CN209460204U - Abrasive grain separator and separation system in lubricating oil based on surface acoustic wave - Google Patents

Abrasive grain separator and separation system in lubricating oil based on surface acoustic wave Download PDF

Info

Publication number
CN209460204U
CN209460204U CN201821615635.2U CN201821615635U CN209460204U CN 209460204 U CN209460204 U CN 209460204U CN 201821615635 U CN201821615635 U CN 201821615635U CN 209460204 U CN209460204 U CN 209460204U
Authority
CN
China
Prior art keywords
abrasive grain
lubricating oil
microchannel
acoustic wave
surface acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201821615635.2U
Other languages
Chinese (zh)
Inventor
刘大壮
刘连坤
刘志坚
武森
潘新祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Maritime University
Original Assignee
Dalian Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Maritime University filed Critical Dalian Maritime University
Priority to CN201821615635.2U priority Critical patent/CN209460204U/en
Application granted granted Critical
Publication of CN209460204U publication Critical patent/CN209460204U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The utility model relates to lubricating oil analysis detection technique fields, and in particular to abrasive grain separator and separation system in a kind of lubricating oil based on surface acoustic wave.The advantages that the utility model makes full use of acoustic surface wave energy density height, is easily integrated, it is combined again with the microchannel for processing geometry in particular by soft lithography, the on-line continuous separation for realizing abrasive grain in lubricating oil, precisely detects for abrasive grain and lays a good foundation.This separator and separation system eliminate the structures such as physics strainer, avoid dirty stifled, and the device and separation system integrated level is high, online good separating effect.

Description

Abrasive grain separator and separation system in lubricating oil based on surface acoustic wave
Technical field
The utility model relates to lubricating oil analysis detection technique fields, and in particular to a kind of lubricating oil based on surface acoustic wave Middle abrasive grain separator and separation system.
Background technique
One of the main reason for abrasion is Ship Power Equipment failure, abrasive grain are the primary products of abrasion.The size of abrasive grain Related to the degree of wear, if the grit size of normal wear is generally less than 20 microns, and the grit size of inordinate wear is generally big In 50 microns.Therefore, the dimension information of abrasive grain facilitates the monitoring of mechanical equipment operating status in extraction lubricating oil and failure is examined It is disconnected.And in actual lubricating oil sample, the distribution of the size of abrasive grain is very wide (such as from several microns to several hundred microns), to grit size Accurate judgement brings bigger difficulty.The abrasive grain in lubricating oil is separated and then is distinguished again for this purpose, researching and proposing recently It is detected, to realize the accurate extraction of abrasive grain characteristic information.
Traditional abrasive grain separation method is to be filtered separation to abrasive grain in lubricating oil using the strainer in specific dimensions aperture. The separation method is easy to operate, at low cost.But the strainer in this method easily blocks, and is only capable of carrying out abrasive grain separation according to size. Carrying out separation to abrasive grain using magnetic field is also a kind of common abrasive grain separation method, i.e., flows through region arrangement high gradient in lubricating oil Field region, abrasive grain flows through this region and is deflected by magneticaction in lubricating oil, and magnetic force suffered by different size abrasive grains is different, Amount of deflection is different, different outlets is eventually flowed to, to realize the separation of abrasive grain;The separation method is only able to achieve ferromagnetism abrasive grain Separation, non ferromagnetic debris, such as copper, aluminium, tin abrasive grain cannot be separated.In addition, centrifugal force, gravity, light are pinched etc. and to be also used to It is lubricated the separation of abrasive grain in oil, but is not widely applied because certain limitation is individually present.
Utility model content
In order to solve abrasive grain separation problem in above-mentioned prior art lubricating oil, the utility model proposes a kind of applicabilities Extensively, abrasive grain separator and method, the utility model make full use of in the lubricating oil based on surface acoustic wave that can precisely separate Acoustic surface wave energy density is high, the advantages that being easily integrated, while leading to the micro- of geometry in particular is processed by soft lithography Road combines, and realizes the on-line continuous separation of abrasive grain in lubricating oil, precisely detects and lay a good foundation for abrasive grain.This separator The structures such as physics strainer are eliminated with method, avoid dirty stifled, and the device and method integrated level is high, online separating effect It is good, to realize the accurate extraction of abrasive grain characteristic information.
To achieve the above object, the utility model uses following technical scheme:
Abrasive grain separator in lubricating oil based on surface acoustic wave, comprising:
Piezoelectric substrate processes focus type interdigital electrode and microchannel, the master of the microchannel in piezoelectric substrate Channel is vertical with the central axes of interdigital electrode, and the geometric center of microchannel is overlapped with the focus of interdigital electrode, to guarantee Abrasive grain in lubricating oil is most strong by acoustic radiation force when flowing through the region and different degrees of offset occurs;
Interdigital electrode includes that several pairs of arcs are interdigital, generates under the action of external pumping signal and passes along piezoelectric substrate surface The focus type surface acoustic wave broadcast, focus type surface acoustic wave is along the communication process of piezoelectric substrate surface, and intensity is in interdigital electrode Geometrical focus at it is maximum;
Arrange that microchannel, microchannel include two intake channels, one centered on the geometrical focus of interdigital electrode The quantity of main channel and several exit passageways, exit passageway is determined according to actual separation Demand Design;The geometry of interdigital electrode Focus is located in main channel, and two intake channels and several exit passageways of microchannel are arranged in microchannel main channel Two sides are simultaneously connected to main channel.
Further, the material of the piezoelectric substrate is lithium niobate (128 ° of YX-LiNbO3)。
Further, the microchannel uses the dimethyl silicone polymer (PDMS) with good light permeability to make, Through soft lithography processing in piezoelectric substrate, guarantees microchannel and piezoelectric substrate is firmly combined and No leakage.
Further, the microchannel uses the PDMS with good light permeability to make, by soft lithography plus Work is in piezoelectric substrate, and the microchannel of the PDMS production is in " recessed " type in piezoelectric substrate, i.e., close to interdigital electrode portion Set up separately and set groove structure, with reach reduce PDMS material to the absorption of acoustic energy, make full use of the sound excited on interdigital electrode The purpose of energy.
The separation system formed by abrasive grain separator in the above-mentioned lubricating oil based on surface acoustic wave, including signal occur Device, power amplifier, abrasive grain separator, micro pump and microscope in the lubricating oil based on surface acoustic wave;Signal generator hair Pumping signal input power amplifier out, pumping signal is after power amplifier amplifies and in the lubricating oil based on surface acoustic wave Interdigital electrode on abrasive grain separator is connected;
Micro pump is used to be added to microchannel entrance by lubricating oil to be separated and without abrasive grain lubricating oil;
