CN209413025U - Architectural vibration-insulation support flameproof protection device - Google Patents

Architectural vibration-insulation support flameproof protection device Download PDF

Info

Publication number
CN209413025U
CN209413025U CN201822139039.8U CN201822139039U CN209413025U CN 209413025 U CN209413025 U CN 209413025U CN 201822139039 U CN201822139039 U CN 201822139039U CN 209413025 U CN209413025 U CN 209413025U
Authority
CN
China
Prior art keywords
fire
proof plate
plate
pier stud
protection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201822139039.8U
Other languages
Chinese (zh)
Inventor
杨俊�
吴志峰
陈敏丰
赵文华
吴茂楠
王亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Haider Engineering Materials Co Ltd
Original Assignee
Suzhou Haider Engineering Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Haider Engineering Materials Co Ltd filed Critical Suzhou Haider Engineering Materials Co Ltd
Priority to CN201822139039.8U priority Critical patent/CN209413025U/en
Application granted granted Critical
Publication of CN209413025U publication Critical patent/CN209413025U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Building Environments (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

The utility model provides a kind of architectural vibration-insulation support flameproof protection device, is related to construction safety technical field, to solve the problems, such as that existing shock-insulation building is designed there are fire safety.The architectural vibration-insulation support flameproof protection device includes upper pier stud, lower pier stud, rubber earthquake isolation support, fire-proof plate, flame resistant protective layer and fire prevention clad; fire-proof plate includes upper fire-proof plate, lower fire-proof plate and elastic fireproof sealant; upper fire-proof plate is connected to upper pier stud by upper fixing bolt; lower fire-proof plate is connected to lower pier stud by lower fixing bolt; gap is formed between upper fire-proof plate and lower fire-proof plate, elastic fireproof sealant is full of gap;Flame resistant protective layer and fire prevention clad are successively wrapped in the ontology of rubber earthquake isolation support, form fire protection space between the outer peripheral surface for clad of preventing fires and the inner peripheral surface of fire-proof plate.Architectural vibration-insulation support flameproof protection device provided by the utility model can provide effective flameproof protection for shock-insulation building.

Description

Architectural vibration-insulation support flameproof protection device
Technical field
The utility model relates to construction safety technical field more particularly to a kind of architectural vibration-insulation support flameproof protection devices.
Background technique
Architectural vibration-insulation technology be by setting Seismic Isolation of Isolation Layer come extend the building structure period and give structure it is biggish damping come Reduce horizontal earthquake energy to superstructure transmit, reduces the acceleration response of superstructure, so guarantee superstructure and Internal staff, equipment safety.
Shock isolating pedestal has both the multiple function of vertical Force transmission parts and horizontal seismic isolation component in seismic isolation structure system, is Mostly important component in shock-insulation building.Currently, rubber earthquake isolation support is shock isolating pedestal type the most commonly used in shock-insulation building, It is bonded together between rubber and steel plate by hot vulcanization process, rubber earthquake isolation support has natural fire prevention disadvantage.Therefore, it is Guarantee that the bearing safety of building structure, the architectural vibration-insulation support in fire compartment need to consider flameproof protection.
Utility model content
The purpose of this utility model is to provide a kind of architectural vibration-insulation support flameproof protection devices, are built with solving existing shock insulation The fire safety problem built.
Architectural vibration-insulation support flameproof protection device provided by the utility model, including upper pier stud, lower pier stud, both be mounted on Between rubber earthquake isolation support, and around the rubber earthquake isolation support setting fire-proof plate, wherein the fire-proof plate includes upper Fire-proof plate, lower fire-proof plate and elastic fireproof sealant, the upper fire-proof plate are connected to the upper pier stud, institute by upper fixing bolt It states lower fire-proof plate and the lower pier stud is connected to by lower fixing bolt, between being formed between the upper fire-proof plate and the lower fire-proof plate Gap, the elastic fireproof sealant are full of the gap.
The architectural vibration-insulation support flameproof protection device further includes flame resistant protective layer and fire prevention clad, the fire-resisting protection Layer and the fire prevention clad are successively wrapped in the ontology of the rubber earthquake isolation support, and the outer peripheral surface of the fire prevention clad with Fire protection space is formed between the inner peripheral surface of the fire-proof plate.
Further, the upper fire-proof plate is embedded at the upper pier stud, and the lower fire-proof plate is embedded at the lower pier stud.
Further, the rubber earthquake isolation support further includes upper junction plate and lower connecting plate, one end vulcanization of the ontology It is adhered to the upper junction plate, the other end bonding by Vulcanization of the ontology is in the lower connecting plate.
The upper junction plate is connected to the upper pier stud, and the side wall of the upper junction plate offsets with the upper fire-proof plate; The lower connecting plate is connected to the lower pier stud, and the side wall of the lower connecting plate offsets with the lower fire-proof plate.
It further, further include the upper positioning plate being arranged between the upper junction plate and the upper pier stud.
It further, further include for the upper junction plate to be connected to the upper connection bolt of the upper pier stud and is embedded in The upper embedded sleeve barrel of the upper pier stud, the upper embedded sleeve barrel match with the upper connection bolt;The upper connection bolt according to It is secondary to pass through the upper junction plate and the upper positioning plate, and be screwed in the upper embedded sleeve barrel.
It further, further include the lower positioning plate being arranged between the lower connecting plate and the lower pier stud.
It further, further include for the lower connecting plate to be connected to the lower connection bolt of the lower pier stud and is embedded in The lower embedded sleeve barrel of the lower pier stud, the lower embedded sleeve barrel match with the lower connection bolt;The lower connection bolt according to It is secondary to pass through the lower connecting plate and the lower positioning plate, and be screwed in the lower embedded sleeve barrel.
It further, further include the fire resistant coating coated in the upper junction plate surface and the lower connecting plate surface.
Further, the material of the fire prevention clad is alumina silicate fibre.
Further, the material of the upper fire-proof plate is alumina silicate fibre, calcium silicate board, glass fibre, Paper-faced gyp, prevents One of fiery rock wool and ceramic fibre;The material of the lower fire-proof plate is alumina silicate fibre, calcium silicate board, glass fibre, paper Face gypsum, fire prevention one of rock wool and ceramic fibre.
The utility model architectural vibration-insulation support flameproof protection device has the benefit that:
By the way that upper pier stud, lower pier stud, rubber earthquake isolation support, fire-proof plate, flame resistant protective layer and fire prevention clad is arranged, In, rubber earthquake isolation support is mounted between pier stud and lower pier stud;Fire-proof plate is arranged around rubber earthquake isolation support, including by upper Fixing bolt is connected to the upper fire-proof plate of pier stud, the lower fire-proof plate of lower pier stud is connected to by lower fixing bolt and setting exists Gap is full of by the elastic fireproof sealant of gap location, the elastic fireproof sealant between upper fire-proof plate and lower fire-proof plate;It is fire-retardant Protective layer and fire prevention clad are successively wrapped in the ontology of rubber earthquake isolation support, and the outer peripheral surface for clad of preventing fires and fire-proof plate Fire protection space is formed between inner peripheral surface.
When the architectural vibration-insulation support flameproof protection device is used for architectural vibration-insulation, after meeting with fire behavior, firstly, outermost by being located at Layer fire-proof plate the intensity of a fire is stopped, in the process, the transmission path of heat at upper fire-proof plate are as follows: from upper fixing bolt to Under be transferred to fire-proof plate, and then transmitted in horizontal direction to fire protection space;Accordingly, at lower fire-proof plate heat transmission path Are as follows: it is passed up to lower fire-proof plate from lower fixing bolt, and then is transmitted in horizontal direction to fire protection space;When heat is from fire protection space When further inwardly transmitting, fire prevention clad will stop heat, also, with the further transmitting of heat, fire-retardant guarantor Sheath carries out final barrier effect to rubber earthquake isolation support, prevents the sprawling of heat and the intensity of a fire to rubber earthquake isolation support.
When building structure shakes, the elastic fireproof sealant between upper fire-proof plate and lower fire-proof plate will make Fire-proof plate and lower fire-proof plate generate relative motion, reduce because of the situation that fire-proof plate damages caused by shear-deformable, realize To the dynamic protection of rubber earthquake isolation support.
The architectural vibration-insulation support flameproof protection device passes sequentially through fire-proof plate, fire protection space, fire prevention clad and fire-retardant guarantor Sheath realizes the flameproof protection to rubber earthquake isolation support, fire source is effectively separated with rubber earthquake isolation support, thus fine ground resistance The continuation for having stopped heat and the intensity of a fire is inwardly spread, and is reduced shock-insulation building existing security risk after fire generation, is reduced Economic loss.In addition, L shape from upper fixing bolt (lower fixing bolt) through upper fire-proof plate (lower fire-proof plate) to fire protection space Heat conduction path avoids heat source and contacts with the direct of rubber earthquake isolation support, effectively extends heat conduction path, and then delay Conduction of the heat to rubber earthquake isolation support has won the time for rescue.
Detailed description of the invention
It, below will be right in order to illustrate more clearly of specific embodiment of the present invention or technical solution in the prior art Specific embodiment or attached drawing needed to be used in the description of the prior art are briefly described, it should be apparent that, it is described below In attached drawing be that some embodiments of the utility model are not paying creativeness for those of ordinary skill in the art Under the premise of labour, it is also possible to obtain other drawings based on these drawings.
Fig. 1 is the Longitudinal cross section schematic of architectural vibration-insulation support flameproof protection device provided by the embodiment of the utility model;
Fig. 2 is the A-A cross-sectional view in Fig. 1;
Fig. 3 is another A-A cross-sectional view in Fig. 1;
Fig. 4 is cross when architectural vibration-insulation support flameproof protection device provided by the embodiment of the utility model carries out Fire Test Schematic cross-section;
Fig. 5 is indulging when architectural vibration-insulation support flameproof protection device provided by the embodiment of the utility model carries out Fire Test Schematic cross-section;
When Fig. 6 is that architectural vibration-insulation support flameproof protection device provided by the embodiment of the utility model carries out Fire Test, position Each thermocouple arrangement schematic diagram in upper layer;
When Fig. 7 is that architectural vibration-insulation support flameproof protection device provided by the embodiment of the utility model carries out Fire Test, position In each thermocouple arrangement schematic diagram of lower layer;
Fig. 8 is the furnace interior for testing architectural vibration-insulation support flameproof protection device provided by the embodiment of the utility model Test temperature rise curve;
When Fig. 9 is that architectural vibration-insulation support flameproof protection device provided by the embodiment of the utility model carries out Fire Test, respectively Temperature rise curve at temperature monitoring point.
Appended drawing reference:
The upper pier stud of 100-;Pier stud under 200-;300- rubber earthquake isolation support;400- flame resistant protective layer;500- fire prevention clad; 800- fire-proof plate;
The upper embedded sleeve barrel of 110-;
Embedded sleeve barrel under 210-;
310- upper junction plate;320- rubber layer;330- steel plate layer;340- lower connecting plate;
The upper positioning plate of 610-;Positioning plate under 620-;
Bolt is connected on 710-;Bolt is connected under 720-;
The upper fire-proof plate of 810-;Fire-proof plate under 820-;830- elastic fireproof sealant;
The upper fixing bolt of 910-;Fixing bolt under 920-;
The first thermocouple of 1-;The second thermocouple of 2-;3- third thermocouple;The 4th thermocouple of 4-;The 5th thermocouple of 5-;6- Six thermocouples;The 7th thermocouple of 7-;The 8th thermocouple of 8-;
Temperature rise curve in furnace under a- theoretical case;
Temperature rise curve in furnace under b- actual conditions.
Specific embodiment
It is practical new to this below in conjunction with attached drawing to keep the purpose of this utility model, technical solution and advantage clearer The technical solution of type carries out clear, complete description.Obviously, described embodiment is only that a part of the utility model is implemented Example, instead of all the embodiments.Based on the embodiments of the present invention, those of ordinary skill in the art are not making wound Every other embodiment obtained under the premise of the property made labour, fall within the protection scope of the utility model.
In the description of the present invention, it should be noted that term " on ", "lower", "inner", "outside", "horizontal" etc. refer to The orientation or positional relationship shown is to be based on the orientation or positional relationship shown in the drawings, it is only for convenient for description, this is practical new Type and simplified description, rather than the device or element of indication or suggestion meaning must have a particular orientation, with specific orientation Construction and operation, therefore should not be understood as limiting the present invention.In addition, term " first ", " second " are only used for describing Purpose is not understood to indicate or imply relative importance.
In the description of the present invention, it should be noted that unless otherwise clearly defined and limited, term is " even Connect ", " installation " shall be understood in a broad sense, for example, it may be being fixedly connected, may be a detachable connection, or be integrally connected;It can To be to be connected directly, the connection inside two elements can also be can be indirectly connected through an intermediary.For this field For those of ordinary skill, the concrete meaning of above-mentioned term in the present invention can be understood with concrete condition.
Fig. 1 is the Longitudinal cross section schematic of architectural vibration-insulation support flameproof protection device provided in this embodiment.As shown in Figure 1, It present embodiments provides a kind of architectural vibration-insulation support flameproof protection device, including upper pier stud 100, lower pier stud 200, both is mounted on Between rubber earthquake isolation support 300, and around rubber earthquake isolation support 300 be arranged fire-proof plate 800.Specifically, fire-proof plate 800 Including upper fire-proof plate 810, lower fire-proof plate 820 and elastic fireproof sealant 830, wherein upper fire-proof plate 810 passes through upper fixing bolt 910 are connected to pier stud 100, and lower fire-proof plate 820 is connected to lower pier stud 200 by lower fixing bolt 920, upper fire-proof plate 810 with Gap is formed between lower fire-proof plate 820, elastic fireproof sealant 830 is full of gap.
Please continue to refer to Fig. 1, which further includes flame resistant protective layer 400 and fire prevention cladding Layer 500, specifically, flame resistant protective layer 400 and fire prevention clad 500 are successively wrapped in the ontology of rubber earthquake isolation support 300, and prevent Fire protection space is formed between the outer peripheral surface of fiery clad 500 and the inner peripheral surface of fire-proof plate 800.
When the architectural vibration-insulation support flameproof protection device is used for architectural vibration-insulation, after meeting with fire behavior, firstly, outermost by being located at The fire-proof plate 800 of layer stops the intensity of a fire, in the process, the transmission path of heat at upper fire-proof plate 810 are as follows: from upper fixation Bolt 910 is passed down to fire-proof plate 810, and then transmits in horizontal direction to fire protection space;Accordingly, at lower fire-proof plate 820 The transmission path of heat are as follows: be passed up to lower fire-proof plate 820 from lower fixing bolt 920, and then to fire protection space in horizontal direction Transmitting;When heat is further inwardly transmitted from fire protection space, fire prevention clad 500 will stop heat, also, with The further transmitting of heat, flame resistant protective layer 400 carry out final barrier effect to rubber earthquake isolation support 300, prevent heat and Sprawling of the intensity of a fire to rubber earthquake isolation support 300.
Elastic fireproof sealant when building structure shakes, between upper fire-proof plate 810 and lower fire-proof plate 820 830 will make fire-proof plate 810 and lower fire-proof plate 820 generate relative motion, reduce because of fire-proof plate 800 caused by shear-deformable The situation of damage realizes the dynamic protection to rubber earthquake isolation support 300.
The architectural vibration-insulation support flameproof protection device passes sequentially through fire-proof plate 800, fire protection space, fire prevention 500 and of clad Flame resistant protective layer 400 realizes the flameproof protection to rubber earthquake isolation support 300, and fire source and rubber earthquake isolation support 300 are effectively divided Every it is existing after fire generation to reduce shock-insulation building so that the continuation of heat and the intensity of a fire be prevented inwardly to spread well Security risk reduces economic loss.In addition, (lower anti-through upper fire-proof plate 810 from upper fixing bolt 910 (lower fixing bolt 920) Fiery plate 820) to fire protection space L shape heat conduction path, avoid directly contacting for heat source and rubber earthquake isolation support 300, Heat conduction path is effectively extended, and then has delayed heat to the conduction of rubber earthquake isolation support 300, when having been won for rescue Between.
Fig. 2 is the A-A cross-sectional view in Fig. 1.Please continue to refer to Fig. 1, and Fig. 2 is combined, in the present embodiment, fire-proof plate 800 encloses Cross-sectional shape after conjunction can be rectangular.
Fig. 3 is another A-A cross-sectional view in Fig. 1.Please continue to refer to Fig. 1, and Fig. 3 is combined, in the present embodiment, fire-proof plate Cross-sectional shape after 800 enclosings can also be circle.In addition, the cross-sectional shape after fire-proof plate 800 encloses can also be it He can be realized as long as passing through this set form of fire-proof plate 800 to internal rubber earthquake isolation support 300 regular polygon Enclosing to reach prevention to fire source.
In the present embodiment, the material of the material of upper fire-proof plate 810 and lower fire-proof plate 820 can be alumina silicate fibre.It is excellent Selection of land, upper fire-proof plate 810 and lower fire-proof plate 820 are fiber reinforcement silicate aluminum board.Such setting, so that upper fire-proof plate 810 There is excellent fire resistance and processing performance with lower fire-proof plate 820, moreover, in use, it is several when it encounters open fire Noxious material will not be generated, environmental-protecting performance is preferable.
Specifically, in the present embodiment, the thickness of the thickness of upper fire-proof plate 810 and lower fire-proof plate 820 can be 100mm It is thick.
It should be noted that in the present embodiment, it is alumina silicate that upper fire-proof plate 810 and lower fire-proof plate 820, which can be above-mentioned, The setting form of fiberboard, but be not limited solely to this, can also be using other setting forms, such as: upper fire-proof plate 810 and lower anti- Fiery plate 820 using calcium silicate board, glass mat, Thistle board, fire prevention rock wool board and a certain kind in ceramic fiber paper or Any two combination, as long as can be realized by upper fire-proof plate 810 and lower fire-proof plate 820 that this material form is arranged Barrier to external fire source.
It should also be noted that, in the present embodiment, upper fire-proof plate 810 and lower fire-proof plate 820 can be shown in figure this The structure type of the surface plate of kind consistency of thickness, but it is not limited solely to this, it can also be using other setting forms, such as: will be upper At least one of fire-proof plate 810 and lower fire-proof plate 820 are set as corrugated plating.Such setting, so that from upper fixing bolt 910 The path that (lower fixing bolt 920) is transferred to rubber earthquake isolation support 300 through upper fire-proof plate 810 (lower fire-proof plate 820) further increases Add, to further delay the conduction of fire source and its heat distributed internally, ensure that fire prevention reliability.As long as therefore its It is that can be realized pair by this type of attachment of upper fire-proof plate 810 and upper pier stud 100 and lower fire-proof plate 820 and lower pier stud 200 The extension of heat conduction path.
In the present embodiment, flame resistant protective layer 400 can be the compositional system of natural rubber and neoprene, can Reach fire retardant rank, improves certain level from itself by the fire resistance of rubber earthquake isolation support 300, also, its oxygen index (OI) is big In 28, the compatible bonding requirements between flame resistant protective layer 400 and the ontology of rubber earthquake isolation support 300 are met, so that fire-retardant guarantor Sheath 400 can be integrally formed in sulfidation with ontology.
Preferably, in the present embodiment, the material of fire prevention clad 500 is alumina silicate fibre.Specifically, fire prevention clad 500 be alumina silicate fibre blanket, is flexible material, can be directly coated in the surface of rubber earthquake isolation support 300, can not only be incited somebody to action Rubber earthquake isolation support 300 is effectively isolated with fire source, will not also be had an impact to the horizontal movement of rubber earthquake isolation support 300, is guaranteed The shock insulation reliability of rubber earthquake isolation support 300.
Preferably, in the present embodiment, the gap size between upper fire-proof plate 810 and lower fire-proof plate 820 is 20mm.
Please continue to refer to Fig. 1, in the present embodiment, upper fire-proof plate 810 can be embedded at pier stud 100, and lower fire-proof plate 820 can To be embedded at lower pier stud 200.
The concealed setting form of this upper fire-proof plate 810 and lower fire-proof plate 820, to upper fire-proof plate 810 and lower fire-proof plate 820 play certain protective effect, reduce extraneous other factors to damage caused by upper fire-proof plate 810 and lower fire-proof plate 820 It is bad, its service life is extended, and ensure that its reliability of preventing fires, to further improve the present embodiment architectural vibration-insulation support The functional reliability of flameproof protection device.
Please continue to refer to Fig. 1, in the present embodiment, rubber earthquake isolation support 300 can also include upper junction plate 310 and lower connection Plate 340, specifically, one end bonding by Vulcanization of ontology is in upper junction plate 310, and the other end bonding by Vulcanization of ontology is in lower connecting plate 340.Wherein, upper junction plate 310 is connected to pier stud 100, and the side wall of upper junction plate 310 offsets with upper fire-proof plate 810;Lower company Fishplate bar 340 is connected to lower pier stud 200, and the side wall of lower connecting plate 340 offsets with lower fire-proof plate 820.
This connection type between ontology and upper junction plate 310 and lower connecting plate 340, connection is reliable, greatly reduces The risk that falls off of ontology, ensure that the reliability of rubber earthquake isolation support 300 shock insulation and support.
Please continue to refer to Fig. 1, specifically, in the present embodiment, ontology may include the rubber layer 320 and steel that vulcanization is integrated Plate layer 330, wherein the quantity of rubber layer 320 and steel plate layer 330 be it is multiple, each steel plate layer 330 is folded in adjacent two layers respectively Between rubber layer 320, and 320 bonding by Vulcanization of rubber layer for being located at the top is located at the lowermost rubber layer in upper junction plate 310 320 bonding by Vulcanization are in lower connecting plate 340.
Please continue to refer to Fig. 1, in the present embodiment, which can also include being arranged upper Upper positioning plate 610 between connecting plate 310 and upper pier stud 100.Such setting realizes and is pacifying to rubber earthquake isolation support 300 Positioning during dress between upper pier stud 100, ensure that the installation accuracy between rubber earthquake isolation support 300 and upper pier stud 100.
Please continue to refer to Fig. 1, in the present embodiment, the architectural vibration-insulation support flameproof protection device can also include for by Connecting plate 310 is connected to the upper connection bolt 710 of pier stud 100 and is embedded in the upper embedded sleeve barrel 110 of pier stud 100, wherein Upper embedded sleeve barrel 110 matches with upper connection bolt 710.Upper connection bolt 710 sequentially passes through upper junction plate 310 and upper positioning plate 610, and be screwed in embedded sleeve barrel 110.
By the way that upper embedded sleeve barrel 110 is arranged in upper pier stud 100, using upper connection bolt 710 and upper embedded sleeve barrel 110 it Between connection function, not only ensure that the connection reliability between rubber earthquake isolation support 300 and upper pier stud 100, moreover, also making Rubber earthquake isolation support 300 is able to bear certain shear resistance in use, ensure that its shock insulation reliability.
Please continue to refer to Fig. 1, in the present embodiment, accordingly, which can also include Lower positioning plate 620 between lower connecting plate 340 and lower pier stud 200 is set.It is similar with the effect of upper positioning plate 610, lower positioning The setting of plate 620 realizes to the positioning between lower pier stud 200 during the installation process of rubber earthquake isolation support 300, ensure that rubber Installation accuracy between glue shock isolating pedestal 300 and lower pier stud 200.
Please continue to refer to Fig. 1, in the present embodiment, the architectural vibration-insulation support flameproof protection device can also include for will under Connecting plate 340 is connected to the lower connection bolt 720 of lower pier stud 200 and is embedded in the lower embedded sleeve barrel 210 of lower pier stud 200, wherein Lower embedded sleeve barrel 210 matches with lower connection bolt 720.Lower connection bolt 720 sequentially passes through lower connecting plate 340 and lower positioning plate 620, and be screwed in lower embedded sleeve barrel 210.
By embedded sleeve barrel 210 under being arranged in lower pier stud 200, using lower connection bolt 720 and lower embedded sleeve barrel 210 it Between connection function, not only ensure that the connection reliability between rubber earthquake isolation support 300 and lower pier stud 200, moreover, also making Rubber earthquake isolation support 300 is able to bear certain shear resistance in use, ensure that its shock insulation reliability.
In addition, the architectural vibration-insulation support flameproof protection device can also include being coated in upper junction plate 310 in the present embodiment The fire resistant coating on surface and 340 surface of lower connecting plate.Such setting greatly reduces upper junction plate 310 and lower connecting plate 340 Surface temperature, and reduce temperature rise, further interception played to the transmitting of rubber earthquake isolation support 300 to heat.
As shown in Figures 4 to 7, fire endurance test is carried out to the architectural vibration-insulation support flameproof protection device, wherein support Specifications and models are LRB-1200.Wherein, flame resistant protective layer 400 with a thickness of 10mm, clad 500 of preventing fires with a thickness of 40mm, Upper fire-proof plate 810 and lower fire-proof plate 820 with a thickness of 100mm, elastic fireproof sealant 830 with a thickness of 20mm, also, upper Connecting plate 310 and 340 surface of lower connecting plate coat 20 μm of fireproof coating thermal insulation layer, and with elastic fireproof sealant filleting.
The content of the test are as follows: reference GB/T 9978.1-2008 " building element fire resistance test method part 1: general to want It asks ".Under the conditions of standard fire test, from by fire, fire duration is not less than 3 hours architectural vibration-insulation rubber supporting seat.Test Purpose are as follows: influence of the verifying architectural vibration-insulation rubber supporting seat after external cladding fire proofing material to support body.
Test method are as follows: firstly, the first thermocouple 1, the second thermocouple 2, third thermocouple 3 and the 4th thermocouple 4 are divided Not according to the location arrangements shown in Fig. 7 around the ontology lower layer of rubber earthquake isolation support 300, by the 5th thermocouple 5, the 6th thermoelectricity Even 6, the 7th thermocouple 7 and the 8th thermocouple 8 are according to the location arrangements shown in Fig. 6 on the ontology upper layer of rubber earthquake isolation support 300 Around;Then, test specimen is directly placed at trial furnace (horizontal stove) inside, upper and lower surface blocks, remaining is on four sides by fire, and top is not Apply vertical bearing capacity;Finally, trying as shown in figure 8, heat up according to the heating curve in GB/T 9978.1-2008 standard Internal thermocouples temperature, test period 180min are recorded during testing, wherein it is influenced by error, it is warm in the furnace under actual conditions Rising curve is b, close with the test temperature rise curve a under theoretical case.
Fire endurance decision condition are as follows: architectural vibration-insulation support investigates internal thermocouples most after fire endurance test process High-temperature.For architectural vibration-insulation support after fire endurance test, shock isolating pedestal rubber appearance meets GB20688.3-2006 " rubber branch Seat third portion: architectural vibration-insulation rubber supporting seat " the 6.7th article of appearance requirement, film surface is smooth, no concave-convex is uneven, bubble-free It generates, flawless generates.
As shown in figure 9, the architectural vibration-insulation support is after fire endurance test, the temperature of internal thermocouples is no more than 70 ℃;Shock isolating pedestal rubber appearance meets GB20688.3-2006 " rubber support third portion: architectural vibration-insulation rubber supporting seat " the 6.7th Appearance requirement, film surface is smooth, no concave-convex is uneven, bubble-free generates, flawless generates.Before and after Fire Test, branch The horizontal rigidity equivalent stiffness change rate of seat is 3.2%, and the change rate of equivalent damping ratio is -2.4%, vertical rigidity -4.0%.
Finally, it should be noted that above embodiments are only to illustrate the technical solution of the utility model, rather than its limitations; Although the utility model is described in detail with reference to the foregoing embodiments, those skilled in the art should understand that: It can still modify to technical solution documented by previous embodiment, or to some or all of the technical features It is equivalently replaced;And these are modified or replaceed, the utility model embodiment that it does not separate the essence of the corresponding technical solution The range of technical solution.

Claims (10)

1. a kind of architectural vibration-insulation support flameproof protection device, which is characterized in that including upper pier stud (100), lower pier stud (200), peace Mounted in rubber earthquake isolation support (300) between the two, and around the fire-proof plate of the rubber earthquake isolation support (300) setting (800), wherein the fire-proof plate (800) includes upper fire-proof plate (810), lower fire-proof plate (820) and elastic fireproof sealant (830), the upper fire-proof plate (810) is connected to the upper pier stud (100), the lower fire-proof plate by upper fixing bolt (910) (820) the lower pier stud (200), the upper fire-proof plate (810) and the lower fire-proof plate are connected to by lower fixing bolt (920) (820) gap is formed between, the elastic fireproof sealant (830) is full of the gap;
The architectural vibration-insulation support flameproof protection device further includes flame resistant protective layer (400) and fire prevention clad (500), the resistance Flame-proofing protective layer (400) and fire prevention clad (500) are successively wrapped in the ontology of the rubber earthquake isolation support (300), and institute It states and forms fire protection space between the outer peripheral surface of fire prevention clad (500) and the inner peripheral surface of the fire-proof plate (800).
2. architectural vibration-insulation support flameproof protection device according to claim 1, which is characterized in that the upper fire-proof plate (810) it is embedded at the upper pier stud (100), the lower fire-proof plate (820) is embedded at the lower pier stud (200).
3. architectural vibration-insulation support flameproof protection device according to claim 2, which is characterized in that the rubber earthquake isolation support It (300) further include upper junction plate (310) and lower connecting plate (340), one end bonding by Vulcanization of the ontology is in the upper junction plate (310), the other end bonding by Vulcanization of the ontology is in the lower connecting plate (340);
The upper junction plate (310) is connected to the upper pier stud (100), and the side wall of the upper junction plate (310) and it is described on Fire-proof plate (810) offsets;The lower connecting plate (340) is connected to the lower pier stud (200), and the lower connecting plate (340) Side wall offsets with the lower fire-proof plate (820).
4. architectural vibration-insulation support flameproof protection device according to claim 3, which is characterized in that further include being arranged described Upper positioning plate (610) between upper junction plate (310) and the upper pier stud (100).
5. architectural vibration-insulation support flameproof protection device according to claim 4, which is characterized in that further include for will be described Upper junction plate (310) is connected to the upper connection bolt (710) of the upper pier stud (100) and is embedded in the upper pier stud (100) Upper embedded sleeve barrel (110), the upper embedded sleeve barrel (110) match with the upper connection bolt (710);The upper connection bolt (710) upper junction plate (310) and the upper positioning plate (610) are sequentially passed through, and is screwed in the upper embedded sleeve barrel (110) In.
6. architectural vibration-insulation support flameproof protection device according to claim 3, which is characterized in that further include being arranged described Lower positioning plate (620) between lower connecting plate (340) and the lower pier stud (200).
7. architectural vibration-insulation support flameproof protection device according to claim 6, which is characterized in that further include for will be described Lower connecting plate (340) is connected to the lower connection bolt (720) of the lower pier stud (200) and is embedded in the lower pier stud (200) Lower embedded sleeve barrel (210), the lower embedded sleeve barrel (210) match with the lower connection bolt (720);The lower connection bolt (720) lower connecting plate (340) and the lower positioning plate (620) are sequentially passed through, and is screwed in the lower embedded sleeve barrel (210) In.
8. according to the described in any item architectural vibration-insulation support flameproof protection devices of claim 3-7, which is characterized in that further include applying Overlay on the fire resistant coating on the upper junction plate (310) surface Yu the lower connecting plate (340) surface.
9. architectural vibration-insulation support flameproof protection device according to claim 1-7, which is characterized in that the fire prevention The material of clad (500) is alumina silicate fibre.
10. architectural vibration-insulation support flameproof protection device according to claim 1-7, which is characterized in that on described The material of fire-proof plate (810) is in alumina silicate fibre, calcium silicate board, glass fibre, Paper-faced gyp, fire prevention rock wool and ceramic fibre One kind;The material of the lower fire-proof plate (820) is alumina silicate fibre, calcium silicate board, glass fibre, Paper-faced gyp, fire prevention rock One of cotton and ceramic fibre.
CN201822139039.8U 2018-12-19 2018-12-19 Architectural vibration-insulation support flameproof protection device Active CN209413025U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201822139039.8U CN209413025U (en) 2018-12-19 2018-12-19 Architectural vibration-insulation support flameproof protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201822139039.8U CN209413025U (en) 2018-12-19 2018-12-19 Architectural vibration-insulation support flameproof protection device

Publications (1)

Publication Number Publication Date
CN209413025U true CN209413025U (en) 2019-09-20

Family

ID=67939444

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201822139039.8U Active CN209413025U (en) 2018-12-19 2018-12-19 Architectural vibration-insulation support flameproof protection device

Country Status (1)

Country Link
CN (1) CN209413025U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109372148A (en) * 2018-12-19 2019-02-22 苏州海德新材料科技股份有限公司 Architectural vibration-insulation support flameproof protection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109372148A (en) * 2018-12-19 2019-02-22 苏州海德新材料科技股份有限公司 Architectural vibration-insulation support flameproof protection device
CN109372148B (en) * 2018-12-19 2024-04-19 苏州海德新材料科技股份有限公司 Fireproof protection device for building shock insulation support

Similar Documents

Publication Publication Date Title
CN109372148A (en) Architectural vibration-insulation support flameproof protection device
US2785099A (en) Fire resisting insulating material and building construction embodying the same
RU2462666C2 (en) Insulation for ventilation duct passing through opening in wall or ceiling
CN209413025U (en) Architectural vibration-insulation support flameproof protection device
CN103866934B (en) Basalt fibre plate composite rock wool A level fireproof heat preservation decorative board
CN204826207U (en) Fireproof shock insulation rubber support
CN201678022U (en) Fire-resisting bulkhead of ship
CN105155671A (en) Fireproof shock insulation rubber support
CN214994852U (en) Integrated fireproof shock-insulation rubber support
EP2931991B1 (en) Fire resistant structure
CN111614054A (en) Cable engineering fire prevention protector that insulates against heat
CN110295951A (en) A kind of assembled firewall and assembly method applied to cable tunnel
CN110144939A (en) Large Span Underground engineering structure ceiling external hanging type fire-proof plate and its installation method
CN209620666U (en) A kind of unsymmetric structure fireproof blocking of converter transformer valve-side sleeve valve hall hole
CN202187445U (en) Incombustible thermal insulation wall body for curtain wall
CN202298966U (en) Assembled type external heat insulation and fireproofing isolation belt for external wall
EP0832333B1 (en) High temperature resistant insulating element
JP7304751B2 (en) Fireproof cladding structure for walls composed of thermal insulation panels
JP2012012911A (en) Floor structure having excellent fire resistance
CN221169010U (en) Heat-resistant and fire-resistant protection plate
CN206941850U (en) Wire netting rock cotton board
CN201924469U (en) Composite thermal insulation plate
CN208009472U (en) Immersed tube tunnel tube coupling connector fire proof construction with linear moving mechanism
CN208009480U (en) Immersed tube tunnel tube coupling joint structure
CN204986230U (en) Surround mineral wool fire prevention heat -insulating shield of structure entirely

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant