CN209773498U - guiding device of clamp and internal support type clamp - Google Patents

guiding device of clamp and internal support type clamp Download PDF

Info

Publication number
CN209773498U
CN209773498U CN201920289470.2U CN201920289470U CN209773498U CN 209773498 U CN209773498 U CN 209773498U CN 201920289470 U CN201920289470 U CN 201920289470U CN 209773498 U CN209773498 U CN 209773498U
Authority
CN
China
Prior art keywords
clamp
elastic
guide
connection
clamp according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201920289470.2U
Other languages
Chinese (zh)
Inventor
张凌峰
鲍磊
赵元瑞
牟行浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Software Robot Technology Co ltd
Original Assignee
Suzhou Software Robot Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Software Robot Technology Co Ltd filed Critical Suzhou Software Robot Technology Co Ltd
Priority to CN201920289470.2U priority Critical patent/CN209773498U/en
Application granted granted Critical
Publication of CN209773498U publication Critical patent/CN209773498U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The embodiment of the application discloses guider and interior supporting formula anchor clamps of anchor clamps. The guide of the clamp comprises a connecting end and a guide end. Along the direction of link to direction end, the radial dimension of the guider of anchor clamps reduces gradually for guider is the tapered structure. And a detachable connecting structure for connecting with the clamp is arranged at the connecting end. The beneficial effects that may be brought by the embodiments of the present application include, but are not limited to: the guide device can help the clamp to align, thereby avoiding or reducing the possibility that the clamp cannot be accurately clamped due to misalignment when the clamp stretches into or collects an object, and even causing damage to the object or the clamp, and ensuring that the fault tolerance of the clamp on the clamped object position is higher.

Description

Guiding device of clamp and internal support type clamp
Technical Field
The application relates to the technical field of relevant fixtures, in particular to a guide device of a fixture and an internal support type fixture.
Background
in industrial production and daily life, some objects need to be picked up, and sometimes the objects can only be picked up in a mode of supporting the inner wall of the object from the inner side because the object is inconvenient to directly contact the outer surface of the object. Some objects cannot be clamped by using a metal or other rigid clamp because of thin wall thickness, weak strength or easy damage to the inner surface, or the objects may be damaged. Or some objects have small internal space or complex profile, are customized with special rigid clamps, have high cost and cannot be simultaneously applied to other objects. And if the design is improper, the clamping stability is poor and the clamping is easy to fall off. Therefore, there is a need for a technique to provide internal support for gripping in various industrial processes and daily life, or to support and fix objects internally.
Although the internally-supporting type clamp has appeared in the prior art, the fault tolerance of the existing internally-supporting type clamp is low, when the clamp extends into or sleeves an article, the article or the clamp may not be clamped accurately due to misalignment, and even damage may be caused to the article or the clamp.
SUMMERY OF THE UTILITY MODEL
One aspect of the present application provides a guide for a jig. The guide of the clamp comprises a connecting end and a guide end. And along the direction from the connecting end to the guide end, the radial dimension of the guide device of the clamp is gradually reduced, so that the guide device is in a conical structure. The connecting end is provided with a detachable connecting structure used for being connected with the clamp.
According to some preferred embodiments of the present application, the guide of the jig is a tapered tube or a solid taper made of plastic, metal, silicone, or rubber.
According to some preferred embodiments of the present application, the detachable connection is a threaded connection or a snap connection.
According to some preferred embodiments of the present application, the outer surface of the guide of the jig is a smooth surface or a lubricating layer is formed on the outer surface of the guide of the jig.
One aspect of the present application provides an internally bracing clamp. The internal support type clamp comprises a guide device of the clamp and a clamp head connected with the guide device of the clamp. Wherein the clamp head includes a first elastic member and a support member. The first elastic member is hermetically provided on the support member so as to cover a part or all of the outer side of the support member. And a first air passage is provided in the first elastic member and/or the support member. In the installation state, the first air channel is communicated with the inflation and deflation device, so that the first elastic piece can expand outwards under the action of the inflation and deflation device.
According to some preferred embodiments of the present application, the first elastic member is made of silicone or rubber.
According to some preferred embodiments of the present application, a reinforcing structure is provided on an outer wall and/or an inner wall of the first elastic member.
According to some preferred embodiments of the present application, the reinforcing structure includes at least one of a bead or a rough surface formed on the first elastic member.
According to some preferred embodiments of the present application, the reinforcing beads are at least one of strip-shaped protrusions, wave-shaped protrusions, and saw-toothed protrusions.
According to some preferred embodiments of the present application, a texture and/or micro-protrusions may be provided on the first elastic member, so that an outer wall and/or an inner wall surface of the first elastic member may be formed as the rough surface.
According to some preferred embodiments of the present application, at least one of an abrasion resistant layer, a trace resistant layer, an oil resistant layer, or an antistatic layer may be disposed on an outer wall of the first elastic member.
according to some preferred embodiments of the present application, the waist portion of the first elastic member is concave in the installed state. Alternatively, the first resilient member may be "conformal" in the installed state.
According to some preferred embodiments of the present application, the support member may be formed with an inner recess at a middle portion thereof, so that an inner cavity can be formed between the first elastic member and an outer side of the support member.
According to some preferred embodiments of the present application, a catching portion may be provided on the support member; in the attached state, an end portion of the first elastic member may be engaged with the engaging portion, so that the first elastic member may be hermetically provided on the support member so as to cover a part or all of the outer side of the support member.
According to some preferred embodiments of the present application, the coupling structure formed on the support member is a screw coupling structure or a snap coupling structure.
According to some preferred embodiments of the present application, the clamp head further comprises a connecting member; the connecting member is connected with the supporting member for external connection of the jig head.
According to some preferred embodiments of the present application, the connection member includes an upper connection portion for connection with an outside, a lower connection portion for connection with a connection structure on the support member, and a crimping portion. The crimping portion is a protruding portion formed between the upper connection portion and the lower connection portion in such a manner as to protrude radially outward. In the mounted state, the crimping portion can press the first elastic member against the support member to ensure the sealing property between the first elastic member and the support member.
according to some preferred embodiments of the present application, a second air passage may be provided in the connection member. In the mounting state, the second air passage is communicated with the first air passage to form an air passage.
According to some preferred embodiments of the present application, the clamp head may further include a sealing member. The sealing component can be arranged at the joint of the first elastic piece and the supporting component and used for ensuring the sealing performance of the internal support type clamp.
According to some preferred embodiments of the present application, the clamp head further comprises an air supply interface. The air supply interface is communicated with the first air passage.
Additional features of the present application will be set forth in part in the description which follows. Additional features of some aspects of the present application will be apparent to those of ordinary skill in the art in view of the following description and accompanying drawings, or in view of the production or operation of the embodiments. The features disclosed in this application may be realized and attained by practice or use of various methods, instrumentalities and combinations of the specific embodiments described below.
Drawings
The accompanying drawings, which are included to provide a further understanding of the application and are incorporated in and constitute a part of this application, illustrate embodiment(s) of the application and together with the description serve to explain the application and not to limit the application. Like reference symbols in the various drawings indicate like elements.
FIG. 1 is a schematic diagram of an internal bracing clamp with a guide according to some embodiments of the present application.
FIG. 2 is a schematic diagram of a chuck head according to some embodiments of the present application.
FIG. 3 is a schematic diagram of a chuck head according to further embodiments of the present application.
FIG. 4 is a cross-sectional view of a front view of a chuck head according to other embodiments of the present application.
Fig. 5 is a schematic view of a gripper head according to some embodiments of the present application, with a first resilient member expanded to engage an inside surface of an object to be gripped.
FIG. 6 is a schematic view of an air channel in a fixture head according to some embodiments of the present application.
FIG. 7 is a perspective view and a cross-sectional view of a first elastic member shown in an expanded state according to some embodiments of the present application.
FIG. 8 is a schematic diagram of a chuck head according to further embodiments of the present application.
FIG. 9 is a schematic view of a chuck head and an external connection according to some embodiments of the present application.
Fig. 10 is an enlarged view at I in fig. 9.
Detailed Description
In order to make the objects, technical solutions and advantages of the present invention more clearly understood, the present invention is further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
On the contrary, the invention is intended to cover alternatives, modifications, equivalents and alternatives which may be included within the spirit and scope of the invention as defined by the appended claims. Furthermore, in order to provide a better understanding of the present invention to the public, certain specific details are set forth in the following detailed description of the invention. It will be apparent to those skilled in the art that the present invention may be practiced without these specific details.
In order to more clearly illustrate the technical solutions of the embodiments of the present application, the drawings used in the description of the embodiments will be briefly introduced below. It is obvious that the drawings in the following description are only examples or embodiments of the application, from which the application can also be applied to other similar scenarios without inventive effort for a person skilled in the art. It should be understood that these exemplary embodiments are given solely for the purpose of enabling those skilled in the relevant art to better understand and thereby implement the present invention, and are not intended to limit the scope of the present invention in any way. Unless otherwise apparent from the context, or otherwise indicated, like reference numbers in the figures refer to the same structure or operation.
As used in this application and the appended claims, the terms "a," "an," "the," and/or "the" are not intended to be inclusive in the singular, but rather are intended to be inclusive in the plural unless the context clearly dictates otherwise. In general, the terms "comprises" and "comprising" merely indicate that steps and elements are included which are explicitly identified, that the steps and elements do not form an exclusive list, and that a method or apparatus may include other steps or elements. The term "based on" is "based, at least in part, on". The term "one embodiment" means "at least one embodiment"; the term "another embodiment" means "at least one additional embodiment". "plurality" means two or more. "at least one" means one or more than one. "first," "second," … …, and the like are used for distinguishing between similar elements and not necessarily for describing a sequential or chronological order.
One aspect of the present application provides a guide for a jig.
As shown in fig. 1, the guide 30 of the clamp may include a connecting end 310 and a guide end 320. And, the radial dimension of the guide 30 of the jig is gradually reduced in the direction from the connecting end 310 to the guiding end 320, so that the guide 30 has a tapered structure. For example, a shape similar to a bullet head or a bell mouth, etc. Through setting up guider 30 to the tapered structure, under the mounted state, the great one end of guider 30 radial dimension, link 310 is connected at the front end of internal stay formula anchor clamps promptly, the less one end of guider 30 radial dimension during the use, guide end 320 stretches into along with the removal of anchor clamps head earlier and waits to press from both sides article promptly, can help the alignment of anchor clamps, thereby avoid or reduce anchor clamps when stretching into or set get article, can't accurately press from both sides because do not aim at and get, can cause the possibility of harm to article or anchor clamps even, make anchor clamps to being got the fault-tolerant nature of article position higher.
In some embodiments, the guide 30 of the clamp may be a tapered tube or solid cone made of plastic, metal, silicone, or rubber.
A detachable connection structure for connecting with a clamp is provided at the connection end 310. In some embodiments, the detachable connection may be a threaded connection or a snap-fit connection. For example, an internal thread may be provided at the coupling end 310 of the guide 30, and an external thread may be provided at the front end of the jig head 100, the internal thread and the external thread being engaged, so that the guide 30 is detachably coupled to the front end of the jig head 100. As another example, a screw may be passed through the guide 30 from the guide end 320 and coupled to the clamp head 100 such that the guide 30 is removably coupled to the front end of the clamp head 100. By connecting the guide device 30 with the clamp by adopting a detachable connecting structure, the guide device can be conveniently replaced, and guide devices with different sizes and structures are adopted for different articles.
In some embodiments, the outer surface of the guide 30 of the jig is smooth or a lubricating layer 330 is formed on the outer surface of the guide 30 of the jig. Illustratively, the outer surface of the guide 30 may be formed to be smooth by grinding or plating, etc. For example, a layer of lubricating fluid may be uniformly applied to the outer surface of the guide 30, thereby forming a lubricating layer 330 on the outer surface of the guide 30 of the jig. By setting the outer surface of the guide device 30 as a smooth surface or setting the lubricating layer 330, the friction force between the guide device and the object to be gripped can be reduced, so that the damage to the guide device 30 which is possibly caused when the guide device is in contact with the object to be gripped can be reduced, and the clamp head 100 can be inserted into the object to be gripped more easily when the guide device 30 is in contact with the object to be gripped.
Another aspect of the present application provides an internally bracing clamp.
as shown in fig. 1, the internally-supporting jig includes a guide 30 and a jig head 100. The jig head 100 may include a first elastic member 2 and a support member 3. The first elastic member 2 may be sealingly provided on the support member 3 in such a manner as to cover a part or all of the outside of the support member 3. A first air duct 1 is provided on the first elastic element 2 and/or the support element 3. In the installation state, the first air passage 1 is communicated with the inflation and deflation device, so that the first elastic piece 2 can expand outwards under the action of the inflation and deflation device, and the object to be clamped is clamped from the inside.
In some embodiments, the first elastic member 2 may be sealingly disposed on the support member 3 in such a manner as to cover the entire outer side of the support member 3.
Illustratively, the support member 3 is provided with an engaging portion 31. In the attached state, the upper and lower ends of the first elastic element 2 may be engaged with the engaging portions 31, respectively, so that the first elastic element 2 may be hermetically provided on the support member 3 so as to cover the entire outer side of the support member 3. For example, as shown in fig. 2, the engaging portions 31 are provided on both the top and bottom of the support member 3. In the mounted state, the first elastic element 2 is sleeved on the supporting part 3. The upper end of the first elastic element 2 is mounted on the engaging part 31 on the top of the support member 3; the lower end of the first elastic member 2 is attached to an engaging portion 31 at the bottom of the support member 3. The upper end and the lower end of the first elastic element 2 can be respectively connected with the clamping part of the supporting component 3 in a sealing way through bonding sealing, compression sealing, clamping sealing, sealing element sealing and the like, so that the first elastic element 2 can be sleeved on the supporting component 3 in a mode of covering the whole outer side of the supporting component 3 and is connected with the supporting component 3 in a sealing way. The first elastic element 2 completely covers the horizontal outer side of the supporting element 3, and after inflation (positive air pressure state), the internal support type clamp is in a lantern shape, an ellipsoid shape or a drum shape, as shown in fig. 7. The first elastic part 2 can horizontally contact the inner side surface of the object 200 to be gripped by 360 degrees, and a single internal stay type clamp can grip the object, as shown in fig. 5.
In some embodiments, the first elastic element 2 may also be arranged on the support element 3 in a sealing manner so as to cover a portion of the outside of the support element 3.
Illustratively, the support member 3 is provided with an engaging portion 31. In the attached state, the upper and lower ends of the first elastic element 2 may be engaged with the engaging portions 31, respectively, so that the first elastic element 2 may be sealingly provided on the support member 3 so as to cover a portion of the outer side of the support member 3. For example, as shown in fig. 3, the engaging portions 31 are provided on both the outer middle portion and the bottom portion of the support member 3. In the mounted state, the first elastic element 2 is sleeved on the supporting part 3. The upper end of the first elastic element 2 is arranged on the clamping part 31 at the middle part of the outer side of the supporting component 3; the lower end of the first elastic member 2 is attached to an engaging portion 31 at the bottom of the support member 3. The upper end and the lower end of the first elastic element 2 can be respectively connected with the clamping part of the supporting component 3 in a sealing way through bonding sealing, pressure welding sealing, clamping sealing, sealing element sealing and the like, so that the first elastic element 2 can be sleeved on the supporting component 3 in a mode of covering partial outer side of the supporting component 3 and is connected with the supporting component 3 in a sealing way.
In some embodiments, the first elastic member 2 may be a cylindrical elastic member formed in an integrally molded manner or in a curled manner by an elastic sheet.
The upper and lower ends of the cylindrical elastic member may be sealingly connected to the support member 3, respectively. By providing the cylindrical elastic member on the support member 3 in a sealing manner so as to cover at least a part of the outside of the support member 3, that is, so as to cover a part or all of the outside of the support member 3, it is possible to form an airbag-like structure between the first elastic member 2 and the outside of the support member 3. In the mounting or using state, the first elastic piece 2 is communicated with the outer side of the supporting component 3 through an air charging and discharging device, so that air can be charged between the first elastic piece 2 and the outer side of the supporting component 3 to expand the first elastic piece 2 outwards and the air between the first elastic piece 2 and the outer side of the supporting component 3 is discharged to contract the first elastic piece 2. When the first elastic part 2 is in an uninflated or air-pumped state, the clamp head can extend into the object 200 to be clamped, and then the air is filled between the first elastic part 2 and the outer side of the supporting part 3 through the air filling and exhausting device to expand the first elastic part 2 outwards until the first elastic part 2 can form a proper clamping force on the object 200 to be clamped inside, so that the object 200 to be clamped can be clamped from the inside, as shown in fig. 5; after the clamping is completed, the air between the first elastic part 2 and the outer side of the supporting part 3 is exhausted, so that the first elastic part 2 contracts, and the clamp head can be taken out from the object 200 to be clamped. Because the air pressure between the first elastic part 2 and the outer side of the supporting part 3 can be set and adjusted according to the needs, the force of the inner support can be adjusted, and the thin-wall or easily damaged workpieces can be safely picked up.
In some embodiments, the first elastic element 2 may also be directly applied to the balloon.
Similarly, the upper and lower ends of the air bag may be sealingly connected to the support member 3, respectively. By hermetically arranging the air bag on the supporting component 3 in a manner of covering part or all of the outer side of the supporting component 3, in an installation or use state, the air bag is communicated with the inflation and deflation device, so that the air bag can be inflated by inflating air in the air bag to expand the air bag outwards, and the air in the air bag is exhausted to contract the first elastic piece 2, and the object 200 to be clamped can be clamped from the inside.
In some embodiments, the waist of the first elastic element 2 has a concave shape in the installed state.
Illustratively, as shown in fig. 4, when not inflated or evacuated (negative pressure state), the first elastic member 2 is in a relaxed or contracted state, in which the first elastic member 2 assumes a concave shape in the vertical direction (in the radial direction). The design of the concave shape can increase the surface area of the first elastic element 2 in the case of the same size, so as to further increase the extension range of the first elastic element 2 after expansion.
In some embodiments, the first elastic member 2 may be "conformal". By way of example, "conformal" may refer to a shape that provides a better fit of the surface of the first elastic member 2 to the surface of the article. For example, the inner supporting surface of the first elastic element 2 can be designed to be matched with the surface texture of the object; as another example, the shape of the first elastic member 2 may be custom designed, as shown in FIG. 5, to be the same as the shape of the object to be grasped. Alternatively, by designing the characteristics or texture of the surface of the first elastic member 2, the direction in which the first elastic member 2 expands can be restricted, and the frictional force can be increased, as shown in fig. 1, fig. 2, fig. 3, fig. 8, fig. 10.
In some embodiments, the first elastic member 2 is made of a highly elastic material. The elasticity of the high-elasticity material is very good, the deformation of the first elastic member 2 made of the high-elasticity material can be realized by the pressure of gas, and the deformation speed of the first elastic member 2 made of the high-elasticity material is high, so that the high-elasticity material is suitable for industrial application.
for example, the material of the first elastic element 2 may be silicone.
For example, a heat-vulcanized solid silicone rubber, a fluorosilicone rubber, a liquid silicone rubber, and the like. Compared with the conventional organic elastomer, the silica gel is particularly easy to process and manufacture, can be molded, calendered and extruded under the condition of low energy consumption, and has high production efficiency. Tensile strength refers to the force per unit of area required to cause a sample of silicone material to tear. The tensile strength range of the hot vulcanization type solid organic silica gel is between 4.0 and 12.5 MPa; the tensile strength range of the fluorosilicone gel is between 8.7 and 12.1 MPa; the tensile strength range of the liquid silica gel is between 3.6 and 11.0 MPa. Elongation refers to the "ultimate elongation at break" or the percentage increase relative to the original length when the sample breaks. The elongation rate of the hot vulcanization type solid silica gel is generally between 90% and 1120%; the general elongation of the fluorine-silicon adhesive is between 159% and 699%; the liquid silica gel generally has an elongation of 220% to 900%. The selection of different processing methods, curing agents and temperatures can vary the elongation of the sample to a large extent.
Through selecting the material of first elastic component 2 for silica gel, can effectually solve among the prior art based on the above-mentioned technical problem of the internal stay formula anchor clamps of gasbag. For example, as shown in fig. 5, when the inner side surface of the object to be gripped is a complex contour, since the silica gel can be greatly deformed and can be effectively attached to the inner side surface of the target object, the gripping can be realized without complex design in advance. Therefore, the internal support type clamp based on the high-elasticity air bag can be suitable for objects to be clamped with complex inner contours, has strong universality, is low in production cost and high in efficiency, and is suitable for industrial scenes and life scenes.
For example, the material of the first elastic element 2 may also be rubber. For example, natural rubber, styrene-butadiene rubber, isoprene rubber, etc.
For example, the material of the first elastic element 2 may also be thermoplastic elastomer or elastic composite material.
For example, the first elastic member 2 may be a styrene-based TPE thermoplastic elastomer (e.g., SBS, SEBS, SEPS, EPDM/styrene, BR/styrene, CI-IIR/styrene, NP/styrene, etc.), an olefin-based TPE thermoplastic elastomer (e.g., dynamically vulcanized TPO), a diene-based TPE thermoplastic elastomer, etc. For another example, the first elastic member 2 may be made of POE elastic composite material.
In some embodiments, a reinforcing structure 9 is provided on the outer and/or inner wall of the first resilient element 2.
In some embodiments, the reinforcing structure 9 may comprise a bead formed on the first resilient member 2.
Illustratively, the reinforcing ribs may be at least one of strip-shaped protrusions, wave-shaped protrusions, and saw-toothed protrusions. For example, as shown in fig. 8 and 10, the reinforcing rib may be an annular protrusion structure that extends circumferentially around the outer surface of the first elastic member 2 and protrudes radially outward. For another example, the rib may be a rib structure that is axially arranged on the outer surface of the first elastic member 2 and radially outwardly protruded. In some embodiments, the number of ribs may be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or more. When the number of the reinforcing ribs is plural, the plural reinforcing ribs may be uniformly provided on the outer surface of the first elastic member 2. When the number of the reinforcing ribs is plural, the plural reinforcing ribs may be arranged on the outer surface of the first elastic member 2 in different manners as needed.
By arranging the reinforcing ribs on the outer surface of the first elastic part 2, on one hand, the friction coefficient of the surface of the first elastic part 2 can be increased, so that the friction force between the inner side surface of the object to be clamped and the inner side surface of the object to be clamped can be increased in the using process, and the object to be clamped and clamped can be clamped more stably by the internally supporting type clamp 100; on the other hand, the reinforcing ribs can reinforce the first elastic part 2, so that the strength, the local rigidity and the service life of the air bag are increased. In addition, the shape of the first elastic member 2 in the expanded state can be adjusted by adjusting the number, size and/or arrangement of the reinforcing ribs. For example, when it is required that the first elastic member 2 is integrally expanded outward, one or more reinforcing ribs may be uniformly provided on the outer surface of the first elastic member 2, and the size of the reinforcing ribs is set to be small so that the first elastic member 2 can be integrally expanded outward when inflated. For another example, when a plurality of sections of the expanded portions with different lengths and/or different diameters are required to be formed when the first elastic member 2 is expanded, a plurality of reinforcing ribs may be arranged at a required interval length, and the size of the reinforcing ribs is set to be large, so that a plurality of sections of the expanded portions with different lengths and/or different diameters may be formed when the first elastic member 2 is expanded, for example, so that the first elastic member 2 is formed with a structure having a small upper diameter and a large lower diameter when it is expanded.
In some embodiments, a reinforcing structure may also be formed on the inner surface of the first elastic member 2. A reinforcing structure formed on the inner surface of the first elastic part 2 can be matched with a reinforcing structure on the outer surface of the first elastic part 2, so that the first elastic part 2 is reinforced, the strength, the local rigidity and the service life of the air bag are increased; in addition, the shape of the first elastic member 2 in the expanded state may be adjusted.
In some embodiments, the reinforcing structure 9 may comprise a roughened surface formed on the first elastomeric member 2.
Illustratively, the rough surface may be formed by a plurality of ridges and/or micro-bumps provided on the first elastic member 2. For example, a plurality of spherical crown-shaped protrusions and/or textures may be provided on the surface of the first elastic member 2 in a uniform or non-uniform manner such that the outer wall and/or inner wall surface of the first elastic member 2 is formed as a rough surface. Through the surface at first elastic component 2 setting up to the mat surface, can increase the coefficient of friction on first elastic component 2 surface for can increase in the use and wait to press from both sides the frictional force of getting the medial surface of object, thereby make the internal stay formula anchor clamps of this application can treat more firmly and press from both sides and get the object and carry out the centre gripping.
In some embodiments, an abrasion resistant layer, an antistatic layer, an oil-proof layer, and/or a trace-proof layer, etc. may be further disposed on the first elastic member 2.
For example, other materials may be added to the outer surface of the first elastic element 2 (for example, a film made of other materials may be added by spraying or soaking), so that functions of wear resistance, no trace, oil resistance, static electricity resistance, and the like may be achieved. For example, the wear-resistant layer may be formed on the outer surface of the first elastic member 2 by spraying with a wear-resistant paint (e.g., KN17 high-molecular ceramic polymer paint, KN7051 silicon carbide ceramic paint, etc.). For another example, an oil repellent layer may be formed on the outer surface of the first elastic member 2 by immersing an oil repellent agent (such as a chromium complex of perfluorocarboxylic acid, an acrylic fluorocarbon ester resin, an organic fluorine compound such as acrylic fluorocarbon sulfonamide ethyl ester). For example, the antistatic layer may be formed on the outer surface of the first elastic member 2 by spraying or dipping an antistatic material (e.g., an antistatic carbon-based paint, an antistatic metal oxide-based paint, an alkyd type, an acrylic type, an epoxy type, a urethane type, or other antistatic paint); alternatively, an antistatic film made of a metal oxide-based filling type antistatic material or the like may be provided on the outer surface of the first elastic member 2. Also for example, an anti-indentation layer may be formed on the outer surface of the first elastic member 2 by spraying or dipping an anti-fingerprint coating agent, or the like; alternatively, a pressure-resistant film is provided on the outer surface of the first elastic member 2, thereby providing an anti-indentation layer.
In some embodiments, a connection structure 32 for connecting with the outside is formed on the support member 3, as shown in fig. 3, 10.
Illustratively, the connection structure 32 may be a threaded connection structure or a snap connection structure. For example, the support member 3 may be directly connected to the outside by a screw connection or a snap connection by means of a screw connection or a snap connection. For example, the support member 3 may be connected to the connection member 4 by a screw connection structure or a snap connection structure by a screw connection or a snap connection, and then connected to the outside through the connection member 4.
In some embodiments, an inner recess 33 is formed in the middle of the support member 3.
Illustratively, the middle portion of the support member 3 may be formed with an inner recess 33 recessed radially inward, as shown in fig. 2 to 4 and 10. So that the support member 3 can take a shape of a small waist and large ends. That is, the support member 3 has a shape in which the diameter is gradually increased from the middle portion toward the top and the bottom, respectively. By forming the concave portion 33 in the middle of the supporting member 3, when the first elastic member 2 is sleeved on the supporting member 3 in a manner of covering at least a part of the outer side of the supporting member 3, an inner cavity can be formed between the first elastic member 2 and the outer side of the supporting member 3. So that an air bag-like structure can be formed between the first elastic member 2 and the outer side of the support member 3. In addition, when the internal bracing type clamp finishes clamping the object to be clamped and is expected to be separated from the object, the first elastic part 2 in the internal bracing type clamp can not be separated in time due to electrostatic adsorption and the like. And by forming the concave part 33 in the middle of the supporting part 3, the inflation and deflation device can fully or partially pump out the air between the first elastic member 2 and the concave part 33, so that the first elastic member 2 is inwardly contracted and sunken, and the first elastic member 2 is separated from the object which is clamped completely.
A first air duct 1 is provided in the support member 3. The first elastic element 2 is communicated with the outer side of the supporting component 3 through a first air channel 1 and an air charging and discharging device. Or the inflation and deflation device can be communicated with the inside of the air bag through the first air passage 1.
In some embodiments, the first airway 1 may include a main airway and a plurality of branch airways. The first elastic element 2 is communicated with the outer side of the supporting component 3 or the air bag through a plurality of air dividing channels and a main air channel. The main air passage can be communicated with the air charging and discharging device. Illustratively, the main air passage is arranged in the supporting part 3, and one port is connected with an air charging and discharging device; the air dividing passages are arranged between the main air passage and the inner cavity or the inner part of the air bag, one port of each air dividing passage is connected to the main air passage, and the other port of each air dividing passage is connected with the inner cavity. For example, as shown in fig. 6, the primary airway 1 includes a main airway 11 and six branch airways 12, one port of each branch airway 12 is connected to the main airway 11, and the other port of each branch airway 12 is connected to the lumen. Through a plurality of ports of the air distributing channel, the gas exchange efficiency in the air bag can be improved.
In some embodiments, the clamp head 100 may further include a connecting member 4.
Illustratively, the connecting member 4 may include an upper connecting portion 44 for connecting with the outside and a lower connecting portion 45 for connecting with the connecting structure 32 on the support member 3.
For example, as shown in fig. 9 and 10, the upper connection portion 44 may be a screw connection portion or a snap connection portion. The lower connecting portion 45 may be a screw connecting portion or a snap connecting portion. In the mounted state, the connecting part 4 can be connected to the connecting structure 32 on the support part 3 by means of a screw connection or a snap connection via the lower connecting part 45. In some embodiments, the connecting member 4 and the support member 3 may be detachable. By arranging the connecting part 4 to be detachably connected with the supporting part 3, when the first elastic part 2, the supporting part 3 or the connecting part 4 is damaged, the damaged part can be replaced without being scrapped completely, so that the use cost is saved. Of course, the connecting member 4 and the supporting member 3 may not be detachable, or the connecting member 4 and the supporting member 3 may be integrally formed, so that the connecting member 4 and the supporting member 3 are more stable and firm. In some embodiments, as shown in fig. 5, the connecting member 4 may be connected to the vertical outer side of the supporting member 3 in such a manner as to increase the fitting area of the first elastic member 2 to the inner side surface of the object to be gripped, which is more convenient for the use of the gripper. In some embodiments, the connecting part 4 can also pass through the first elastic part 2 to be connected with the horizontal side of the supporting part 3, and when the connecting part 4 is inflated, the air bag (the inner air bag) passing through the connecting part is freely expanded, and the outer air bag is contacted with the inner side surface of the object to be clamped.
In some embodiments, the connecting part 4 further comprises a crimp 46.
Illustratively, the crimping portion 46 is a protrusion formed between the upper connection portion 44 and the lower connection portion 45 in such a manner as to project radially outward. As shown in fig. 10, in the mounted state, the crimping portion 46 can press the first elastic member 2 against the support member 3 to ensure the sealing property between the first elastic member 2 and the support member 3. In some embodiments, a sealing ring or a gasket may be further disposed between the engaging portion of the first elastic member 2 and the supporting member 3 to further ensure the sealing property between the first elastic member 2 and the supporting member 3.
In some embodiments, a second air passage is provided within the connecting member 4.
The first elastic part 2 and the outer side of the supporting part 3 or the inner part of the air bag can be communicated through a second air passage and an inflation and deflation device. Illustratively, as shown in fig. 10, in the installation state, the second air passage can be communicated with the first air passage 1 arranged in the supporting component 3 to form an air passage, so that the first elastic element 2 can be communicated with the outside of the supporting component 3 or the inside of the air bag can be communicated with the inflation and deflation device.
In some embodiments, in order to further ensure the sealing performance of the internal stay type clamp, especially prevent the air bag from leaking and generating undesired deformation, as shown in fig. 7 and 10, the internal stay type clamp further comprises a sealing component 5.
The sealing member 5 may adopt a static seal or a dynamic seal. The sealing components of the static seal mainly comprise a sealing gasket, a sealing glue and other direct contact seals. The sealing parts of the dynamic seal can be a rotary sealing part and a reciprocating sealing part. If the sealing part is contacted with the parts which move relatively, the sealing part can be divided into contact type and non-contact type; depending on the sealing element and the contact position, these can be further divided into circumferential sealing and end face sealing, which are also referred to as mechanical seals. In general, the seal member in the embodiment of the present application mainly employs a seal member of an end face seal in consideration of ease of attachment and detachment of the member. The corresponding sealing member 5 may be designed, for example, in a ring shape, a concavo-convex shape, etc., according to the contact shape of the first elastic member 2 with the inner side of the support member 3, when the outer surface of the sealing member 5 is sealingly connected with the coinciding inner walls of the first elastic member 2 and the support member 3. The sealing member 5 may also be arranged outside the first elastic member 2 and/or the support member 3, for example, by using a gasket or sealant to be sealingly connected to the outside of the first elastic member 2 and/or the support member 3. The sealing member 5 may also be a sealing press 51, as shown in fig. 7 and 10, wherein the inner wall of the sealing press 51 is connected with the first elastic member 2 and the outer wall of the supporting member 3 in a sealing manner. Illustratively, the sealing press 51 includes an upper sealing press which may be disposed at a junction of the upper end of the first elastic member 2 and the top of the support member 3, and/or a lower sealing press which may be disposed at a junction of the lower end of the first elastic member 2 and the bottom of the support member 3. Compared with other sealing parts, the sealing pressing block is simpler and more convenient to mount and dismount, and is more suitable for industrial use. For example, the sealing press 51 may be coupled to the support member 3 by the fastening screw 8, and an inner wall of the sealing press 51 is sealingly coupled to the first elastic member 2 and an outer wall of the support member 3.
In some embodiments, the internal bracing clamp further comprises a gas supply interface 6. The first elastic element 2 and the outer side of the supporting part 3 or the inner part of the air bag can be communicated through an air supply interface 6 and an air charging and discharging device.
Illustratively, the air supply port 6 may be provided directly on the first elastic member 2. One end of the air supply interface 6 is communicated with the inside of the first elastic part 2, and the other end of the air supply interface can be communicated with the air charging and discharging device, so that the inside of the first elastic part 2 can be communicated with the air charging and discharging device, and the air supply interface can expand when the air charging and discharging device supplies air and recover or contract when air is discharged or exhausted.
For example, the air supply connection 6 can also be provided on the connecting part 4 or the support part 3. As shown in fig. 4, 5 and 7, the air passage formed on the connecting member 4 and/or the supporting member 3 is communicated with one end of the air supply connector 6, and the other end of the air supply connector 6 is communicated with the air charging and discharging device, so that the first elastic member 2 can be communicated with the air charging and discharging device, thereby being expanded when the air charging and discharging device supplies air, and restored or contracted when air is discharged or exhausted.
In some embodiments, the inflation and deflation device may be an electric inflation and deflation device, a cyclic inflation and deflation device, a gas pumping and deflation device, a gas generator or a gas storage tank, and the like.
One port of the air supply port 6 is connected to one port of the air passage of the connecting member 4 and/or the support member 3, and the other port of the air supply port 6 is connected to the air charging and discharging device. For example, the air tank may be connected to the air supply interface 6 by a device or a joint having an air charging and discharging function such as a solenoid valve. For example, the gas generator is connected to the gas supply interface 6 through a device or a joint having a charging and discharging function such as a solenoid valve; the gas generator may also be disposed within the first resilient member 2. The pneumatic system can control the air pressure state of the first elastic element 2 through an inflation and deflation device (not shown), and the expansion of the first elastic element 2 can be accurately controlled.
The guide 30 may be detachably coupled to the jig head 100.
For example, in the installed state, the end with the larger radial dimension of the guiding device 30, that is, the connecting end 310, may be connected to the front end of the internal-supporting type clamp through a threaded connection or a snap-fit connection structure, and in use, the end with the smaller radial dimension of the guiding device 30, that is, the guiding end 320, extends into the article to be clamped along with the movement of the clamp head, may facilitate the alignment of the clamp, thereby avoiding or reducing the possibility that the clamp cannot be accurately clamped because of misalignment when the clamp extends into or collects the article, and even may cause damage to the article or the clamp, so that the fault tolerance of the clamp to the position of the clamped article is higher.
The beneficial effects that may be brought by the embodiments of the present application include, but are not limited to:
The internal support type clamp is simple in structure and low in manufacturing cost, can rapidly and stably clamp fragile and soft objects with different sizes, regular or irregular internal shapes, bottle shapes and the like in a certain range, and does not damage clamped objects. In addition, the guide device can help the alignment of the clamp, thereby avoiding or reducing the possibility that the clamp cannot be accurately clamped due to misalignment when the clamp extends into or withdraws the object, and even causing damage to the object or the clamp, and ensuring that the fault tolerance of the clamp on the clamped object position is higher.
In light of the foregoing, it will be apparent to those skilled in the art from this disclosure that various changes and modifications can be made without departing from the spirit and scope of the invention. The technical scope of the present invention is not limited to the content of the specification, and must be determined according to the scope of the claims.

Claims (20)

1. A guide for a clamp, characterized in that the guide (30) of the clamp comprises a connecting end (310) and a guiding end (320);
A detachable connecting structure used for being connected with a clamp is arranged on the connecting end (310);
And, the radial dimension of the guide means (30) of the clamp is gradually reduced along the direction from the connecting end (310) to the guiding end (320), so that the guide means (30) is in a conical structure.
2. The guiding device of a clamp according to claim 1, characterized in that the guiding device (30) of the clamp is a conical tube or a solid cone made of plastic, metal, silicone or rubber.
3. The jig guide of claim 1, wherein the detachable connection is a threaded connection or a snap-fit connection.
4. The guide of the jig according to claim 1, wherein the outer surface of the guide (30) of the jig is smooth or a lubricating layer (330) is formed on the outer surface of the guide (30) of the jig.
5. Internally bracing clamp, characterized in that it comprises a guide (30) of a clamp according to one of claims 1 to 4 and a clamp head (100) connected to the guide (30) of the clamp;
Wherein the clamp head (100) comprises a first elastic piece (2) and a support part (3);
The first elastic piece (2) is arranged on the supporting component (3) in a sealing mode in a mode of covering part or all of the outer side of the supporting component (3);
A first air channel (1) is arranged on the first elastic piece (2) and/or the supporting component (3); in the mounting state, the first air channel (1) is communicated with the inflation and deflation device, so that the first elastic piece (2) can expand outwards under the action of the inflation and deflation device.
6. Internal stay clamp according to claim 5 wherein the first resilient member (2) is made of silicone or rubber.
7. Internally bracing clamp according to claim 5, wherein a reinforcement structure (9) is provided on the outer and/or inner wall of the first spring element (2).
8. An internally bracing clip according to claim 7, wherein the reinforcing structure (9) comprises at least one of a bead or a roughened surface formed on the first resilient member (2).
9. The internally bracing clamp according to claim 8, wherein the reinforcing ribs are at least one of strip-shaped protrusions, wave-shaped protrusions, and saw-toothed protrusions.
10. Internally bracing clamp according to claim 8, wherein a texture and/or micro-bumps are provided on the first resilient member (2) such that the outer and/or inner wall surface of the first resilient member (2) is formed as the roughened surface.
11. Internal stay clamp according to claim 5, characterized in that at least one of a wear layer, a scratch layer, an oil layer or an antistatic layer is provided on the outer wall of the first elastic element (2).
12. Internal stay clamp according to claim 5 wherein the waist of the first elastic member (2) is concave in the installed state; or, in the installed state, the first elastic element (2) is conformal.
13. Internally bracing clamp according to claim 5, characterized in that the middle of the support part (3) is formed with an internal recess (33) enabling an internal cavity to be formed between the first spring (2) and the outside of the support part (3).
14. the internally-supporting jig according to claim 5, characterized in that an engaging portion (31) is provided on the support member (3); in the mounted state, the end of the first elastic element (2) is engaged with the engaging portion (31) so that the first elastic element (2) is hermetically provided on the support member (3) so as to cover a part or all of the outer side of the support member (3).
15. Internally bracing clamp according to claim 5, wherein the connection structure (32) formed on the support part (3) is a screw connection structure or a snap connection structure.
16. The internally bracing clamp according to claim 5, wherein the clamp head (100) further comprises a connecting member (4); the connecting part (4) is connected to the support part (3) for external connection of the gripper head (100).
17. Internally bracing clamp according to claim 16, wherein the connecting part (4) comprises an upper connecting part (44) for connection with the outside, a lower connecting part (45) for connection with a connecting structure (32) on the supporting part (3) and a crimping part (46);
The crimp portion (46) is a protruding portion formed between the upper connection portion (44) and the lower connection portion (45) in such a manner as to protrude radially outward;
In the mounted state, the crimping portion (46) is capable of pressing the first elastic member (2) against the support member (3) to ensure the tightness between the first elastic member (2) and the support member (3).
18. Internally bracing clamp according to claim 16, wherein a second air duct is provided within the connecting member (4); in the mounting state, the second air passage is communicated with the first air passage (1) to form an air passage.
19. the internally bracing clamp according to claim 5, wherein the clamp head (100) further comprises a sealing member (5); the sealing component (5) is arranged at the joint of the first elastic piece (2) and the supporting component (3) and is used for ensuring the sealing performance of the internal support type clamp.
20. The internally bracing clamp according to claim 5, wherein the clamp head (100) further comprises a gas supply interface (6); the air supply interface (6) is communicated with the first air passage (1).
CN201920289470.2U 2019-03-07 2019-03-07 guiding device of clamp and internal support type clamp Active CN209773498U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201920289470.2U CN209773498U (en) 2019-03-07 2019-03-07 guiding device of clamp and internal support type clamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201920289470.2U CN209773498U (en) 2019-03-07 2019-03-07 guiding device of clamp and internal support type clamp

Publications (1)

Publication Number Publication Date
CN209773498U true CN209773498U (en) 2019-12-13

Family

ID=68796849

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201920289470.2U Active CN209773498U (en) 2019-03-07 2019-03-07 guiding device of clamp and internal support type clamp

Country Status (1)

Country Link
CN (1) CN209773498U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111993173A (en) * 2020-08-29 2020-11-27 中国航发南方工业有限公司 Device for processing thin-wall blind hole slender shaft

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111993173A (en) * 2020-08-29 2020-11-27 中国航发南方工业有限公司 Device for processing thin-wall blind hole slender shaft

Similar Documents

Publication Publication Date Title
CN210100036U (en) Internal stay formula anchor clamps with buffer structure
WO2019170129A1 (en) Internal holding fixture
CN210525116U (en) Internal stay formula anchor clamps with initiative extending structure
CN106003131B (en) A kind of binary channels software finger and soft robot
US8960749B2 (en) Vacuum suction apparatus
CN101014775B (en) Suction-type holding device and air-suction base of the fittings
CN110076808A (en) A kind of external clamping fixture
WO2020216074A1 (en) External-gripping-type gripper
CN209773498U (en) guiding device of clamp and internal support type clamp
JP5808676B2 (en) Gas stopper protective cap
CN110253602A (en) A kind of inner bearing type fixture
CN210650716U (en) Clamp
JP2003106479A (en) Pipe body support clamp
CN110497434B (en) Clamp
CN109843516A (en) Composite sucker, Composite sucker component and manipulator
CN210500303U (en) Clamp with auxiliary separation mechanism
CN211030037U (en) Outer formula anchor clamps of pressing from both sides and contain its anchor clamps
CN210757776U (en) Internal stay formula anchor clamps
CN210950329U (en) Easy joint for air conditioner ventilation pipe
JP6650740B2 (en) Rubber hose holding device and rubber hose extraction method
CN113246047A (en) Gasbag formula internal stay anchor clamps with reinforcing structure
CN210990953U (en) Ceramic lining placing device for hip joint prosthesis
CN204062270U (en) Pipe joint
KR20180008818A (en) Branch pipe lining method and branch pipe lining apparatus
CN213532269U (en) Air bag internal support clamp with reinforced design structure

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210805

Address after: 101111 building 12, Tianji Zhigu, yard 109, Jinghai Third Road, Yizhuang Economic and Technological Development Zone, Daxing District, Beijing

Patentee after: BEIJING SOFT ROBOT TECH Co.,Ltd.

Address before: 215600 E401-402 room, Zhangjiagang economic and Technological Development Zone (Suzhou hi tech Innovation Service Center), Zhangjiagang, Jiangsu.

Patentee before: SUZHOU RUANTI ROBOT TECHNOLOGY Co.,Ltd.

CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 101111 building 12, Tianji Zhigu, yard 109, Jinghai Third Road, Yizhuang Economic and Technological Development Zone, Daxing District, Beijing

Patentee after: Beijing Software Robot Technology Co.,Ltd.

Address before: 101111 building 12, Tianji Zhigu, yard 109, Jinghai Third Road, Yizhuang Economic and Technological Development Zone, Daxing District, Beijing

Patentee before: BEIJING SOFT ROBOT TECH Co.,Ltd.