CN209532096U - Laser melting unit suitable for large-scale 3D printing - Google Patents

Laser melting unit suitable for large-scale 3D printing Download PDF

Info

Publication number
CN209532096U
CN209532096U CN201822232824.8U CN201822232824U CN209532096U CN 209532096 U CN209532096 U CN 209532096U CN 201822232824 U CN201822232824 U CN 201822232824U CN 209532096 U CN209532096 U CN 209532096U
Authority
CN
China
Prior art keywords
laser
formation cylinder
platform
furnace
printing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201822232824.8U
Other languages
Chinese (zh)
Inventor
陈振东
颜永年
韩丽俊
胡美婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Yongnian Laser Forming Technology Co Ltd
Original Assignee
Jiangsu Yongnian Laser Forming Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Yongnian Laser Forming Technology Co Ltd filed Critical Jiangsu Yongnian Laser Forming Technology Co Ltd
Priority to CN201822232824.8U priority Critical patent/CN209532096U/en
Application granted granted Critical
Publication of CN209532096U publication Critical patent/CN209532096U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

The utility model discloses a kind of laser melting units suitable for large-scale 3D printing, at least two laser furnace systems are fixed in rack, the transmittance section with formingspace face is equipped on the upside of laser furnace system, the channel being connected to formingspace is equipped on the downside of laser furnace system, at least two formation cylinder systems are movable to be installed in rack, formation cylinder system upper end can seal with the channel of laser furnace system be connected to respectively, the piston of formation cylinder forms the hoistable platform that can be aligned with Laser stove inside bottom surface, powder feeder unit is additionally provided in Laser stove, the laser of movement being installed in rack-galvanometer system transmitting laser be able to be through in the corresponding formingspace for injecting each Laser stove-formation cylinder system of the hyalomere on the upside of laser furnace system, the utility model most gives full play to the function of laser beam flying, substantially increase laser forming efficiency, drop Low laser melts former use cost.

Description

Laser melting unit suitable for large-scale 3D printing
Technical field
The utility model relates to a kind of metal 3D printer forming box, in particular to a kind of swashing suitable for large-scale 3D printing Light melting unit.
Background technique
SLM (selective laser melting) technique have the shortcomings that one it is great, i.e., every time forming (laser is in the shape of work State) after, it need to carry out largely clearing up preparation, laser-galvanometer system is in the idle shape of idle state at this time State.Current SLM device enters industrial application from laboratory, need to greatly improve forming efficiency, more exacerbate raising The cry of SLM device efficiency.
Currently, being equipped with more galvanometers using multi-laser in laser-formation system --- more laser-galvanometer systems, into one Step improves forming speed, more becomes one of the trend of SLM development.But multi-laser beam-galvanometer system (such as 2~6 laser beams) is Expensive component, accounts for about the 40% of totle drilling cost.
Utility model content
In order to make up the above deficiency, the utility model provides a kind of laser melting unit suitable for large-scale 3D printing, The forming efficiency for being suitable for the laser melting unit of large-scale 3D printing is high, and use cost is low.
The utility model is to solve technical solution used by its technical problem: a kind of suitable for large-scale 3D printing Laser melting unit, including rack, laser-galvanometer system, laser furnace system, formation cylinder system and control system, at least two Laser furnace system is fixed in rack, and the formingspace of sealing is formed in laser furnace system, be equipped on the upside of laser furnace system with The transmittance section of formingspace face, laser furnace system downside are equipped with the channel being connected to formingspace, at least two formings What cylinder system can move is installed in rack, each formation cylinder system upper end be able to on the downside of each laser furnace system Channel sealing connection, the piston of formation cylinder form the hoistable platform that can be aligned with Laser stove inside bottom surface, are additionally provided in Laser stove Powder feeder unit, powder feeder unit can give forming platform powdering, and what laser-galvanometer system can move is installed in rack, laser- Galvanometer system can be respectively with each laser furnace system face, and laser-galvanometer system can emit the laser for melting powder, Laser-galvanometer system transmitting laser be able to inject Laser stove-formation cylinder system through the hyalomere on the upside of laser furnace system It is focused in formingspace and on hoistable platform, control system controls laser-galvanometer system, laser furnace system and formation cylinder system Interior each component work, control system also control laser-galvanometer system and formation cylinder system motion.
As the further improvement of utility model, rack is equipped with the first fixed platform and lifting drive, and described the What one fixed platform can be gone up and down is positioned in rack, and lifting drive drives the first fixed platform elevating movement, moulding cylinder System is installed in the first fixed platform, and the formation cylinder system upper side is equipped with sealing ring, and the sealing ring can be close It fits on laser furnace system downside.
As the further improvement of utility model, it is installed with guide rail and first driving device in first fixed platform, Formation cylinder system can be installed in the first fixed platform along what guide rail slided, and first driving device driving formation cylinder system edge is led Rail sliding.
As the further improvement of utility model, the first driving device includes leading screw and nut mechanism and motor, described Motor power is exported to the screw rod of leading screw and nut mechanism, and the nut of leading screw and nut mechanism is fixed with the first fixed platform, screw rod end The connection that portion and formation cylinder system axial stop circumferencial direction can rotate.
As the further improvement of utility model, it is additionally provided with the first spacer pin and the second spacer pin, first spacer pin It is fixed positioned on the first fixed platform both ends with the second spacer pin along formation cylinder system motion direction, the first spacer pin and second Spacer pin is able to two sides wall surface of the backstop formation cylinder system along its direction of motion.
As the further improvement of utility model, the second fixed platform is additionally provided in rack, it can in the second fixed platform Rotation is equipped with rocker shaft, and rocker shaft upper end is equipped with rocker arm ontology, and rotation driving dress is additionally provided in the second fixed platform It sets, rotation drive device drives rocker shaft rotation, and laser-galvanometer system is fixedly installed in rocker arm ontology and stretches out outside rocker shaft On one end of side, several laser furnace systems are alternatively arranged along the arc track centered on rocker shaft in the second fixed platform On.
As the further improvement of utility model, it is additionally provided with elevating mechanism, what elevating mechanism can longitudinally be gone up and down is installed on On rocker shaft, rocker arm ontology is fixedly connected with the tache motorice of elevating mechanism.
As the further improvement of utility model, it is additionally provided with laser positioning platform, the laser positioning platform is fixedly mounted In on the rocker arm ontology other end, laser-galvanometer system is fixedly installed on laser positioning platform, is formed on laser positioning platform For the transparent window that laser is worn, laser positioning platform underside can be equipped with positioning pin, Laser stove-formation cylinder system uper side surface On be additionally provided with location hole, the positioning pin be able to be inserted in positioning hole.
As the further improvement of utility model, the laser furnace system includes bottom plate, side wall and top plate, the bottom plate and Top plate seals respectively is fixed at the formingspace that side wall upper/lower terminal forms sealing, and top plate is equipped with hollow-out parts, the hollow-out parts Sealing is embedded with windowpane.
As the further improvement of utility model, the hoistable platform of the formation cylinder system is heating plate body, the heating The stop of plate body circumferencial direction and it is axial can slide be inserted in moulding cylinder, be additionally provided with screw rod and motor, the screw rod at Type cylinder activity is spirally connected, and screw rod upper end can be rotated with heating plate body circumferencial direction and axial retention is connect, the rotation of motor driven screw rod Turn.
The advantageous effects of the utility model are: the utility model by by laser-galvanometer system, laser furnace system and Formation cylinder system forms three sets of individual sealing mechanisms, and when processing, laser furnace system and formation cylinder system merge to form Laser stove- Formation cylinder system, laser-galvanometer system is the overlapping of two independent components with laser furnace system or separates in handoff procedure, with Sealing system is unrelated, thus the reliability and highly-safe switched, after product shaping, by laser furnace system and formation cylinder system point It opens, drip molding is taken out from formation cylinder, laser-galvanometer system switches over work between multiple laser furnace systems, so that swashing Light beam hardly rest ground continuous work, most give full play to the function of laser beam flying, substantially increase laser forming efficiency, drop Low laser melts former use cost.
Detailed description of the invention
Fig. 1 is laser fusing forming schematic diagram;
Fig. 2 is that laser melts shaped state figure;
Fig. 3 the utility model laser-galvanometer system principle schematic diagram;
Fig. 4 is the utility model laser furnace system main view;
Fig. 5 is the formation cylinder structural perspective of the utility model;
Fig. 6 is the principle schematic diagram of the utility model;
Fig. 7 is the structural principle perspective view of the utility model;
Fig. 8 is the utility model laser-galvanometer system position switching construction principle main view;
Fig. 9 is sectional view along A-A in Fig. 8.
Specific embodiment
Embodiment: a kind of laser melting unit suitable for large-scale 3D printing, including rack 1, laser-galvanometer system 2, swash Light furnace system 3, formation cylinder system 4 and control system, at least two laser furnace systems 3 are fixed in rack 1, laser furnace system The formingspace 31 of sealing is formed in 3, and the transmittance section with 31 face of formingspace, Laser stove system are equipped on the upside of laser furnace system 3 3 downsides unite equipped with the channel being connected to formingspace 31, what at least two formation cylinder systems 4 can move is installed on rack On 1, each 4 upper end of formation cylinder system is able to be connected to the channel sealing of each 3 downside of laser furnace system, the work of formation cylinder Plug forms the hoistable platform 41 that can be aligned with Laser stove inside bottom surface, is additionally provided with powder feeder unit in Laser stove, powder feeder unit can Give forming platform powdering, what laser-galvanometer system 2 can move is installed in rack 1, laser-galvanometer system 2 can respectively with Each 3 face of laser furnace system, laser-galvanometer system 2 can emit the laser for melting powder, and laser-galvanometer system 2 is sent out The laser penetrated be able to be injected in Laser stove-formation cylinder system 4 formingspace 31 simultaneously through the hyalomere of 3 upside of laser furnace system It is focused on hoistable platform 41, each portion in control system control laser-galvanometer system 2, laser furnace system 3 and formation cylinder system 4 Part work, control system also controls laser-galvanometer system 2 and formation cylinder system 4 moves.
When being processed, inert gas enters formingspace 31 from the import 32 in 3 left side of laser furnace system, then from right side Outlet 33 be discharged, the oxygen in furnace is taken away, makes oxygen content as low as desired level, laser beam focuses on compacting by galvanometer Metal powder (powder bed) surface, selectively melt one layer of metal, hoistable platform 41 decline some tens of pm, power spreading device paving one Layer powder, thickness is identical as the depth that hoistable platform 41 declines, as soon as laser beam electedly re-melting layer metal, exists repeatedly The product 5 of a three-dimensional structure is formed in formingspace 31, during laser fusing forming, in Laser stove-formation cylinder system 4 Powder feeder unit includes dust feeder 34 and power spreading device 35, and wherein dust feeder is for metal powder to be sent in Laser stove, powdering Device strikes off powder, and guarantees that the thickness of new powder bed reaches requirement, when the product in a laser furnace system 3 processes At laser-galvanometer system 2 just moves away to from the laser furnace system 3 new up to progress on next ready laser furnace system 3 The laser of product melts forming, while formation cylinder system 4 is removed and leaves laser furnace system 3, processes in formation cylinder system 4 Product then taken out from the hoistable platform 41 of moulding cylinder system, take away product Laser stove carry out cleaning and hoistable platform 41 plus Heat enters wait state, comes to carry out the forming of a new round to laser-galvanometer system 2, laser beam hardly rests ground Continuous work most gives full play to the function of laser beam flying, and is the overlapping or separated of two independent components in handoff procedure, Reliability and highly-safe unrelated with sealing system, thus switching.
Rack 1 is equipped with the first fixed platform 11 and lifting drive 12, and first fixed platform 11 can be gone up and down Be positioned in rack 1, lifting drive 12 drives 11 elevating movement of the first fixed platform, and moulding cylinder system is installed on first In fixed platform 11,4 upper side of formation cylinder system is equipped with sealing ring 42, and the sealing ring 42 can be fitted closely in sharp On 3 downside of light furnace system.
After the completion of work pieces process, declined by the first platform, so that formation cylinder system 4 and laser furnace system 3 are detached from, this When workpiece can be taken away from hoistable platform 41, facilitate carrying and formation cylinder system 4 and the laser furnace system of large-scale workpiece The 3 cleaning lifting drive 12 is cylinder, the cylinder body of cylinder and 1 stationary positioned of rack, the piston rod of cylinder with it is lower solid Fixed platform is connected, and can also use motor 44 and 43 nut body 14 of screw rod or eccentric wheel mechanism etc. other than using cylinder Deng.
Guide rail 13 and first driving device are installed in first fixed platform 11, formation cylinder system 4 can be along guide rail 13 slidings are installed in the first fixed platform 11, and first driving device drives formation cylinder system 4 to slide along guide rail 13.Pass through into Shape cylinder system 4 is slided along guide rail 13 and realizes the relative motion with laser furnace system 3 in the horizontal direction, far from laser furnace system 3 or With 3 face of laser furnace system, the carrying for workpiece of being more convenient for avoids colliding and interfering with laser furnace system 3.
The first driving device includes 43 nut body 14 of screw rod and motor 44, and 44 power output of motor is to screw rod The screw rod 43 of 43 nut bodies 14, the nut of 43 nut body 14 of screw rod and the first fixed platform 11 are fixed, 43 end of screw rod with The connection that 4 axial retention circumferencial direction of formation cylinder system can rotate.The driving of 43 nut body 14 of screw rod is driven by motor 44 Formation cylinder system 4 moves, and can also be cylinder furthermore to realize, this is readily conceivable that for those skilled in the art according to this patent Equivalent constructions.
It is additionally provided with the first spacer pin 15 and the second spacer pin 16, first spacer pin 15 and the second spacer pin 16 are along forming 4 direction of motion of cylinder system is fixed positioned on 11 both ends of the first fixed platform, the first spacer pin 15 and the second spacer pin 16 difference Can backstop formation cylinder system 4 along 37 surface of the two sidewalls of its direction of motion.For to formation cylinder system 4 in the first fixed platform It is limited until being moved on 11, guarantees itself and 3 position face of laser furnace system, guarantee the two connection precision, while avoiding its abjection First fixed platform 11.
The second fixed platform 17 is additionally provided in rack 1, what can be rotated in the second fixed platform 17 is equipped with rocker shaft 18,18 upper end of rocker shaft is equipped with rocker arm ontology 19, and rotation drive device, rotation driving dress are additionally provided in the second fixed platform 17 It sets driving rocker shaft 18 to rotate, laser-galvanometer system 2 is fixedly installed in one that rocker arm ontology 19 stretches out 18 outside of rocker shaft On end, several laser furnace systems 3 are alternatively arranged along the arc track centered on rocker shaft 18 in the second fixed platform 17. It is rotated by rocker arm, so that laser-galvanometer system 2 and different 3 faces of laser furnace system, realize laser-galvanometer system 2 each Switch between a laser furnace system 3, in addition, laser-galvanometer system 2 is also possible to straight reciprocating motion, laser furnace system 3 is along straight Line arrangement.
It is additionally provided with elevating mechanism 20, what 20 longitudinal direction of elevating mechanism can be gone up and down is installed on rocker shaft 18, rocker arm ontology 19 are fixedly connected with the tache motorice of elevating mechanism 20.Make laser-galvanometer system 2 in different Laser stoves by elevating mechanism 20 It first increases to be detached from therewith when switching between system 3 and rotate again, avoid interfering and wear, while can guarantee laser-galvanometer It keeps fitting closely state when system 2 is combined with laser furnace system 3, guarantees that laser focus position is accurate.
It is additionally provided with laser positioning platform 21, the laser positioning platform 21 is fixedly installed on 19 other end of rocker arm ontology, Laser-galvanometer system 2 is fixedly installed on laser positioning platform 21, be formed on laser positioning platform 21 worn for laser it is saturating Bright window 22 can be equipped with positioning pin 23 on the downside of laser positioning platform 21, also set on Laser stove -4 uper side surface of formation cylinder system There is location hole, the positioning pin 23 be able to be inserted in positioning hole.Laser-galvanometer system is installed by laser positioning platform 21 2, while laser-galvanometer system 2 and Laser stove-formation cylinder system 4 are realized by the positioning pin 23 on laser positioning platform 21 Positioning, it is ensured that the two position face guarantees the two position precision, and then guarantees processing precision of products.In addition to real using the structure Both existing positioning is outer, can also be by other location structures, and such as four sides clamps positioning, backstop limit etc..
The laser furnace system 3 includes bottom plate 36, side wall 37 and top plate 38, and the bottom plate 36 and top plate 38 seal solid respectively Surely it is set to the formingspace 31 that 37 upper/lower terminal of side wall forms sealing, top plate 38 is equipped with hollow-out parts, and hollow-out parts sealing is embedded There is windowpane 39.
The hoistable platform 41 of the formation cylinder system 4 is heating plate body, the heating plate body circumferencial direction stop and axial direction What can be slided is inserted in moulding cylinder, is additionally provided with screw rod 43 and motor 44, and the screw rod 43 is spirally connected with moulding cylinder activity, screw rod 43 upper ends can be rotated with heating plate body circumferencial direction and axial retention is connect, and motor 44 drives screw rod 43 to rotate.
As shown in fig. 6, the first one-tenth station A, second station B, 3rd station C and the 4th station D, two formation cylinder systems 4, Two laser furnace systems 3 and a set of laser-galvanometer system 2.Second station is in " shaped state ";The formation cylinder of 3rd station It is in the separation process of Laser stove and formation cylinder, after separation, the formation cylinder system 4 of 3rd station moves to the 4th station, takes out Drip molding.After forming process at second station, formation cylinder is separated with Laser stove, and formation cylinder moves to the first station, is taken Drip molding out, and cleared up.When in the 4th station, drip molding after being taken out in formation cylinder, formation cylinder return to 3rd station with Laser stove connection, into " standby mode ";After " standby mode " of 3rd station, laser-galvanometer system 2 is just cut Change, move to 3rd station --- " first standby, rear to switch ", into " shaped state ".
When in second station Laser stove with from the first station return formation cylinder connect, completion preparation, into " to Machine state ", and after the completion of " standby mode ", laser-galvanometer system 2 are switched to second station from 3rd station again --- " first to Machine, rear to switch ", SLM device enters " shaped state ".
Laser-galvanometer system 2 just switches so between second station and 3rd station.As long as shaping workload and each switching Time coordination is appropriate, and a set of laser-galvanometer system 2 can match 2~3 sets of Laser stoves-formation cylinder system 4, substantially increases forming Efficiency and utilization rate of equipment and installations.
As shown in Figure 7: No.1 formation cylinder system 4 is connect with No.1 laser furnace system 3, melt in laser, is completed molten After being melted into shape, the first fixed platform 11 where being driven by the cylinder formation cylinder system 4 moves down certain distance so that No.1 at The sealing ring 42 of shape cylinder system 4 deviates from laser furnace system 3.Mobile formation cylinder system 4 is passed through by horizontal translation cylinder, drives No.1 Formation cylinder cylinder system is moved horizontally along guide rail 13, leaves laser furnace system 3, into clear position, is cleared up.Laser shakes at this time Mirror system is moved at No. two laser furnace systems 3, continue fusing printing, it is complete be printed as after, carry out and above-mentioned each process phase Same process.

Claims (10)

1. a kind of laser melting unit suitable for large-scale 3D printing, it is characterised in that: including rack (1), laser-galvanometer system (2), laser furnace system (3), formation cylinder system (4) and control system, at least two laser furnace systems are fixed in rack, are swashed The formingspace (31) of sealing is formed in light furnace system, and the transmittance section with formingspace face is equipped on the upside of laser furnace system, is swashed Light furnace system downside is equipped with the channel being connected to formingspace, and what at least two formation cylinder systems can move is installed on machine On frame, each formation cylinder system upper end is able to be connected to the channel sealing on the downside of each laser furnace system, the work of formation cylinder Plug forms the hoistable platform (41) that can be aligned with Laser stove inside bottom surface, is additionally provided with powder feeder unit, powder feeder unit energy in Laser stove Enough to give forming platform powdering, what laser-galvanometer system can move is installed in rack, laser-galvanometer system can respectively with Each laser furnace system face, laser-galvanometer system can emit the laser for melting powder, laser-galvanometer system transmitting Laser be able to through the hyalomere on the upside of laser furnace system inject Laser stove-formation cylinder system formingspace in and going up and down It is focused on platform, control system controls each component work, control in laser-galvanometer system, laser furnace system and formation cylinder system System also controls laser-galvanometer system and formation cylinder system motion.
2. the laser melting unit as described in claim 1 for being suitable for large-scale 3D printing, it is characterized in that: rack is equipped with first Fixed platform (11) and lifting drive (12), what first fixed platform can be gone up and down is positioned in rack, and lifting is driven Dynamic device drives the first fixed platform elevating movement, and moulding cylinder system is installed in the first fixed platform, the formation cylinder system Upper side is equipped with sealing ring (42), and the sealing ring can be fitted closely on laser furnace system downside.
3. the laser melting unit as claimed in claim 2 for being suitable for large-scale 3D printing, it is characterized in that: described first is fixed flat Guide rail (13) and first driving device are installed on platform, formation cylinder system can be installed on the first fixed platform along what guide rail slided On, first driving device drives formation cylinder system to slide along guide rail.
4. the laser melting unit as claimed in claim 3 for being suitable for large-scale 3D printing, it is characterized in that: the first driving dress It sets including leading screw and nut mechanism (14) and motor, the motor power is exported to the screw rod of leading screw and nut mechanism, feed screw nut's machine The nut of structure is fixed with the first fixed platform, the company that screw rod end can be rotated with formation cylinder system axial stop circumferencial direction It connects.
5. the laser melting unit as claimed in claim 3 for being suitable for large-scale 3D printing, it is characterized in that: being additionally provided with the first limit (15) and the second spacer pin (16), first spacer pin and the second spacer pin are sold along formation cylinder system motion direction stationary positioned In on the first fixed platform both ends, the first spacer pin and the second spacer pin are able to backstop formation cylinder system along its direction of motion Two sides wall surface.
6. the as claimed in claim 2 laser melting unit for being suitable for large-scale 3D printing, it is characterized in that: being additionally provided with the in rack Two fixed platforms (17), what can be rotated in the second fixed platform is equipped with rocker shaft (18), and rocker shaft upper end is equipped with and shakes Arm body (19), rotation drive device is additionally provided in the second fixed platform, and rotation drive device drives rocker shaft rotation, swashs Light-galvanometer system is fixedly installed in rocker arm ontology and stretches out on one end on the outside of rocker shaft, and several laser furnace systems are along with rocker arm Arc track centered on shaft is alternatively arranged in the second fixed platform.
7. the laser melting unit as claimed in claim 6 for being suitable for large-scale 3D printing, it is characterized in that: being additionally provided with elevating mechanism (20), what elevating mechanism can longitudinally be gone up and down is installed on rocker shaft, and the tache motorice of rocker arm ontology and elevating mechanism is fixed to be connected It connects.
8. the laser melting unit as claimed in claim 7 for being suitable for large-scale 3D printing, it is characterized in that: being additionally provided with laser positioning Platform (21), the laser positioning platform are fixedly installed on the rocker arm ontology other end, and laser-galvanometer system is fixedly installed in sharp On light-seeking platform, the transparent window (22) worn for laser, laser positioning platform underside energy are formed on laser positioning platform Positioning pin (23) enough are equipped with, are additionally provided with location hole on Laser stove-formation cylinder system uper side surface, the positioning pin be able to plug In positioning hole.
9. the laser melting unit as described in claim 1 for being suitable for large-scale 3D printing, it is characterized in that: the laser furnace system Including bottom plate (36), side wall (37) and top plate (38), the bottom plate and top plate seal be fixed at side wall upper/lower terminal shape respectively At the formingspace of sealing, top plate is equipped with hollow-out parts, and hollow-out parts sealing is embedded with windowpane (39).
10. the laser melting unit as described in claim 1 for being suitable for large-scale 3D printing, it is characterized in that: the formation cylinder system The hoistable platform of system is heating plate body, and what the heating plate body circumferencial direction stop and axial direction can be slided is inserted in moulding cylinder It is interior, it is additionally provided with screw rod (43) and motor (44), the screw rod is spirally connected with moulding cylinder activity, screw rod upper end and heating plate body circumference side To can rotate and axial retention connect, motor driven screw rod rotation.
CN201822232824.8U 2018-12-28 2018-12-28 Laser melting unit suitable for large-scale 3D printing Active CN209532096U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201822232824.8U CN209532096U (en) 2018-12-28 2018-12-28 Laser melting unit suitable for large-scale 3D printing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201822232824.8U CN209532096U (en) 2018-12-28 2018-12-28 Laser melting unit suitable for large-scale 3D printing

Publications (1)

Publication Number Publication Date
CN209532096U true CN209532096U (en) 2019-10-25

Family

ID=68267340

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201822232824.8U Active CN209532096U (en) 2018-12-28 2018-12-28 Laser melting unit suitable for large-scale 3D printing

Country Status (1)

Country Link
CN (1) CN209532096U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113245561A (en) * 2021-06-11 2021-08-13 季华实验室 Movable type building bin for large 3D printing equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113245561A (en) * 2021-06-11 2021-08-13 季华实验室 Movable type building bin for large 3D printing equipment

Similar Documents

Publication Publication Date Title
CN109570506A (en) Laser melting unit suitable for large-scale 3D printing
CN105880894B (en) A kind of welding robot and welding fixture complete set of equipments
CN102060190B (en) Automatic feeding device
CN201120526Y (en) Gantry type numerical control laser beam cutting machine
CN104174836A (en) Truss type manipulator of casting system
CN206567174U (en) A kind of automatic spreading machine
CN202389948U (en) Plate material conveying and loading/unloading system
CN209532096U (en) Laser melting unit suitable for large-scale 3D printing
CN101890566B (en) Automatically controllable fast multi-spot welding device and using method
CN114905052B (en) Laser 3D printing multi-metal material forming device and working method thereof
CN213257100U (en) Powder paving device for 3D printing equipment
CN205184016U (en) Full position welding robot of portable trolley -bus
CN208052117U (en) A kind of PCB whole plates automatic cutting lathe
CN209532095U (en) Laser melting unit suitable for middle-size and small-size 3D printing
CN106270910A (en) A kind of fully automatic circuit board welds cutting robot
CN203245504U (en) Automatic double-shaft multi-point spot welding device
CN209208101U (en) A kind of quadrangle frame bonding machine
CN202357326U (en) Casting mechanical arm
CN105921882A (en) Push-pull type selective laser melting (SLM) device forming cylinder capable of rising and falling
CN109550956A (en) Laser melting unit suitable for middle-size and small-size 3D printing
CN213230451U (en) Heating feeding mechanism
CN104625307B (en) Lead-acid battery pole group welding technology
CN203864010U (en) Fully-automatic rotary type welding machine for dashboard door panel
CN201711653U (en) Automatic control multi-spot quick spot-welding device
CN102689082A (en) Welding machine for energy absorption box subassembly

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant