CN209381832U - 充电电源模块、包含其的充电电源以及充电装置 - Google Patents

充电电源模块、包含其的充电电源以及充电装置 Download PDF

Info

Publication number
CN209381832U
CN209381832U CN201821876528.5U CN201821876528U CN209381832U CN 209381832 U CN209381832 U CN 209381832U CN 201821876528 U CN201821876528 U CN 201821876528U CN 209381832 U CN209381832 U CN 209381832U
Authority
CN
China
Prior art keywords
power modules
charging
main circuit
charging power
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201821876528.5U
Other languages
English (en)
Inventor
甘银华
吴广涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIO Holding Co Ltd
Original Assignee
NIO Nextev Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIO Nextev Ltd filed Critical NIO Nextev Ltd
Priority to CN201821876528.5U priority Critical patent/CN209381832U/zh
Application granted granted Critical
Publication of CN209381832U publication Critical patent/CN209381832U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本实用新型涉及充电技术,特别涉及充电电源模块、包含该充电电源模块的充电电源以及充电装置。按照本实用新型的一个方面,所提供的充电电源模块包含:AC/DC变换单元,包含至少一个具有三相三电平维纳拓扑结构的主电路;DC/DC变换单元,包含:第一交错并联BUCK变换器,其耦合在所述主电路的直流正母线与零母线之间;第二交错并联BUCK变换器,其耦合在所述主电路的直流负母线与零母线之间;以及控制单元,配置为控制所述主电路、第一和第二交错并联BUCK变换器中的开关元件的占空比。

Description

充电电源模块、包含其的充电电源以及充电装置
技术领域
本实用新型涉及充电技术,特别涉及充电电源模块、包含该充电电源模块的充电电源以及充电装置。
背景技术
目前市面上用于电动汽车的直流快速充电桩多配备较低功率等级的充电电源模块,这种充电电源模块采用三电平PFC与LLC变换器或三电平PFC与移相全桥的组合形式,这种拓扑结构的输出电压范围是受限的(最高电压和最低电压之比一般不超过3),否则电源模块的DC/DC级磁性元器件的设计会变得异常困难,同时还会导致某些输出电压范围内的性能下降。此外,如果需要在保持体积和重量不过多增加的同时进一步提高功率等级,则将进一步增大基于这种拓扑结构的充电电源的开发难度。
实用新型内容
本实用新型的一个目的是提供一种充电电源模块、充电电源和充电装置,其能够提供高充电功率并且具有紧凑的结构。
按照本实用新型的一个方面,所提供的充电电源模块包含:
AC/DC变换单元,包含至少一个具有三相三电平维纳拓扑结构的主电路;
DC/DC变换单元,包含:
第一交错并联BUCK变换器,其耦合在所述主电路的直流正母线与零母线之间;
第二交错并联BUCK变换器,其耦合在所述主电路的直流负母线与零母线之间;以及
控制单元,配置为控制所述主电路、第一和第二交错并联BUCK变换器中的开关元件的占空比。
可选地,在上述充电电源模块中,所述第一交错并联BUCK变换器的第一输入端与直流正母线耦合,输出端经第一线圈耦合至所述DC/DC变换单元的正极输出端,所述第二交错并联BUCK变换器的第一输入端与直流负母线耦合,输出端经第二线圈耦合至所述DC/DC变换单元的负极输出端,所述第一和第二交错并联BUCK变换器的第二输入端与零母线和所述DC/DC变换单元的零电位端耦合。
可选地,在上述充电电源模块中,所述控制单元配置为基于所述主电路的输入侧的电压和电流、直流母线上的母线电压来控制所述主电路的开关元件的占空比以在直流母线上提供所需的母线电压。
可选地,在上述充电电源模块中,所述控制单元配置为基于所述第一和第二交错并联BUCK变换器的输出电流以及所述DC/DC变换单元的输出电压来控制所述第一和第二交错并联BUCK变换器的开关元件的占空比以在所述DC/DC变换单元的正极输出端和负极输出端处提供所需的输出电压。
可选地,在上述充电电源模块中,所述控制单元还配置为基于所述DC/DC变换单元的输出电流来调整所述第一和第二交错并联BUCK变换器的开关元件的占空比以使所述DC/DC变换单元的正极输出端和负极输出端处的输出电流均衡。
可选地,在上述充电电源模块中,所述主电路、第一和第二交错并联BUCK变换器中的开关元件采用SiC金属氧化物半导体场效应管。
可选地,在上述充电电源模块中,所述AC/DC变换单元包含两个或更多个具有三相三电平维纳拓扑结构的主电路,各个主电路的直流正母线、零母线和直流负母线被分别连接在一起。
按照本实用新型还有一个方面,所提供的充电电源包含至少一个如上所述的充电电源模块。
可选地,在上述充电电源中,所述充电电源模块的数量为两个或两个以上,每个所述充电电源模块的正极输入端和负极输入端分别被共接在一起。
按照本实用新型还有一个方面,所提供的充电装置包含:
上述充电电源;
充电接口,其与所述充电电源耦合。
可选地,上述充电装置为用于电动汽车的充电桩或换电站电气柜。
按照本实用新型的一个或多个实施例,充电电源模块中的开关元件采用SiC半导体器件,由此可以在不大幅增加充电电源体积的情况下提高功率等级并缩短充电时间。此外,按照本实用新型事事顺利的充电电源模块能够提供宽范围的电压输出等级,因而具有兼容性强的优点。再者,所提供的高电压等级可以降低充电枪的设计难度并且使得选用直径较细的枪线成为可能。
附图说明
本实用新型的上述和/或其它方面和优点将通过以下结合附图的各个方面的描述变得更加清晰和更容易理解,附图中相同或相似的单元采用相同的标号表示。附图包括:
图1为按照本实用新型一个实施例的充电电源模块的电路原理图。
图2为实施图1所示充电电源模块中的AC/DC变换单元的稳压控制过程的示意框图。
图3A和3B为实施图1所示充电电源模块中的DC/DC变换单元的稳压控制过程的示意框图。
图4A和4B为实施图1所示充电电源模块中的DC/DC变换单元的电流均衡控制过程的示意框。
图5为按照本实用新型一个或多个实施例的包含多个主电路的充电电源模块的示意图。
图6为按照本实用新型一个或多个实施例的包含多个充电电源模块的充电电源的示意图。
图7为按照本实用新型一个或多个实施例的充电装置的示意框图。
具体实施方式
下面参照其中图示了本实用新型示意性实施例的附图更为全面地说明本实用新型。但本实用新型可以按不同形式来实现,而不应解读为仅限于本文给出的各实施例。给出的上述各实施例旨在使本文的披露全面完整,以将本实用新型的保护范围更为全面地传达给本领域技术人员。
在本说明书中,诸如“包含”和“包括”之类的用语表示除了具有在说明书和权利要求书中有直接和明确表述的单元和步骤以外,本实用新型的技术方案也不排除具有未被直接或明确表述的其它单元和步骤的情形。
诸如“第一”和“第二”之类的用语并不表示单元在时间、空间、大小等方面的顺序而仅仅是作区分各单元之用。
“耦合”应当理解为包括在两个单元之间直接传送电能量或电信号的情形,或者经过一个或多个第三单元间接传送电能量或电信号的情形。
图1为按照本实用新型一个实施例的充电电源模块的电路原理图。
如图1所示,充电电源模块10包括AC/DC变换单元110、DC/DC变换单元120以及控制单元130。
参见图1,AC/DC变换单元110包含主电路111,该主电路具有三相三电平Vienna拓扑结构,其包括由二极管D11-D16构成的三相二极管整流桥,在工作时三相电网的每一相u-w分别经各自的电感元件(电感元件L11-L13的其中一个)接入三相二极管整流桥的输入端A-C的其中一个。此外,在输入端A-C的每一个与母线电容器C11、C12的中点O之间各接入相应的双向开关S11-S13。每个双向开关具有相同或相似的结构和元件。以双向开关S11为例,其包括金属氧化物半导体场效应晶体管(MOS管)T11A、T11B,二极管D17A和D17B分别并联在MOS管T11A、T11B的源极与漏极之间。MOS管T11A、T11B的栅极则耦合至控制单元130。在工作时,控制单元130通过控制MOS管的占空比,在直流正母线P和直流负母线N上提供所需的直流电压。特别是,当双向开关S11导通时,u相电流iu流过MOS管T11A、T11B,桥臂中点被嵌位到中点O;当双向开关S11导通时,如果u相电流iu>0,则该电流将流经二极管D11,桥臂中点被嵌位到直流正母线P,如果u相电流iu<0,则该电流将流经二极管D14,桥臂中点被嵌位到直流正母线N。在本实用新型的一个或多个实施例中,可选地,MOS管T11A、T11B共用驱动信号以降低控制和驱动难度。
在本实用新型的一个或多个实施例中,AC/DC变换单元中的开关元件或MOS管优选地采用SiC MOS管。与超结金属氧化物半导体场效应晶体管(Cool MOS)相比,在图1所示的主电路中采用SiC MOS管不仅可以提高变换效率和功率密度,而且可以减小变换器的电磁辐射。此外,SiC MOS管的耐压等级为1200Vdc,因此母线电压最高可以到900Vdc。当母线电压提高至900Vdc后,通过控制DC/DC变换单元的工作方式(例如使后级Buck变换器的MOS管工作在常闭模式下),可以使得充电电源模块输出900Vdc的高压,这大大减小了大功率充电时的电流,并且在提高整体充电系统效率的同时也减小了充电枪设计的难度。
继续参见图1,DC/DC变换单元120包含第一交错并联BUCK变换器121和第二交错并联BUCK变换器122,其中,第一交错并联BUCK变换器121耦合在主电路111的直流正母线P与零母线O之间,而第二交错并联BUCK变换器122耦合在主电路111的直流负母线N与零母线O之间。此外,DC/DC变换单元120的零电位端O'与AC/DC变换单元110的零母线O相连。在图1所示的DC/DC变换单元120中,第一和第二交错并联BUCK变换器121、122具有相同的结构和组成元件,为避免赘述,以下仅以第一交错并联BUCK变换器121为例描述它们的内部结构。
如图1所示,第一交错并联BUCK变换器121包含以交错并联方式连接的两个BUCK变换电路。特别是,两个变换电路的MOS管T21A和T21B的源极和漏极的其中一个共接在一起构成第一输入端,该第一输入端耦合至直流正母线,而它们的源极和漏极中的另外一个则经各自的电感元件L21A、L21B耦合至电感元件L23,并经电感元件L23耦合至DC/DC变换单元120的正极输出端V+。此外,第一交错并联BUCK变换器121的第二输入端连接至零母线O和DC/DC变换单元120的零电位端O',并且MOS管T21A、T21B的源极和漏极中的另外一个还经各自对应的反向偏置二极管D22A、D22B耦合至该第二输入端。参见图1,在MOS管T21A、T21B的源极和漏极之间还分别连接有反向偏置的二极管D21A、D21B。
如图1所示,位于DC/DC变换单元120的输出侧的电感元件L23与电容器C23以及电感元件L24与电容器C24形成LC滤波器以进一步减小输出电压和电流纹波。
在图1所示的DC/DC变换单元中,MOS管T21A、T21B、T22A、T22B的栅极耦合至控制单元130。在工作时,控制单元130通过控制MOS管的占空比,在DC/DC变换单元120的正极输出端V+和负极输出端V-处提供所需的直流电压。
为了进一步提高功率密度和效率,可选地,DC/DC变换单元120中的MOS管也可选用1200V耐压的SiC MOS管以提高耐压等级和减少电磁辐射。为了更进一步提高效率,可选地,DC/DC变换单元120也可以采用同步整流技术,其中的整流二极管D22A、D22B、D23A、D23B均以MOS管代替。
以下借助附图对控制单元130的控制原理作进一步的描述。
图2为实施图1所示充电电源模块中的AC/DC变换单元的稳压控制过程的示意框图。需要理解的是,对于三相交流电的任一相,其均可采用图2所示的控制流程。示例性地,以下以u相为例进行描述。
如图2所示,首先确定母线电压参考值Vbusref与母线电压实际值Vbus(Vbus=直流正母线的电压实际值VP-直流负母线的电压实际值VN)之间的差值。随后对该差值(Vbusref-Vbus)进行滤波处理(例如利用比例积分(PI)控制器)以得到电压参数Vea。接着,基于下式确定电流参数iea
iea=kmAB/C2 (1)
其中,km为常数,A为u相交流电压的幅值Vinac,B为u相交流电压幅值的平均值Vinac_avg,C为电压参数Vea
接着,确定电流参数iea与u相交流电流iPFC的差值,并且对该差值(iea-iPFC)进行滤波处理(例如利用比例积分(PI)控制器)以得到与所需的母线电压Vbusref相对应的MOS管T11A、T11B的占空比dPFC
对于双向开关S12和S13,图2所示的控制流程也是适用的,此处不再赘述。
图3A和3B为实施图1所示充电电源模块中的DC/DC变换单元的稳压控制过程的示意框图,其中图3A针对的是第一交错并联BUCK变换器,图3B针对的是第二交错并联BUCL变换器。
如图3A所示,首先确定DC/DC变换单元120的正极输出端V+处的电压实际值Vbuck1与电压参考值Voref的差值。随后对该差值(Vbuck1-Voref)进行滤波处理(例如利用比例积分(PI)控制器)以得到电流参数iea1。接着,确定电流参数iea1与第一交错并联BUCK变换器的两个BUCK变换单元的输出电流ia、ib(参见图1)的差值,并且对该差值(iea1-ia-ib)进行滤波处理(例如利用比例积分(PI)控制器)以得到与所需的正极输出电压Voref相对应的MOS管T21A、T21B的占空比dbuck1
如图3B所示,首先确定DC/DC变换单元120的正极输出端V-处的电压实际值Vbuck2与电压参考值Voref的差值。随后对该差值(Vbuck2-Voref)进行滤波处理(例如利用比例积分(PI)控制器)以得到电流参数iea2。接着,确定电流参数iea2与第二交错并联BUCK变换器的两个BUCK变换单元的输出电流ic、id(参见图1)的差值,并且对该差值(iea2-ic-id)进行滤波处理(例如利用比例积分(PI)控制器)以得到与所需的负极输出电压Voref相对应的MOS管T22A、T22B的占空比dbuck2
图4A和4B为实施图1所示充电电源模块中的DC/DC变换单元的电流均衡控制过程的示意框图,其中图4A针对的是第一交错并联BUCK变换器,图4B针对的是第二交错并联BUCL变换器。
如图4A所示,首先确定第一交错并联BUCK变换器121的输出电流的参考值ioref与实际值ibuck1的差值。随后对该差值(ioref-ibuck1)进行滤波处理(例如利用比例积分(PI)控制器)以得到电流均衡所需的MOS管T21A、T21B的占空比的修正值Δdbuck1
如图4B所示,首先确定第二交错并联BUCK变换器122的输出电流的参考值ioref与实际值ibuck2的差值。随后对该差值(ioref-ibuck2)进行滤波处理(例如利用比例积分(PI)控制器)以得到电流均衡所需的MOS管T22A、T22B的占空比的修正值Δdbuck2
图1所示的充电电源模块具有良好的扩展性。具体而言,虽然图1的AC/DC变换单元仅示出一个主电路,但是其也可以包含更多个主电路。图5为按照本实用新型一个或多个实施例的包含多个主电路的充电电源模块的示意图。如图5所示,充电电源模块50包含AC/DC变换单元510和DC/DC变换单元520,其中,AC/DC变换单元510包含多个具有相同结构的主电路510-1~510-N,并且各个主电路的直流正母线、零母线和直流负母线被分别连接在一起。主电路510-1~510-N和DC/DC变换单元520均可采用图1所示的结构,此处不再赘述。
通过上述扩展,一方面提高了充电电源模块的整体功率,另一方面还减小了器件的热应力和电压电流应力。
进一步地,还可以以图1或5所示的充电电源模块为单位进行扩展。图6为按照本实用新型一个或多个实施例的包含多个充电电源模块的充电电源的示意图。如图6所示,充电电源60包含多个具有相同结构的充电电源模块610-1~610-N,并且各个充电电源模块的正极输出端、零电位端和负极输出端被分别连接在一起。充电电源模块610-1~610-N的每一个可采用图1或5所示的充电电源模块,此处不再赘述。
图7为按照本实用新型一个或多个实施例的充电装置的示意框图。如图7所示,充电装置70包括充电电源710和与充电电源710耦合的充电接口720。充电电源可采用图6所示的充电电源,此处不再赘述。充电接口720提供了充电电源710与外部被充电设备(例如充电汽车)之间的电气接口。可选地,充电装置可以是充电桩或换电站电气柜等。
提供本文中提出的实施例和示例,以便最好地说明按照本技术及其特定应用的实施例,并且由此使本领域的技术人员能够实施和使用本实用新型。但是,本领域的技术人员将会知道,仅为了便于说明和举例而提供以上描述和示例。所提出的描述不是意在涵盖本实用新型的各个方面或者将本实用新型局限于所公开的精确形式。
鉴于以上所述,本公开的范围通过以下权利要求书来确定。

Claims (11)

1.一种充电电源模块,其特征在于,包含:
AC/DC变换单元,包含至少一个具有三相三电平维纳拓扑结构的主电路;
DC/DC变换单元,包含:
第一交错并联BUCK变换器,其耦合在所述主电路的直流正母线与零母线之间;
第二交错并联BUCK变换器,其耦合在所述主电路的直流负母线与零母线之间;以及
控制单元,配置为控制所述主电路、第一和第二交错并联BUCK变换器中的开关元件的占空比。
2.如权利要求1所述的充电电源模块,其中,所述第一交错并联BUCK变换器的第一输入端与直流正母线耦合,输出端经第一线圈耦合至所述DC/DC变换单元的正极输出端,所述第二交错并联BUCK变换器的第一输入端与直流负母线耦合,输出端经第二线圈耦合至所述DC/DC变换单元的负极输出端,所述第一和第二交错并联BUCK变换器的第二输入端与零母线和所述DC/DC变换单元的零电位端耦合。
3.如权利要求2所述的充电电源模块,其中,所述控制单元配置为基于所述主电路的输入侧的电压和电流、直流母线上的母线电压来控制所述主电路的开关元件的占空比,以在直流母线上提供所需的母线电压。
4.如权利要求2所述的充电电源模块,其中,所述控制单元配置为基于所述第一和第二交错并联BUCK变换器的输出电流以及所述DC/DC变换单元的输出电压来控制所述第一和第二交错并联BUCK变换器的开关元件的占空比,以在所述DC/DC变换单元的正极输出端和负极输出端处提供所需的输出电压。
5.如权利要求4所述的充电电源模块,其中,所述控制单元还配置为基于所述DC/DC变换单元的输出电流来调整所述第一和第二交错并联BUCK变换器的开关元件的占空比以使所述DC/DC变换单元的正极输出端和负极输出端处的输出电流均衡。
6.如权利要求1所述的充电电源模块,其中,所述主电路、第一和第二交错并联BUCK变换器中的开关元件采用SiC金属氧化物半导体场效应管。
7.如权利要求1所述的充电电源模块,其中,所述AC/DC变换单元包含两个或更多个具有三相三电平维纳拓扑结构的主电路,各个主电路的直流正母线、零母线和直流负母线被分别连接在一起。
8.一种充电电源,其中,包括至少一个充电电源模块。
9.如权利要求8所述的充电电源,其中,所述充电电源模块的数量为两个或两个以上,每个所述充电电源模块的正极输入端和负极输入端分别被共接在一起。
10.一种充电装置,其中,包括:
如权利要求8或9所述的充电电源;
充电接口,其与所述充电电源耦合。
11.如权利要求10所述的充电装置,其为用于电动汽车的充电桩或换电站电气柜。
CN201821876528.5U 2018-11-14 2018-11-14 充电电源模块、包含其的充电电源以及充电装置 Active CN209381832U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201821876528.5U CN209381832U (zh) 2018-11-14 2018-11-14 充电电源模块、包含其的充电电源以及充电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201821876528.5U CN209381832U (zh) 2018-11-14 2018-11-14 充电电源模块、包含其的充电电源以及充电装置

Publications (1)

Publication Number Publication Date
CN209381832U true CN209381832U (zh) 2019-09-13

Family

ID=67864578

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201821876528.5U Active CN209381832U (zh) 2018-11-14 2018-11-14 充电电源模块、包含其的充电电源以及充电装置

Country Status (1)

Country Link
CN (1) CN209381832U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109484232A (zh) * 2018-11-14 2019-03-19 蔚来汽车有限公司 充电电源模块、包含其的充电电源以及充电装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109484232A (zh) * 2018-11-14 2019-03-19 蔚来汽车有限公司 充电电源模块、包含其的充电电源以及充电装置

Similar Documents

Publication Publication Date Title
CN106740220B (zh) 一种恒流恒压复合拓扑的无线充电电路
Tan et al. Topology and application of bidirectional isolated dc-dc converters
CN102468772B (zh) 对电变换器非线性的补偿
CN102468768B (zh) 对电变换器非线性的补偿装置及方法
CN101976871B (zh) 一种ups电源控制电路和ups电源
CN108365654B (zh) 一种适用于任意锂电池的无线充电器
US10840814B2 (en) Power conversion system
WO2019128405A1 (zh) 无线充电接收装置、无线充电方法及设备
CN102007677A (zh) 双向dc/dc变换器和电力调节器
CN104811047A (zh) 双向dc/dc变换器及其控制方法
CN105958816B (zh) 一种多单元二极管电容网络和耦合电感高增益直流变换器
CN112436779B (zh) 一种电驱动系统、动力总成以及电动汽车
CN102324852A (zh) 一种多相错相并联双级变换器
CN108964469A (zh) 一种并串联结构的全桥双llc谐振变换器
CN106961220B (zh) 一种具有均流特性的高效并联llc谐振变换器
CN110323959A (zh) 可抑制二次纹波和共模漏电流的单相逆变器及其控制方法
CN103929074B (zh) 单级交流/直流变换器
CN110601525A (zh) 新能源汽车集成车载充电变换系统
US11349341B2 (en) Dynamic tuning using reactive voltages on a series resonator
CN202261028U (zh) 一种多相错相并联双级变换器
CN210075077U (zh) 一种功率因数校正电路及车载充电机
CN209381832U (zh) 充电电源模块、包含其的充电电源以及充电装置
CN208337415U (zh) 一种并串联结构的全桥双llc谐振变换器
CN108092517A (zh) 一种车载充电和dcdc连接的电路
CN109484232A (zh) 充电电源模块、包含其的充电电源以及充电装置

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200803

Address after: Susong Road West and Shenzhen Road North, Hefei Economic and Technological Development Zone, Anhui Province

Patentee after: Weilai (Anhui) Holding Co., Ltd

Address before: 30 Floor of Yihe Building, No. 1 Kangle Plaza, Central, Hong Kong, China

Patentee before: NIO NEXTEV Ltd.