Microscope is placed in the lubricating oil based on surface acoustic wave at abrasive grain separator, for observing and monitoring based on sound table The separation process of abrasive grain in the lubricating oil of surface wave in abrasive grain separator.
Further, lubricating oil abrasive grain separator is fixed on microscopical objective table, is ensured by object lens observation Separated region in microchannel is in microscopic fields of view and without inclination, can observe the separation process of abrasive grain in real time.
Further, the microscope connects computer by charge coupling device imaging sensor (CCD), convenient for seeing It examines and stores.
Abrasive grain separation method in lubricating oil based on surface acoustic wave, steps are as follows:
(1) microchannel of separation system is assembled
By two imports of the microchannel of abrasive grain separator in the lubricating oil based on surface acoustic wave respectively with equipped with to Isolated lubricating oil sample is connected with the micro pump of the straight lubrication oil sample without abrasive grain, and the outlet of microchannel is separately connected mill Grain collection vessel and a waste lubrication oil collection vessel connection, one of waste lubrication oil collection vessel are connected to close to fork Refer to the microchannel outlet of electrode side;
(2) interdigital electrode of separation system is assembled
The output signal of signal generator is separated into dress with abrasive grain in the lubricating oil based on surface acoustic wave through power amplifier The two poles of the earth for the interdigital electrode set connect, adjustment signal generator and power amplifier, the pumping signal for issuing signal generator Frequency f meet f=v/ λ, wherein v indicate surface acoustic wave piezoelectric substrate surface spread speed, λ indicate interdigital electrode between Distance;
(3) abrasive grain is separated
Open micro pump, lubricating oil is injected in two imports into microchannel, lubricating oil sample that micro pump pushes and Straight lubrication oil enters in the lubricating oil based on surface acoustic wave in the main channel of abrasive grain separator, meanwhile, focus type interdigital electrode The focus type surface acoustic wave propagated along piezoelectric substrate surface is generated under the action of pumping signal, lubricating oil flows through surface acoustic wave work When with range, abrasive grain by acoustic radiation force act on and shift, the size of offset distance and abrasive grain is closely related, offset distance with The volume of abrasive grain is proportional, therefore the distance of different size abrasive grain offsets is different, finally flows to the correspondence position of microchannel The outlet set is into different abrasive grain collection vessels, and remaining lubricating oil without abrasive grain close interdigital electrode from microchannel Side outlet outflow enter waste lubrication oil collection vessel, to realize the separation of abrasive grain in lubricating oil.
Further, abrasive grain separator in the lubricating oil based on surface acoustic wave is fixed on microscopical objective table, Ensure that the separated region in microchannel is in microscopic fields of view and without inclination, Neng Goushi by the observation of microscopical object lens When observe abrasive grain separation process.
Further, the microscope connects computer by charge coupling device imaging sensor (CCD), convenient for seeing It examines and stores.
The utility model compared with prior art, has the advantages that
The utility model makes full use of that acoustic surface wave energy density is high, the advantages that being easily integrated, but with pass through soft lithographic skill The microchannel of art processing geometry in particular combines, and realizes the on-line continuous separation of abrasive grain in lubricating oil, is abrasive grain essence Quasi- detection is laid a good foundation.This separation device and method eliminate the structures such as physics strainer, avoid it is dirty stifled, and the device and Method integration degree height, online good separating effect.
Detailed description of the invention
In order to illustrate the technical solutions in the embodiments of the present application or in the prior art more clearly, to embodiment or will show below There is attached drawing needed in technical description to be briefly described, it should be apparent that, the accompanying drawings in the following description is only this The some embodiments recorded in application, for those of ordinary skill in the art, without creative efforts, It is also possible to obtain other drawings based on these drawings.
Fig. 1 is the structural representation of abrasive grain separator in lubricating oil in the utility model embodiment 1 based on surface acoustic wave Figure;
Fig. 2 is the structural representation of abrasive grain separation system in lubricating oil in the utility model embodiment 1 based on surface acoustic wave Figure;
In figure: 1, substrate;2 interdigital electrodes;3PDMS;4 outlets;5 main channels;The 6 surface acoustic wave zones of action;7 interdigital electrodes Focus;8 imports;9, micro pump;10, signal generator;11, power amplifier;12, microscope;13, abrasive grain collection vessel;14, Waste lubrication oil collection vessel.
Specific embodiment
It should be noted that in the absence of conflict, the feature in the embodiments of the present invention and embodiment can To be combined with each other.The utility model will be described in detail below with reference to the accompanying drawings and embodiments.
It is practical new below in conjunction with this to keep the objectives, technical solutions, and advantages of the embodiments of the present invention clearer Attached drawing in type embodiment, the technical scheme in the utility model embodiment is clearly and completely described, it is clear that is retouched The embodiment stated is only the utility model a part of the embodiment, instead of all the embodiments.Below at least one example The description only actually of property embodiment be it is illustrative, never as to the utility model and its application or any limit used System.Based on the embodiments of the present invention, those of ordinary skill in the art are obtained without making creative work The every other embodiment obtained, fall within the protection scope of the utility model.
It should be noted that term used herein above is merely to describe specific embodiment, and be not intended to restricted root According to the illustrative embodiments of the utility model.As used herein, unless the context clearly indicates otherwise, otherwise singular Form be also intended to include plural form, additionally, it should be understood that, when in the present specification use term "comprising" and/or When " comprising ", existing characteristics, step, operation, device, component and/or their combination are indicated.
Unless specifically stated otherwise, positioned opposite, the digital table of the component and step that otherwise illustrate in these embodiments Up to the unlimited the scope of the utility model processed of formula and numerical value.Simultaneously, it should be clear that for ease of description, each shown in attached drawing The size of a part is not to draw according to actual proportionate relationship.Skill known for person of ordinary skill in the relevant Art, method and apparatus may be not discussed in detail, but in the appropriate case, and the technology, method and apparatus should be considered as awarding Weigh part of specification.In shown here and discussion all examples, example should be construed as merely by appointing to occurrence Property, not as limitation.Therefore, the other examples of exemplary embodiment can have different values.It should also be noted that similar Label and letter similar terms are indicated in following attached drawing, therefore, once be defined in a certain Xiang Yi attached drawing, then with In attached drawing afterwards do not need that it is further discussed.
In the description of the present invention, it should be understood that the noun of locality such as " front, rear, top, and bottom, left and right ", " laterally, Vertically, vertically, it is horizontal " and " pushing up, bottom " etc. indicated by orientation or positional relationship be normally based on orientation or position shown in the drawings Relationship is set, is merely for convenience of describing the present invention and simplifying the description, in the absence of explanation to the contrary, these nouns of locality Do not indicate that and imply that signified device or element must have a particular orientation or be constructed and operated in a specific orientation, because This should not be understood as the limitation to scope of protection of the utility model: the noun of locality " inside and outside " refers to the wheel relative to each component itself Wide is inside and outside.
For ease of description, spatially relative term can be used herein, as " ... on ", " ... top ", " ... upper surface ", " above " etc., for describing such as a device shown in the figure or feature and other devices or spy The spatial relation of sign.It should be understood that spatially relative term is intended to comprising the orientation in addition to device described in figure Except different direction in use or operation.For example, being described as if the device in attached drawing is squeezed " in other devices It will be positioned as " under other devices or construction after part or construction top " or the device of " on other devices or construction " Side " or " under its device or construction ".Thus, exemplary term " ... top " may include " ... top " and " in ... lower section " two kinds of orientation.The device can also be positioned with other different modes and (is rotated by 90 ° or in other orientation), and And respective explanations are made to the opposite description in space used herein above.
In addition, it should be noted that, limiting components using the words such as " first ", " second ", it is only for be convenient for Corresponding components are distinguished, do not have Stated otherwise such as, there is no particular meanings for above-mentioned word, therefore should not be understood as to this The limitation of utility model protection range.
Embodiment 1
As shown in Figure 1, a kind of lubricating oil abrasive grain separator based on surface acoustic wave, including piezoelectric substrate 1, piezoelectric substrate 1 material is lithium niobate (128 ° of YX-LiNbO3);Focus type interdigital electrode 2 and microchannel, institute are processed in piezoelectric substrate 1 The main channel 5 for the microchannel stated is vertical with the central axes of interdigital electrode 2, and the geometric center and interdigital electrode of microchannel 2 focus is overlapped, to guarantee that the abrasive grain in lubricating oil is most occurred in various degree by force when flowing through the region by acoustic radiation force Offset;
Interdigital electrode 2 is the double-layer structure of sputtering, bottom chromium (5 nanometers) and upper layer platinum (80 nanometers), has both reduced fork Refer to the impedance of electrode, and improves the adhesion property of interdigital electrode 2 Yu piezoelectric substrate 1.Interdigital electrode 2 includes 50 pairs of arcs It is interdigital, finger width be 20 microns, adjacent finger spacing is also 20 microns, intersect length be 7 millimeters, external pumping signal just Under the driving of string voltage, the surface acoustic wave that the frequency propagated along 1 surface of piezoelectric substrate is 49.5MHz, focus type surface acoustic wave are generated Along 1 surface communication process of piezoelectric substrate, intensity is maximum at the geometrical focus of focus type interdigital electrode 1;
Arrange that microchannel, microchannel include two 8 channels of import, one centered on the geometrical focus of interdigital electrode 2 The geometrical focus of a main channel 5 and four 4 exit passageways, interdigital electrode 2 is located in main channel 5, two imports of microchannel 8 channels and four outlets, 4 channels are arranged in the two sides of main channel 5 and are connected to main channel 5;Microchannel is lubricating oil to be separated Sample flow channels provide space for the different degrees of offset of abrasive grain and by the abrasive grain after separation and no longer comprising the profit of abrasive grain Lubricating oil is sent to respective outlet 8.
Microchannel uses the PDMS 3 with good light permeability to make, convenient for carrying out optical monitoring and note to separation process Record guarantees microchannel and piezoelectric substrate is firmly combined and No leakage through soft lithography processing in piezoelectric substrate.PDMS 3 cross section is that irregular rectangle is " recessed " type, and the height of PDMS 3 is 100 microns, and the width value of different parts is different, i.e., Close to interdigital electrode part, groove structure is set, with reach reduce by 3 material of PDMS to the absorption of acoustic energy, make full use of it is interdigital The purpose of the acoustic energy excited on formula electrode.Lubricating oil sample to be separated and straight lubrication oil sample flow into channel width in micro channel Degree is 200 microns, and main channel is 500 microns, and each exit passageway is 100 microns.
As shown in Fig. 2, the separation system formed by abrasive grain separator in the above-mentioned lubricating oil based on surface acoustic wave, including Signal generator 10, power amplifier 11, abrasive grain separator, micro pump 9 and microscope in the lubricating oil based on surface acoustic wave, Microscope is by the connection of charge coupling device imaging sensor (CCD) 12 computer, convenient for observation and storage;Signal generator 10 The pumping signal input power amplifier 11 of sending, pumping signal through power amplifier 11 amplification after with the profit based on surface acoustic wave Interdigital electrode 2 in lubricating oil on abrasive grain separator is connected;
Micro pump 9 is used to be added to microchannel import 8 by lubricating oil to be separated and without abrasive grain lubricating oil;
Microscope is placed in the lubricating oil based on surface acoustic wave at abrasive grain separator, for observing and monitoring based on sound table The separation process of abrasive grain in the lubricating oil of surface wave in abrasive grain separator.
Lubricating oil abrasive grain separator is fixed on microscopical objective table, is ensured by the observation of microscopical object lens micro- Separated region in circulation road is in 1 visual field of microscope and without inclination, can observe the separation process of abrasive grain in real time;It is micro- Mirror is by the connection of CCD 12 computer, convenient for observation and storage.
Abrasive grain separation method in lubricating oil based on surface acoustic wave, steps are as follows:
(1) microchannel of separation system is assembled
As shown in Fig. 2, two imports 8 of the microchannel of abrasive grain separator in the lubricating oil based on surface acoustic wave are divided It is not connect with the micro pump 9 equipped with lubricating oil sample to be separated and the straight lubrication oil sample without abrasive grain, microchannel goes out Mouth 4 is separately connected abrasive grain collection vessel 13 and a waste lubrication oil collection vessel 14 connects, and one of waste lubrication oil is received Collection container 14 is connected to close to the microchannel outlet 4 of 2 side of interdigital electrode;
(2) interdigital electrode of separation system is assembled
As shown in Fig. 2, by the output signal of signal generator 10 through power amplifier 11 and based on the lubrication of surface acoustic wave The two poles of the earth connection of the interdigital electrode 2 of abrasive grain separator, adjustment signal generator 10 and power amplifier 11, send out signal in oil The frequency f for the pumping signal that raw device 10 issues meets f=v/ λ, and wherein v indicates surface acoustic wave in the propagation on 1 surface of piezoelectric substrate Speed, λ indicate the distance between interdigital electrode 2;Adjustment signal generator generates the sine wave of 49.5MHz, regulation power amplifier Make the amplitude 10Vpp of output signal;
(3) microscope of separation system is assembled
Abrasive grain separator in lubricating oil based on surface acoustic wave is fixed on microscopical objective table, microscope is passed through Be in microscopic fields of view interior and without inclination for the object lens observation separated region that ensures in microchannel, abrasive grain can be observed in real time Separation process;Microscope is by the connection of charge coupling device imaging sensor (CCD) 12 computer, convenient for observation and storage.
(4) abrasive grain is separated
Micro pump 9 is opened, lubricating oil, the lubricating oil sample that micro pump 9 pushes are injected in two imports 8 into microchannel Enter in the lubricating oil based on surface acoustic wave in the main channel 5 of abrasive grain separator with straight lubrication oil, meanwhile, interdigital electrode 2 exists The focus type surface acoustic wave propagated along piezoelectric substrate surface is generated under the action of pumping signal, the surface acoustic wave propagated along substrate and When microchannel meets, because of the viscosity effect of lubricating oil liquid in microchannel, part surface acoustic wave can be with the orientation at Rayleigh angle It radiates into microchannel and continues to propagate in the form of bulk wave in lubricating oil in microchannel;Lubricating oil to be separated flows through interdigital When 2 focus areas of electrode, that is, lubricating oil flows through surface acoustic wave sphere of action, abrasive grain therein and the bulk wave propagated in lubricating oil It interacts, abrasive grain is acted on by acoustic radiation force and the side into microchannel far from interdigital electrode deviates, offset distance Closely related with the size of abrasive grain, the volume of offset distance and abrasive grain is proportional, thus the offset of different size abrasive grain away from From difference, the outlet 4 for finally flowing to the corresponding position of microchannel enters different abrasive grain collection vessels 13, and remaining is free of mill The lubricating oil of grain enters waste lubrication oil collection vessel 14 close to a side outlet 4 outflow of interdigital electrode from microchannel, from And realize the separation of abrasive grain in lubricating oil.
Step (3) can be omitted.
Finally, it should be noted that the above various embodiments is only to illustrate the technical solution of the utility model, rather than it is limited System;Although the present invention has been described in detail with reference to the aforementioned embodiments, those skilled in the art should Understand: it is still possible to modify the technical solutions described in the foregoing embodiments, or to some or all of Technical characteristic is equivalently replaced;And these are modified or replaceed, it does not separate the essence of the corresponding technical solution, and this is practical new The range of each embodiment technical solution of type.

Claims (7)

1. abrasive grain separator in the lubricating oil based on surface acoustic wave characterized by comprising
Piezoelectric substrate processes focus type interdigital electrode and microchannel, the main channel of the microchannel in piezoelectric substrate It is vertical with the central axes of interdigital electrode, and the geometric center of microchannel is overlapped with the focus of interdigital electrode, to guarantee to lubricate Abrasive grain in oil is most strong by acoustic radiation force when flowing through the region and different degrees of offset occurs;
Interdigital electrode includes that several pairs of arcs are interdigital, and generation is propagated along piezoelectric substrate surface under the action of external pumping signal Focus type surface acoustic wave, focus type surface acoustic wave is along the communication process of piezoelectric substrate surface, and intensity is in the several of interdigital electrode What focal point is maximum;
Arrange that microchannel, microchannel are logical comprising two intake channels, a master centered on the geometrical focus of interdigital electrode The quantity of road and several exit passageways, exit passageway is determined according to actual separation Demand Design;The geometrical focus of interdigital electrode In main channel, two intake channels and several exit passageways of microchannel are arranged in the two sides of microchannel main channel And it is connected to main channel.
2. abrasive grain separator in the lubricating oil according to claim 1 based on surface acoustic wave, which is characterized in that described The material of piezoelectric substrate is lithium niobate, i.e. 128 ° of YX-LiNbO3
3. abrasive grain separator in the lubricating oil according to claim 1 based on surface acoustic wave, which is characterized in that described Microchannel, which uses, has good light permeability PDMS production, through soft lithography processing in piezoelectric substrate, guarantees that miniflow is logical Road and piezoelectric substrate firm connection and No leakage.
4. abrasive grain separator in the lubricating oil according to claim 1 based on surface acoustic wave, which is characterized in that described Microchannel uses the PDMS with good light permeability to make, described through soft lithography processing in piezoelectric substrate The microchannel of PDMS production is in " recessed " type in piezoelectric substrate, i.e., groove structure is arranged close to interdigital electrode part.
5. a kind of separation system formed by abrasive grain separator in the lubricating oil described in claim 1 based on surface acoustic wave, It is characterised in that it includes abrasive grain separator in signal generator, power amplifier, the lubricating oil based on surface acoustic wave, micro Pump and microscope;The pumping signal input power amplifier that signal generator issues, pumping signal is after power amplifier amplifies It is connected with the interdigital electrode in the lubricating oil based on surface acoustic wave on abrasive grain separator;
Micro pump is used to be added to microchannel entrance by lubricating oil to be separated and without abrasive grain lubricating oil;
Microscope is placed in the lubricating oil based on surface acoustic wave at abrasive grain separator, for observing and monitoring based on surface acoustic wave Lubricating oil in abrasive grain in abrasive grain separator separation process.
6. separation system according to claim 5, which is characterized in that lubricating oil abrasive grain separator is fixed on microscope Objective table on, by object lens observation ensure that the separated region in microchannel is in microscopic fields of view and without inclination, energy The separation process of enough abrasive grains of observation in real time.
7. separation system according to claim 5, which is characterized in that the microscope is by CCD connection computer, just In observation and storage.
CN201821615635.2U 2018-09-30 2018-09-30 Abrasive grain separator and separation system in lubricating oil based on surface acoustic wave Active CN209460204U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201821615635.2U CN209460204U (en) 2018-09-30 2018-09-30 Abrasive grain separator and separation system in lubricating oil based on surface acoustic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201821615635.2U CN209460204U (en) 2018-09-30 2018-09-30 Abrasive grain separator and separation system in lubricating oil based on surface acoustic wave

Publications (1)

Publication Number Publication Date
CN209460204U true CN209460204U (en) 2019-10-01

Family

ID=68035161

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201821615635.2U Active CN209460204U (en) 2018-09-30 2018-09-30 Abrasive grain separator and separation system in lubricating oil based on surface acoustic wave

Country Status (1)

Country Link
CN (1) CN209460204U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109212027A (en) * 2018-09-30 2019-01-15 大连海事大学 Abrasive grain separator and method in lubricating oil based on surface acoustic wave
CN113405955A (en) * 2021-06-15 2021-09-17 中国航发沈阳发动机研究所 Oil abrasive particle monitoring device and monitoring method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109212027A (en) * 2018-09-30 2019-01-15 大连海事大学 Abrasive grain separator and method in lubricating oil based on surface acoustic wave
CN113405955A (en) * 2021-06-15 2021-09-17 中国航发沈阳发动机研究所 Oil abrasive particle monitoring device and monitoring method
CN113405955B (en) * 2021-06-15 2024-02-02 中国航发沈阳发动机研究所 Oil abrasive particle monitoring device and monitoring method

Similar Documents

Publication Publication Date Title
CN109212027A (en) Abrasive grain separator and method in lubricating oil based on surface acoustic wave
Nawaz et al. Intelligent image-based deformation-assisted cell sorting with molecular specificity
CN209460204U (en) Abrasive grain separator and separation system in lubricating oil based on surface acoustic wave
Su et al. Microscope-based label-free microfluidic cytometry
Lincoln et al. Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications
Das et al. Dielectrophoretic segregation of different human cell types on microscope slides
EP2879778B1 (en) High efficiency separation and sorting of particles and cells
Manneberg et al. Spatial confinement of ultrasonic force fields in microfluidic channels
Lin et al. Vertical focusing device utilizing dielectrophoretic force and its application on microflow cytometer
CN101393108B (en) Oil liquid abrasive grain on-line monitoring method and system
US20100193407A1 (en) Device and Method For Particle Manipulation in Fluid
Barat et al. Simultaneous high speed optical and impedance analysis of single particles with a microfluidic cytometer
WO2010113994A1 (en) Device for concentrating and separating cells
US20170299492A1 (en) Method, device and system for hydrodynamic flow focusing
CN101923045B (en) Micro-fluidic chip observing platform and dual-visual field micro-fluidic chip observing system
Vykoukal et al. Dielectric characterization of complete mononuclear and polymorphonuclear blood cell subpopulations for label-free discrimination
Rosenauer et al. Characterization of a microflow cytometer with an integrated three-dimensional optofluidic lens system
WO2012000102A1 (en) Apparatus and method for microscope-based label-free microflutdic cytometry
Reale et al. Electrical measurement of cross-sectional position of particles flowing through a microchannel
Bayram et al. Integration of glass micropipettes with a 3D printed aligner for microfluidic flow cytometer
Dannhauser et al. Biophysical investigation of living monocytes in flow by collaborative coherent imaging techniques
Wu et al. Three‐dimensional lab‐on‐a‐foil device for dielectrophoretic separation of cancer cells
Chung et al. Rapid quantification of bio-particles based on image visualisation in a dielectrophoretic microfluidic chip
Zhou et al. Enhancing signals of microfluidic impedance cytometry through optimization of microelectrode array
Hitt et al. Confocal imaging of flows in artificial venular bifurcations

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant