CN209838386U - 一种水压致裂物理模拟实验装置 - Google Patents

一种水压致裂物理模拟实验装置 Download PDF

Info

Publication number
CN209838386U
CN209838386U CN201821642640.2U CN201821642640U CN209838386U CN 209838386 U CN209838386 U CN 209838386U CN 201821642640 U CN201821642640 U CN 201821642640U CN 209838386 U CN209838386 U CN 209838386U
Authority
CN
China
Prior art keywords
sample
hydraulic fracturing
experiment device
physical simulation
simulation experiment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201821642640.2U
Other languages
English (en)
Inventor
尹光志
石发瑞
尚德磊
许江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Chongqing University
Original Assignee
Tsinghua University
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Chongqing University filed Critical Tsinghua University
Priority to CN201821642640.2U priority Critical patent/CN209838386U/zh
Application granted granted Critical
Publication of CN209838386U publication Critical patent/CN209838386U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本实用新型公开了一种水压致裂物理模拟实验装置,所述实验装置包括:承载机构,所述承载机构包括多个承压板,多个所述承压板连接构成实验腔;载荷发生机构,多个所述载荷发生机构设置于所述实验腔内,且多个所述载荷发生机构和实验腔中的试样之间设置有柔性垫板。所述实验装置的结构简单且易于拆卸、移动和搬运,成本低,精度高,灵活性强,能克服试样不行度产生的非均匀受载;通过柔性垫板实现柔性加载和承载机构的不平行度自由调整、匹配,能有效克服压裂实验过程中试样的端部效应。

Description

一种水压致裂物理模拟实验装置
技术领域
本实用新型涉及水力压裂实验技术领域,尤其是涉及一种水压致裂物理模拟实验装置。
背景技术
水压致裂(或水力压裂)是油气藏储层增透改造的核心技术之一,但业界对水压致裂力学行为的认识仍十分有限。因此,室内物理模拟研究水力压裂的裂缝起裂和扩展具有意义重大,但现有技术中水压致裂物理模拟实验装置造价高、结构复杂,且不能较好地克服端部效应和尺寸效应对实验结果的影响;同时,这些装置所需的制样精度要求较高,而由于制样加工技术及误差所限,立方体试样面与面之间往往很难做到绝对平行,导致试样局部的载荷非均匀分布和边界摩擦等端部效应,难以满足快速进行物理模拟实验研究的诉求。此外,虽然柔性加载可有效克服试样的端部效应,但现有技术中能实现柔性加载和不平行度自由匹配的水压致裂物理模拟实验装置未见报道。
实用新型内容
本实用新型的目的在于提供一种水压致裂物理模拟实验装置,以简化实验装置的结构,降低实验装置的成本,并通过柔性加载和承载机构的不平行度自由调整、匹配,可有效克服试样的端部效应。
为了达到上述目的,本实用新型提供了一种水压致裂物理模拟实验装置,包括:
承载机构,所述承载机构包括多个承压板,多个所述承压板连接构成实验腔;
载荷发生机构,多个所述载荷发生机构设置于所述实验腔内,且多个所述载荷发生机构和实验腔中的试样之间设置有柔性垫板。
可选的,所述承载机构包括三组共六个所述承压板,每个所述承压板的两端设有多个第一通孔,三组所述承压板中的每一组由穿过所述第一通孔的螺栓和螺帽连接。
可选的,所述水压致裂物理模拟实验装置包括三个所述载荷发生机构,所述试样为立方体形状,在所述试样的每个面上均垫护有一个柔性垫板,设置在最大主应力方向、中间主应力方向和最小主应力方向的三个柔性垫板分别通过三个刚性垫块和三个所述载荷发生机构连接,其中,最大主应力方向、中间主应力方向和最小主应力方向两两相互正交。
可选的,所述水压致裂物理模拟实验装置还包括底座,所述实验腔设置于所述底座上。
可选的,所述水压致裂物理模拟实验装置还包括多个刚性垫块,所述刚性垫块一端的端面上设有内壁光滑的U型槽,多个所述刚性垫块组成容纳所述试样的样品室。
可选的,所述试样与部分所述刚性垫块之间还设有所述柔性垫板,所述载荷发生机构隔着所述刚性垫块和所述柔性垫板对所述试样施加载荷。
可选的,两个所述承压板上还设有用于通过所述载荷发生机构的管线的第二通孔。
可选的,位于所述实验腔顶部的所述承压板上还设有用于通过泵注管线的第三通孔。
可选的,每个所述承压板上还设有吊环孔。
可选的,所述水压致裂物理模拟实验装置还包括声发射探头。
本实用新型所提供的水压致裂物理模拟实验装置中,实验装置由多个承压板及载荷发生机构等零部件构成,实验装置的结构简单且易于拆卸和移动搬运,能有效降低实验装置的成本;并通过柔性垫板实现柔性加载和承载机构的不平行度自由调整、匹配,能有效克服压裂实验过程中试样的端部效应。
附图说明
图1为本实用新型一个实施例中水压致裂物理模拟实验装置的外部结构示意图;
其中,1-下板,2-上板,3-第一横板,4-第二横板,5-第一竖板,6-第二竖板,7–螺栓,8–第一通孔。
具体实施方式
下面将结合示意图对本实用新型的具体实施方式进行更详细的描述。根据下列描述和权利要求书,本实用新型的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本实用新型实施例的目的。
如背景技术所述,现有技术中水压致裂物理模拟实验装置造价高、结构复杂,且不能较好地克服端部效应和尺寸效应对实验结果的影响;同时,这些装置所需的制样精度要求较高,难以满足快速进行实验研究的诉求;此外,虽然柔性加载可有效克服试样的端部效应,但现有技术中能实现柔性加载和承载机构的不平行度自由调整、匹配的压裂装置未见报道。
基于此,本实用新型提出了一种水压致裂物理模拟实验装置,能模拟地应力条件下煤岩试样的水压致裂实验,包括:
承载机构,所述承载机构包括多个承压板,多个所述承压板连接构成实验腔;
载荷发生机构,多个所述载荷发生机构设置于所述实验腔内,且多个所述载荷发生机构隔着柔性垫板对所述实验腔中的试样施加载荷。
在本实用新型的一个实施例中,所述承载机构包括三组共六个所述承压板,如图1所示,分别记为第一组(下板1、上板2),第二组(第一横板3、第二横板4)和第三组(第一竖板5、第二竖板6),每个所述承压板的两端设有多个第一通孔,三组所述承压板相互正交,并利用穿过所述第一通孔8的螺栓7 和螺帽连接三组所述承压板,组装成可放置特定尺寸试样和特定型号载荷发生机构的实验腔,所述实验腔为封闭的腔室。
其中,所述螺栓7的尺寸和数量由目标载荷需求结合基础力学和材料力学理论计算得出,计算得出所述螺栓7的尺寸之后,再根据所述螺栓7的尺寸在每个所述承压板两端沿垂直于板面方向预置两排对称排列的所述第一通孔,所述第一通孔为圆形通孔。
每个所述承压板采用具有特定规格且具有较高强度和刚度的板材,三组所述承压板(第一组、第二组及第三组)相互正交连接得到所述实验腔,三组所述承压板在实验过程中分别用于承载最大主应力、中间主应力和最小主应力方向的载荷。与此对应的,所述水压致裂物理模拟实验装置包括三个所述载荷发生机构,分别记为第一载荷发生机构、第二载荷发生机构及第三载荷发生机构,三个所述载荷发生机构均设置在所述实验腔内,分别用于实验时给所述试样施加最大主应力方向、中间主应力方向和最小主应力方向的载荷,其中,最大主应力方向、中间主应力方向和最小主应力方向两两相互正交。
可选的,部分所述承压板上还设有用于通过所述载荷发生机构的管线的第二通孔(图中未示出)。在本实施例中,所述第二横板4和所述第一竖板5的特定位置处分别设置有圆角矩形的所述第二通孔,用以通过三个所述载荷发生机构的管线。此外,三个所述载荷发生机构的管线既可以是分别从三个所述第二通孔中通过,也可以是至少两个所述载荷发生机构的管线是从同一个所述第二通孔中通过,可以视具体情况选择。
可选的,位于所述实验腔顶部的所述承压板上还设有用于通过泵注管线的第三通孔(图中未示出),即所述上板2中部特定位置处设置有一个圆形的所述第三通孔,以通过给所述试样施加高压流体的泵注管线。
可选的,每个所述承压板的端面上还设有吊环孔(图中未示出),结合对应吊环,用于所述承压板的起吊和搬运,方便所述水压致裂物理模拟实验装置的搬运与组装、拆卸。
可选的,所述水压致裂物理模拟实验装置还包括底座(图中未示出),所述实验腔设置于所述底座上。
可选的,所述水压致裂物理模拟实验装置还包括多个刚性垫块(图中未示出),所述刚性垫块一端的端面上设有内壁光滑的U型槽,多个所述刚性垫块组成容纳所述试样的样品室。所述刚性垫块的材料与所述承压板的材料相同但尺寸不尽相同,其端面上设置的内壁光滑的U型槽,用于构成所述样品室、并能通过声发射探头和控制所述载荷发生机构的油路系统位移。其中,所述刚性垫块包括第一刚性垫块、第二刚性垫块、第三刚性垫块、第四刚性垫块及第五刚性垫块,将第一刚性垫块、第二刚性垫块、第三刚性垫块、第四刚性垫块及第五刚性垫块设有内壁光滑的U型槽的端面向内,组成所述样品室,所述样品室的顶部开口,除了第一刚性垫块外,第二刚性垫块及第三刚性垫块的尺寸需要考虑其中一条边长具备充足的防干涉距离。
将所述试样放置在所述样品室内后,再通过置于所述实验腔内、样品室外的三个所述载荷发生机构分别对第一刚性垫块、第二刚性垫块及第三刚性垫块施加最大主应力方向、中间主应力方向和最小主应力方向的载荷,并由此传递作用到所述样品室内的所述试样上。
可选的,所述试样与第一刚性垫块、第二刚性垫块、第三刚性垫块之间还分别设有所述柔性垫板,所述载荷发生机构隔着所述刚性垫块和所述柔性垫板对所述试样施加载荷,所述柔性垫板用于所述试样的柔性承载,以更好地模拟地应力边界条件,提高实验结果的准确性,减少干扰因素。
其中,所述柔性垫板包括第一柔性垫板、第二柔性垫板、第三柔性垫板、第四柔性垫板、第五柔性垫板及第六柔性垫板,所述第一柔性垫板、第二柔性垫板、第三柔性垫板、第四柔性垫板、第五柔性垫板及第六柔性垫板分别对立方体形状的所述试样的每个面进行垫护。其中,第一载荷发生机构依次通过第一刚性垫块和第一柔性垫板对所述试样施加最大主应力方向的载荷,第二载荷发生机构依次通过第二刚性垫块和第二柔性垫板对所述试样施加中间主应力方向的载荷,第三载荷发生机构依次通过第三刚性垫块和第三柔性垫板对所述试样施加最小主应力方向的载荷,第四柔性垫板用于对所述样品室的顶部进行密封覆盖。
其中,所述柔性垫板具有超低摩擦系数。可选的,所述柔性垫板的材质选用在大载荷条件下摩擦系数趋于恒定的PTFE板材。
此外,所述水压致裂物理模拟实验装置还包括吊环、泵注管线、所述载荷发生机构的管线及各管线的转接头,在此不再赘述。
上面仅仅是简单地列出了各种零部件,下面将详细介绍所述水压致裂物理模拟实验装置在实验时的组装步骤:
S1、安装并固定所述底座,在所述底座上放置所述下板1并通过接地螺钉配合所述下板1两相邻边中部水准尺调平;
S2、在所述下板1的两长边上分别居中放置所述第一竖板5和所述第二竖板6,将所述螺栓7插入所述第一竖板5和所述第二竖板6的下部设置的所述第一通孔8中,并用所述螺帽平行固定;
S3、在所述下板1的短边上且紧靠所述第一竖板5和所述第二竖板6的两侧分别居中放置所述第一横板3和所述第二横板4,将所述螺栓7插入所述第一横板3和所述第二横板4两端的所述第一通孔8中,并用所述螺帽平行固定;
S4、在步骤S1~S3所形成的实验腔的底部放置所述第一载荷发生机构,所述第一载荷发生机构的管线由所述第一竖板5上的所述第二通孔引出;再在所述第一载荷发生机构上放置所述第一刚性垫块,并将所述第一柔性垫板置于所述第一刚性垫块上,最后将试样置于所述第一柔性垫板上;
S5、在形成的所述实验腔内按空间设计位置由所述承压板向所述试样中心方向依次排列放置所述第二载荷发生机构→所述第二刚性垫块→所述第二柔性垫板,以及所述第三载荷发生机构→所述第三刚性垫块→所述第三柔性垫板;所述第二载荷发生机构的管线由所述第一竖板5上的所述第二通孔引出,所述第三载荷发生机构的管线由所述第二横板4上的所述第二通孔引出;同时,所述第四刚性垫块及第五刚性垫块同样设置在所述实验腔内,且与所述第一刚性垫块、第二刚性垫块及第三刚性垫块组成所述样品室;
S6、调整装置的平行度,由于加工过程中的操作可能会使得所述试样的平行度存在一定误差,在所述承载机构与所述试样的尺寸匹配的前提条件下,通过调整所述载荷发生机构、所述刚性垫块及所述柔性垫板的平行度,以保证所述试样受载均匀;调整所述试样的位置,保证三向加载时有足够的位移量作为防干涉距离;在所述试样的上端面放置所述第四柔性垫板后安装所述上板2,利用所述螺栓7连接所述上板2与所述下板1,并用所述螺帽对称地坚固,到此实验装置组装完成。
其中,所述试样的制样方式有三种:一是采用现场采集的新鲜的原煤或原岩切割、磨平、倒角等工序制样,此方法需要精密的切割和磨平加工,不易保证试样端面的平行度,且低强度煤岩较难成型;二是采用水泥、石英砂或河砂、石膏粉、水等材料按特定的配比浇注、制作标准试样,按规范养护成型后通过相似材料的基本力学实验,确定其力学特性与原煤岩相似的最优材料配比,并依据此最优材料配比与初加工的煤样混合成型,具体是将一块或几块完整的初加工后的原煤岩试样浸润于水中,与按最优材料配比的相似材料搅拌混合后在模具中振动成型,以尽量排除试样中的气泡。按混凝土制样规范持续养护28天达标后采用高压气枪将试样从模具中取出。此方法无须将原煤岩试样精加工即获得尺寸规范的试样,同时又能保证煤岩的物性;三是采用纯相似材料,该法的优点是可预置相应的结构面,但丧失了煤岩的物性特征。
在本实施例中,所述试样的制作采用上述第二种方法,具体是将一块完整且经加工后的原煤(岩)试样浸润于水中,将水泥、石英砂按1:1.6的比例加水搅拌混合均匀后在500mm×500mm×500mm的模具中振动成型,并在所述试样表面洒水养护,干燥后将所述试样从模具中取出,并按混凝土制样规范持续养护28天;在所述试样养护成型后,选取其中一块进行抗压强度、抗拉强度等基本力学参数的测定。
而利用所述的水压致裂物理模拟实验装置进行物理模拟实验,具体步骤为:
(1)、提供一试样,在所述试样的某一平面中心钻孔,并在所述孔中放入压裂封孔器,再使用高强度粘合剂(如高强度AB胶)将所述压裂封孔器封固在所述试样的中心,并预留一定长度的裸孔段;
(2)、对所述试样进行无损检测,获取原始数据(如摄取实验前所述试样的高精度计算机断层扫描CT数据),并作好标记;
(3)、提供上述水压致裂物理模拟实验装置,待粘合剂固化时间达到预定值时(如>4h),将所述试样装入上述步骤S4~S5组装形成的所述样品室内,并按上述步骤S5~S6将所述水压致裂物理模拟实验装置安装完成;
(4)、利用所述泵注管线连接所述压裂封孔器的入口与高压泵的出口,先将所述高压泵注管线的一端与所述高压泵的出口连接,打开高压泵软件和动力源对所述高压泵注管线进行封堵试压,确保所述高压泵注管线可靠,而后将所述高压泵注管线的出口与所述压裂封孔器的入口连接;
(5)、开启所述载荷发生机构,采用静水压力逐级增压的方式施加载荷直到目标应力状态,并使用柱塞泵或电液伺服增压泵等类型的所述高压泵向所述试样注入高压流体,监测注入流量和压力等参数;
(6)、实验完毕后,停止所述高压泵并拆除所述泵注管线与所述压裂封孔器的连接,先对称、轻微地松开所述螺帽,再取出所述上板2及所述第四柔性垫板,观察、拍摄照片后取出所述试样;
(7)、再次对所述试样进行无损检测,获取实验后的数据(如摄取实验后的所述试样的CT数据),并通过三维图像重构与分割,对比分析实验前后的裂缝启裂扩展情况;
可选的,在所述试样的装样过程中可在其中两个所述刚性垫板的U型槽中安装声发射探头,以监测所述试样在泵注压裂过程中的声发射特征,获取裂缝扩展的时空演化规律。
在步骤(5)中,开始时,三个所述载荷发生机构分别施加的最大主应力、中间主应力和最小主应力三个方向的静水压力值大小相等,此压力值即为最小主应力;而后,采用同样的压力梯度逐步将其余两个所述载荷发生机构施加的压力值增大到一中间值,此压力值即为中间主应力;最后,采用同样的压力梯度继续增大其中一个所述载荷发生机构施加的压力值,即最大主应力。
同时,在步骤(5)中,通过所述高压泵向所述压裂封孔器注入混有造影剂的所述高压流体(即压裂液),监测所述高压流体的流量和压力,并由数据采集系数自动采集和记录数据。
此外,在实验本实用新型实施例所提供的水压致裂物理模拟实验装置进行实验的过程中,还需要测定所述试样的基本物理力学参数,并计算所述高压泵的泵注参数,校验压裂实验中的泵注参数是否符合相似定律,以在一定范围内克服尺寸效应,验证室内压裂实验参数的有效性。
首先,制作所述试样,并开展室内实验测定所述试样的基本物理力学参数;其次,通过式(1)判别水力裂缝的尺寸,通过式(2)配置泵注时间、流量和流体粘度等参数;最后,通过式(3)中无量纲数与现场参数进行对比,确保相应的无量纲参数相协调,验证室内压裂实验结果的有效性。
式(1)中,Pn为裂缝壁面的净破裂压力,MPa;rf为裂缝半长,m。裂缝传播主要受压裂液粘度控制,此时无量纲数κ<1(不考虑滤失效应)。
其中,μ'=12μ,式(2)中t是室内水压致裂实验中裂缝起裂及扩展时间,s;KIC是储层的断裂韧度,MPa·m0.5;E是杨氏弹性模量,GPa;μ是压裂液粘度,Pa·s;ν是储层的泊松比;Q’是总注入流量,m3/s。
其中,r0是压裂管或封孔器的直径,m;Kl是滤失系数,m/s0.5是裂纹开裂模量,GPa;σc是单轴抗压强度,MPa;q是裂缝内注入流量,m3/s; Nt是实验时间的无量纲数;是滤失无量纲数;Nσ是应力无量纲数;是裂缝形成的无量纲数;弹性变形的无量纲数。
综上所述,在本实用新型实施例所提供的水压致裂物理模拟实验装置中,实验装置由各个可拆卸的零部件组装而成,实验装置的结构简单且易于移动搬运,能有效降低实验装置的成本;并通过柔性垫板等方式实现柔性加载和承载机构的不平行度自由调整、匹配,能有效克服试样在压裂实验过程中的端部效应。
上述仅为本实用新型的优选实施例而已,并不对本实用新型起到任何限制作用。任何所属技术领域的技术人员,在不脱离本实用新型的技术方案的范围内,对本实用新型揭露的技术方案和技术内容做任何形式的等同替换或修改等变动,均属未脱离本实用新型的技术方案的内容,仍属于本实用新型的保护范围之内。

Claims (10)

1.一种水压致裂物理模拟实验装置,其特征在于,包括:
承载机构,所述承载机构包括多个承压板,多个所述承压板连接构成实验腔;
载荷发生机构,多个所述载荷发生机构设置于所述实验腔内,且多个所述载荷发生机构和实验腔中的试样之间设置有柔性垫板。
2.如权利要求1所述的水压致裂物理模拟实验装置,其特征在于,所述承载机构包括三组共六个所述承压板,每个所述承压板的两端设有多个第一通孔,三组所述承压板中的每一组由穿过所述第一通孔的螺栓和螺帽连接。
3.如权利要求1或2所述的水压致裂物理模拟实验装置,其特征在于,所述水压致裂物理模拟实验装置包括三个所述载荷发生机构,所述试样为立方体形状,在所述试样的每个面上均垫护有一个柔性垫板,设置在最大主应力方向、中间主应力方向和最小主应力方向的三个柔性垫板分别通过三个刚性垫块和三个所述载荷发生机构连接,其中,最大主应力方向、中间主应力方向和最小主应力方向两两相互正交。
4.如权利要求1或2所述的水压致裂物理模拟实验装置,其特征在于,所述水压致裂物理模拟实验装置还包括底座,所述实验腔设置于所述底座上。
5.如权利要求1所述的水压致裂物理模拟实验装置,其特征在于,所述水压致裂物理模拟实验装置还包括多个刚性垫块,所述刚性垫块一端的端面上设有内壁光滑的U型槽,多个所述刚性垫块组成容纳所述试样的样品室。
6.如权利要求5所述的水压致裂物理模拟实验装置,其特征在于,所述试样与部分所述刚性垫块之间还设有所述柔性垫板,所述载荷发生机构隔着所述刚性垫块和所述柔性垫板对所述试样施加载荷。
7.如权利要求2所述的水压致裂物理模拟实验装置,其特征在于,两个所述承压板上还设有用于通过所述载荷发生机构的管线的第二通孔。
8.如权利要求1或2所述的水压致裂物理模拟实验装置,其特征在于,位于所述实验腔顶部的所述承压板上还设有用于通过泵注管线的第三通孔。
9.如权利要求1或2所述的水压致裂物理模拟实验装置,其特征在于,每个所述承压板上还设有吊环孔。
10.如权利要求1所述的水压致裂物理模拟实验装置,其特征在于,所述水压致裂物理模拟实验装置还包括声发射探头。
CN201821642640.2U 2018-10-10 2018-10-10 一种水压致裂物理模拟实验装置 Expired - Fee Related CN209838386U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201821642640.2U CN209838386U (zh) 2018-10-10 2018-10-10 一种水压致裂物理模拟实验装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201821642640.2U CN209838386U (zh) 2018-10-10 2018-10-10 一种水压致裂物理模拟实验装置

Publications (1)

Publication Number Publication Date
CN209838386U true CN209838386U (zh) 2019-12-24

Family

ID=68896726

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201821642640.2U Expired - Fee Related CN209838386U (zh) 2018-10-10 2018-10-10 一种水压致裂物理模拟实验装置

Country Status (1)

Country Link
CN (1) CN209838386U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112196509A (zh) * 2020-10-15 2021-01-08 重庆科技学院 一种全尺寸多簇柔性裂缝模拟装置
CN114791483A (zh) * 2022-04-01 2022-07-26 四川大学 基于拟实深部原位样品的岩石力学行为测试与分析方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112196509A (zh) * 2020-10-15 2021-01-08 重庆科技学院 一种全尺寸多簇柔性裂缝模拟装置
CN112196509B (zh) * 2020-10-15 2022-04-22 重庆科技学院 一种全尺寸多簇柔性裂缝模拟装置
CN114791483A (zh) * 2022-04-01 2022-07-26 四川大学 基于拟实深部原位样品的岩石力学行为测试与分析方法

Similar Documents

Publication Publication Date Title
CN209838386U (zh) 一种水压致裂物理模拟实验装置
CN105388054B (zh) 一种基于动力地质学的仿真岩心的制备装置及方法
CN112485120B (zh) 一种可视化蓄能压裂物理模拟试验装置及其试验方法
CN111255471B (zh) 多工况土压平衡盾构渣土工作性测试模拟试验系统
CN109374498B (zh) 一种单裂隙岩体渗流应力耦合系统及方法
CN111366472B (zh) 用于可变岩心尺寸的真三轴水力压裂物理模拟设备及方法
CN110470522B (zh) 一种预制不同含水饱和度裂隙网络岩体试样的方法
CN114414326A (zh) 天然裂缝网络对水力裂缝干扰的岩样制作以及实验方法
CN110056335B (zh) 一种三轴多裂纹水力压裂实验装置及实验方法
CN104062408B (zh) 一种分层注浆模型试验系统
CN210660065U (zh) 一种高仿真固井胶结强度联合测试辅助装置
Shrivastava et al. Development of a large-scale direct shear testing machine for unfilled and infilled rock joints under constant normal stiffness conditions
CN110108529A (zh) 一种类岩石-砼组合体试样制备方法
CN106483022A (zh) 一种混凝土试件预制裂缝内的水压密封加载装置及试验方法
CN109209326A (zh) 一种水压致裂物理模拟实验装置及实验方法
CN113591420B (zh) 真三轴水力压裂实验的仿真方法及处理器
JP2012042442A (ja) 貫通ひび割れを有するコンクリート試験体及びその作製方法
CN111300617B (zh) 一种高温高压水泥石养护装置及水泥石的制备方法
US20200300054A1 (en) Method for preparing artificial core to simulate fluvial sedimentary reservoir
CN109238844B (zh) 隧道衬砌结构裂缝处治实验方法
CN108535113A (zh) 一种水平成层岩体变形参数综合确定方法
Kim et al. Mock-up experiments on permeability measurement of concrete and construction joints for air tightness assessment
CN116705206A (zh) 水泥砂浆材料力学属性的非均质离散元模型构建方法
CN110700823A (zh) 一种真三轴裂缝扩展模拟和渗透率同步实验的加载体以及渗透率测试表征方法
CN116558976A (zh) 一种隧道三维模拟实验系统及其试验件的制备方法

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191224