1通过弹性件与水池2相连接,所述弹性件的刚度为所述真实刚度k0按照相似准则换算得到的模型刚度k1。所述弹性件为缆索6上串联弹簧,所述弹簧包括竖向弹簧4和斜向弹簧5,所述斜向弹簧5能同时提供水平和竖直方向的刚度。
在所述缆索6上还串联有测力计7、拉力调节器8,所述测力计7上连接有数据传输线15,所述数据传输线15与数据拉力处理装置相连接。
实施例9
如图40-图41所示,本实施例与实施例8的区别在于,所述弹簧仅包括竖向弹簧4,通过竖向弹簧4来模拟悬浮隧道在竖向方向的刚度。
实施例10
如图42-图43所示,本实施例与实施例8的区别在于,所述物理模型1不直接与水池2相连接,所述物理模型1通过弹性件与浮筒9相连接,所述弹性件为缆索6上串联有竖向弹簧4,通过竖向弹簧4来模拟悬浮隧道在竖向方向的刚度。
实施例11
如图44所示,本实施例与实施例8的区别在于,所述弹性件上还设有质量块16,通过质量块16可以使得弹性件的质量更加真实。
以上实施例仅用以说明本实用新型而并非限制本实用新型所描述的技术方案,尽管本说明书参照上述的各个实施例对本实用新型已进行了详细的说明,但本实用新型不局限于上述具体实施方式,因此任何对本实用新型进行修改或等同替换;而一切不脱离实用新型的精神和范围的技术方案及其改进,其均应涵盖在本实用新型的权利要求范围当中。

Claims (10)

1.一种悬浮隧道物理模型试验装置,其特征在于,包括水池以及物理模型,所述物理模型通过弹性件与浮筒/水池/固定块/底座/悬挂支架相连接,所述弹性件的刚度为悬浮隧道原型的整体/某一节段的真实刚度k0按照相似准则换算得到的模型刚度k1
2.根据权利要求1所述的一种悬浮隧道物理模型试验装置,其特征在于,所述真实刚度k0的计算方法包括刚度定义法:
其中,k0-真实刚度;F-在某一自由度方向所受的力;δ-在某一自由度方向发生的位移。
3.根据权利要求1所述的一种悬浮隧道物理模型试验装置,其特征在于,所述真实刚度k0的计算方法包括等效固有振频法:
其中,k0-真实刚度;m-重量T-在空气中或者在水中的第N阶固有频率,N=1~99。
4.根据权利要求1所述的一种悬浮隧道物理模型试验装置,其特征在于,所述相似准则包括柯西相似准则、重力相似准则和应变相似准则。
5.根据权利要求1所述的一种悬浮隧道物理模型试验装置,其特征在于,所述弹性件为弹簧,或缆索上串联弹簧。
6.根据权利要求5所述的一种悬浮隧道物理模型试验装置,其特征在于,所述弹簧包括水平弹簧、竖向弹簧和斜向弹簧。
7.根据权利要求6所述的一种悬浮隧道物理模型试验装置,其特征在于,所述弹簧还包括扭转弹簧。
8.根据权利要求1-7任一所述的一种悬浮隧道物理模型试验装置,其特征在于,将所述真实刚度k0按照比尺换算成物理模型的模型刚度k1时,首先确定物模模型在水平和竖向的刚度,再确定物理模型的扭转刚度。
9.根据权利要求1-7任一所述的一种悬浮隧道物理模型试验装置,其特征在于,所述弹性件上设有质量块。
10.根据权利要求1-7任一所述的一种悬浮隧道物理模型试验装置,其特征在于,所述弹性件上设有测力计和拉力调节器。
CN201920788457.1U 2019-05-28 2019-05-28 一种悬浮隧道物理模型试验装置 Active CN209841365U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201920788457.1U CN209841365U (zh) 2019-05-28 2019-05-28 一种悬浮隧道物理模型试验装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201920788457.1U CN209841365U (zh) 2019-05-28 2019-05-28 一种悬浮隧道物理模型试验装置

Publications (1)

Publication Number Publication Date
CN209841365U true CN209841365U (zh) 2019-12-24

Family

ID=68897992

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201920788457.1U Active CN209841365U (zh) 2019-05-28 2019-05-28 一种悬浮隧道物理模型试验装置

Country Status (1)

Country Link
CN (1) CN209841365U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110108470A (zh) * 2019-05-28 2019-08-09 中交公路规划设计院有限公司 一种悬浮隧道物理模型试验装置及试验方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110108470A (zh) * 2019-05-28 2019-08-09 中交公路规划设计院有限公司 一种悬浮隧道物理模型试验装置及试验方法
CN110108470B (zh) * 2019-05-28 2022-07-01 中交公路规划设计院有限公司 一种悬浮隧道物理模型试验装置及试验方法

Similar Documents

Publication Publication Date Title
CN110108470B (zh) 一种悬浮隧道物理模型试验装置及试验方法
US12018646B2 (en) Large-scale model testing system of floating offshore wind power generation device and method for manufacturing testing system
Ruzzo et al. Scaling strategies for multi-purpose floating structures physical modeling: state of art and new perspectives
CN110174227A (zh) 地震与波流耦合作用下悬浮隧道动力响应试验装置及方法
Legaz et al. Study of a hybrid renewable energy platform: W2Power
CN113092065B (zh) 一种潜降式网箱水动力特性计算的分析方法
CN110775221B (zh) 采矿船船模整体联动水池试验连接装置及试验方法
Armesto et al. Telwind: Numerical analysis of a floating wind turbine supported by a two bodies platform
CN209841365U (zh) 一种悬浮隧道物理模型试验装置
Sadraddin et al. State-of-the-art of experimental methods for floating wind turbines
Yan et al. Experimental study on the dynamic responses of the end‐anchored floating bridge subjected to joint actions of earthquakes and water waves
Tomasicchio et al. Design of a 3D physical and numerical experiment on floating off-shore wind turbines
Yang et al. Experimental and numerical analysis on the mooring tensions of the coupled tunnel-barge system in waves
Tang et al. Experiment study of dynamics response for wind turbine system of floating foundation
CN114279733B (zh) 研究浮动核电平台动力学响应的试验装置、方法及应用
CN111382537A (zh) 基于两相粘性流理论的海洋浮标水动力特性分析方法
Chung et al. Comparison study and forensic analysis between experiment and coupled dynamics simulation for submerged floating tunnel segment with free ends under wave excitations
Cribbs Model Analysis of a Mooring System for an Ocean Current
Wehmeyer et al. Experimental study of an offshore wind turbine TLP in ULS conditions
Hsu et al. Experimental study of floating offshore platform in combined wind/wave/current environment
Jagdale et al. Springing Response of a Tension-Leg-Platform Wind Turbine Excited by Third-Harmonic Force in Nonlinear Regular Wave
Liu et al. Dynamic elastic response testing method of bridge structure under wind-wave-current action
Ding et al. Numerical investigation of the survivability of a wave energy converter
Zhong et al. A coupled CFD and dynamic mooring model for FOWT hydrodynamics
Yang et al. The Influence of Vertical Cable on Flow Field and Acoustic Analysis of A Submersible Buoy System Based on CFD

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant