CN209265419U - 一种基于光子自发辐射的高速量子随机数发生器 - Google Patents

一种基于光子自发辐射的高速量子随机数发生器 Download PDF

Info

Publication number
CN209265419U
CN209265419U CN201822238815.XU CN201822238815U CN209265419U CN 209265419 U CN209265419 U CN 209265419U CN 201822238815 U CN201822238815 U CN 201822238815U CN 209265419 U CN209265419 U CN 209265419U
Authority
CN
China
Prior art keywords
interferometer
random number
group
positive integer
interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201822238815.XU
Other languages
English (en)
Inventor
戴微微
朱雪妍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Sino Quantum Communication Technology Co Ltd
Original Assignee
Beijing Sino Quantum Communication Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Sino Quantum Communication Technology Co Ltd filed Critical Beijing Sino Quantum Communication Technology Co Ltd
Priority to CN201822238815.XU priority Critical patent/CN209265419U/zh
Application granted granted Critical
Publication of CN209265419U publication Critical patent/CN209265419U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

本实用新型提出一种基于光子自发辐射的高速量子随机数发生器,包括:一激光光源,用于将激光束输出到干涉仪组中;一干涉仪组,包括n个不等臂干涉仪,用于对输入的激光束发生干涉并将干涉结果输出到探测采样模块组中;一探测采样模块组,用于对干涉结果的干涉强度进行探测采样,生成随机数序列并输出到随机数输出模块组中;一随机数输出模块组,用于对所有的随机数进行输出。本实用新型通过采用多个不等臂的干涉仪的方式,产生了多个激光干涉脉冲,使用光电探测器、模数转换器对多个干涉脉冲进行采样后,可以产生更多的量子随机数,能够显著提升量子随机数发生器的生成速率。

Description

一种基于光子自发辐射的高速量子随机数发生器
技术领域
本实用新型属于量子通信技术领域,尤其是一种基于光子自发辐射的高速量子随机数发生器。
背景技术
量子随机数是一种通过对量子的物理过程、物理现象进行测量采样所产生的随机数。它的量子随机性(quantum randomness)来源于量子力学的不确定性,由量子力学的基本原理所保证,具有清晰的物理图像和物理基础。量子力学所内禀的不确定性使得通过测量量子信号源获得的量子随机数具有天然的随机性,且不受初始条件或外界环境的影响,其安全性较高,适用于各种安全性要求较高的应用场景。
目前随机数发生方案主要包括伪随机数发生器和物理随机数发生器,其中物理随机数发生器可以根据其原理不同又细分为经典物理随机数发生器和量子随机数发生器。伪随机数是基于复杂的数学算法得到的,同一个算法对于给定的初始状态(种子)会生成完全相同的序列,虽然这种序列看起来像是随机的,但实际上这种序列存在长周期性,所以伪随机数不符合真随机数的基本特征,并非真随机数。但对于许多一般的场合,伪随机数发生器已经可以满足实际需要。经典物理随机数发生器的随机信号源来自确定性的经典物理过程,但因为其物理系统往往是复杂体系,所以很难预测产生的随机数,但从理论的角度来看,当获知了其所有初始条件的情况下依然是可以预测的。
量子随机数来源于量子力学内禀的不确定性,具有天然的随机性和清晰的物理基础,是一种真随机数。由于上述优点,国际上许多科研机构对其理论和应用进行了深入研究,同时一些公司也陆续推出了商用化的量子随机数发生器。
基于激光相位波动的量子随机数发生器方案介绍:随机数产生速率是量子随机数发生器的关键指标,为了显著得提高量子随机数的发生速率,许多基于连续变量测量的量子随机数发生器方案被提出,例如基于激光相位波动(laser phase fluctuations)的量子随机数产生方案。激光二极管发射出来的光子来自于两种机制:受激辐射 (stimulatedemission)与自发辐射(spontaneousemission)。在标准的量子光学模型中,受激辐射产生的光子通常被认为具有固定的相位,而自发辐射产生的光子,其相位是随机的。因此,激光二极管发出的光子的总相位总是随着时间在波动,可以作为产生量子随机数的随机变量。
现有方案如图1所示,使用激光二极管产生激光作为量子随机信号源,激光进入一个单臂长差的不等臂干涉仪,相位的随机波动转化为光强的随机波动,使用一个高速光电探测器(Photon Detector)探测转化为噪声形式的电信号,最终被模数转换器(ADC) 采集并数字化为原始随机数,原始随机数经实时后处理后形成量子随机数。
模数转换器是量子随机数获取核心器件,该器件的合理选择对整个量子随机数发生器至关重要。选择模数转换器芯片时需要考虑分辨率和采样率两个关键指标。基于香农采样定理,只有采样频率超过被采样信号最大频率的两倍以上,才能避免发生频谱混叠。在实际应用中,由于被采样信号并非理想的截断谱,为了尽量减少频谱混叠的影响,一般取采样频率为采样信号-3dB频率的3~5倍以上。
但是,发明人在本申请的研究过程中发现,激光二极管产生激光的频率可以到10G至50G(甚至更高),但是市面所售的模数转换器的采样率很少可以超过5G,而且随着模数转换器的采样率增加,其分辨率指标也在降低。例如,采样率为10M时分辨率通常可以达到16~18bit,而采样率达到1G时分辨率只能达到12~14bit,当采样率达到26G 时分辨率只有3bit。(需要特别说明是采样率达到26G的芯片HMCAD5831对中国大陆禁运)
由于上述因素,量子随机数发生器的性能受限于电子学器件性能(特别是高速模数转换器),从而导致随机数生成速率较低的问题。
发明内容
本实用新型所解决的技术问题在于提供一种基于光子自发辐射的高速量子随机数发生器,采用多个不等臂的干涉仪产生多个干涉脉冲,通过模数转换器采样产生更多的量子随机数,实现量子随机数的产生不受电子学器件、特别是高速模数转换器的性能限制,降低了单个分支对模数转换器采样的高速要求,显著提高量子随机数的发生速率。
实现本实用新型目的的技术解决方案为:
一种基于光子自发辐射的高速量子随机数发生器,包括:
一激光光源,用于将激光束输出到干涉仪组中;
一干涉仪组,包括n个不等臂干涉仪,用于对输入的激光束发生干涉并将干涉结果输出到探测采样模块组中;
一探测采样模块组,包括n个光电探测器和n个模数转换器,用于对干涉结果的干涉强度进行探测采样,生成随机数序列并输出到随机数输出模块组中,n为正整数;
一随机数输出模块组,用于对所有的随机数进行输出。
进一步的,本实用新型的基于光子自发辐射的高速量子随机数发生器,激光光源的发光方式为周期脉冲光,发光周期为f,则前后两脉冲光在时域上的时间间隔为 T0=1/f。
进一步的,本实用新型的基于光子自发辐射的高速量子随机数发生器,干涉仪组中的n个不等臂干涉仪之间为并联连接或串联连接,且每个不等臂干涉仪的输出端均串联一光电探测器和一模数转换器。
进一步的,本实用新型的基于光子自发辐射的高速量子随机数发生器,第p个不等臂干涉仪的臂长差Lp满足:使第ap个光脉冲和第ap+ip个光脉冲干涉,即 Lp=c·ip·T0/n',1≤p≤n,p为正整数,c为光速,ip为正整数,每个不等臂干涉仪的 ip值均不相等,ap为正整数且ap>1,n'为光纤折射率。
进一步的,本实用新型的基于光子自发辐射的高速量子随机数发生器,干涉仪组中的n个不等臂干涉仪分为2组,第一组与第二组之间为串联连接,第一组包括m个干涉仪,第二组包括n-m个干涉仪,同一组内各干涉仪为并联连接,且每个不等臂干涉仪的输出端均串联一光电探测器和一模数转换器。
进一步的,本实用新型的基于光子自发辐射的高速量子随机数发生器,第一组中第 q个不等臂干涉仪的臂长差Lq满足:使第aq个光脉冲和第aq+iq个光脉冲干涉,即 Lq=c·iq·T0/n',1≤q≤m,q为正整数,c为光速,iq为正整数,每个不等臂干涉仪的iq值均不相等,aq为正整数且aq>1,n'为光纤折射率;
第二组中第r个不等臂干涉仪的臂长差Lr满足:使第ar个光脉冲和第ar+ir个光脉冲干涉,即Lr=c·ir·T0/n',1≤r≤n-m,r为正整数,ir为正整数,每个不等臂干涉仪的ir值均不相等,ir≠iq,ar为正整数且ar>1。
本实用新型采用以上技术方案与现有技术相比,具有以下技术效果:
1、本实用新型的基于光子自发辐射的高速量子随机数发生器采用多个不等臂的干涉仪产生多个干涉脉冲,降低了单个分支对模数转换器采样的高速要求,显著提高了随机数的产生速率。
2、本实用新型的基于光子自发辐射的高速量子随机数发生器实现量子随机数的产生不受电子学器件、特别是高速模数转换器的性能限制。
3、本实用新型的基于光子自发辐射的高速量子随机数发生器相比现有技术的随机数发生器能够产生更多的量子随机数。
附图说明
图1是基于相位波动的量子随机数发生器的示意图;
图2是本实用新型的基于光子自发辐射的高速量子随机数发生器的干涉仪组并联方式示意图;
图3是本实用新型的基于光子自发辐射的高速量子随机数发生器的干涉仪组串联方式示意图;
图4是本实用新型的基于光子自发辐射的高速量子随机数发生器的干涉仪组串并联结合方式示意图。
具体实施方式
下面详细描述本实用新型的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本实用新型,而不能解释为对本实用新型的限制。
一种基于光子自发辐射的高速量子随机数发生器,包括:一激光光源,用于将激光束输出到干涉仪组中;一干涉仪组,包括n个不等臂干涉仪,用于对输入的激光束发生干涉并将干涉结果输出到探测采样模块组中;一探测采样模块组,包括n个光电探测器和n个模数转换器,用于对干涉结果的干涉强度进行探测采样,生成随机数序列并输出到随机数输出模块组中,n为正整数;一随机数输出模块组,用于对所有的随机数进行输出。
实施例1
一种基于光子自发辐射的高速量子随机数发生器,包括:
一激光光源,用于将激光束输出到干涉仪组中。该激光光源的发光方式为周期脉冲光,发光周期为f,则前后两脉冲光在时域上的时间间隔为T0=1/f。因激光器发光为脉冲光,所以随意任意两脉冲间的相位都随机,发生干涉后,干涉强度也是随机的。
一干涉仪组,包括n个不等臂干涉仪,用于对输入的激光束发生干涉并将干涉结果输出到探测采样模块组中。如图2所示,干涉仪组中的n个不等臂干涉仪之间为并联连接,且每个不等臂干涉仪的输出端均串联一光电探测器和一模数转换器。第p个不等臂干涉仪的臂长差Lp满足:使第ap个光脉冲和第ap+ip个光脉冲干涉,即Lp=c·ip·T0/n', 1≤p≤n,p为正整数,c为光速,ip为正整数,每个不等臂干涉仪的ip值均不相等,ap为正整数且ap>1,n'为光纤折射率。
例如,第1个不等臂干涉仪的臂长差L1,使第1个光脉冲和第1+1个光脉冲干涉,则第2个不等臂干涉仪的臂长差L2,使第1个光脉冲和第1+2个光脉冲干涉,依次类推。该例子的ap取值为1,当然第1个不等臂干涉仪的ap取值为1,第2个不等臂干涉仪的 ap取值也可以为2,也就是说不同的不等臂干涉仪的ap值可以相同也可以不同。另外该例子的第1个不等臂干涉仪的ip取值为1,第2个不等臂干涉仪的ip取值为2,当然第2 个不等臂干涉仪的ip取值也可以为3,只要每个不等臂干涉仪之间的ip取值均不相同即可。
一探测采样模块组,包括n个光电探测器和n个模数转换器,用于对干涉结果的干涉强度进行探测采样,生成随机数序列并输出到随机数输出模块组中,n为正整数。每个干涉仪干涉后得到的不同干涉结果都需要一个探测采样组件,对随机的干涉强度进行探测采样,进而得出随机数。
一随机数输出模块组,用于对所有的随机数进行输出。对所有分支的随机数进行数据处理,综合得到总的随机数产生速率。由此可知,不仅降低了单个分支对ADC采样的高速要求,而且总的随机数产生速率并没有降低。
实施例2
一种基于光子自发辐射的高速量子随机数发生器,包括:
一激光光源,用于将激光束输出到干涉仪组中。该激光光源的发光方式为周期脉冲光,发光周期为f,则前后两脉冲光在时域上的时间间隔为T0=1/f。
一干涉仪组,包括n个不等臂干涉仪,用于对输入的激光束发生干涉并将干涉结果输出到探测采样模块组中。如图3所示,干涉仪组中的n个不等臂干涉仪之间为串联连接,且每个不等臂干涉仪的输出端均串联一光电探测器和一模数转换器。第p个不等臂干涉仪的臂长差Lp满足:使第ap个光脉冲和第ap+ip个光脉冲干涉,即Lp=c·ip·T0/n', 1≤p≤n,p为正整数,c为光速,ip为正整数,每个不等臂干涉仪的ip值均不相等,ap为正整数且ap>1,n'为光纤折射率。本实施例中n个不等臂干涉仪的ap值以及ip的选择要求与实施例1中不等臂干涉仪的ap值以及ip选择要求一致。
一探测采样模块组,包括n个光电探测器和n个模数转换器,用于对干涉结果的干涉强度进行探测采样,生成随机数序列并输出到随机数输出模块组中,n为正整数。每个干涉仪干涉后得到的不同干涉结果都需要一个探测采样组件,对随机的干涉强度进行探测采样,进而得出随机数。
一随机数输出模块组,用于对所有的随机数进行输出。对所有分支的随机数进行数据处理,综合得到总的随机数产生速率。由此可知,不仅降低了单个分支对ADC采样的高速要求,而且总的随机数产生速率并没有降低。
实施例3
一种基于光子自发辐射的高速量子随机数发生器,包括:
一激光光源,用于将激光束输出到干涉仪组中。该激光光源的发光方式为周期脉冲光,发光周期为f,则前后两脉冲光在时域上的时间间隔为T0=1/f。
一干涉仪组,包括n个不等臂干涉仪,用于对输入的激光束发生干涉并将干涉结果输出到探测采样模块组中。如图4所示,干涉仪组中的n个不等臂干涉仪分为2组,第一组与第二组之间为串联连接,第一组包括m个干涉仪,第二组包括n-m个干涉仪,同一组内各干涉仪为并联连接,且每个不等臂干涉仪的输出端均串联一光电探测器和一模数转换器。本实施例中n个不等臂干涉仪的ap值以及ip的选择要求与实施例1中不等臂干涉仪的ap值以及ip选择要求一致。
第一组中第q个不等臂干涉仪的臂长差Lq满足:使第aq个光脉冲和第aq+iq个光脉冲干涉,即Lq=c·iq·T0/n',1≤q≤m,q为正整数,c为光速,iq为正整数,每个不等臂干涉仪的iq值均不相等,aq为正整数且aq>1,n'为光纤折射率;
第二组中第r个不等臂干涉仪的臂长差Lr满足:使第ar个光脉冲和第ar+ir个光脉冲干涉,即Lr=c·ir·T0/n',1≤r≤n-m,r为正整数,ir为正整数,每个不等臂干涉仪的ir值均不相等,ir≠iq,ar为正整数且ar>1。即每个干涉仪要保证不同的臂长差,且能够满足不同间隔的光脉冲发生干涉,产生多组不同的干涉结果。
一探测采样模块组,包括n个光电探测器和n个模数转换器,用于对干涉结果的干涉强度进行探测采样,生成随机数序列并输出到随机数输出模块组中,n为正整数。每个干涉仪干涉后得到的不同干涉结果都需要一个探测采样组件,对随机的干涉强度进行探测采样,进而得出随机数。
一随机数输出模块组,用于对所有的随机数进行输出。对所有分支的随机数进行数据处理,综合得到总的随机数产生速率。这样就可以降低单个分支对ADC采样的高速要求,而总的随机数产生速率并没有降低。
本实用新型的方案通过采用多个不等臂干涉仪的方式,产生了多个激光干涉脉冲,使用光电探测器、模数转换器对多个干涉脉冲进行采样后,可以产生更多的量子随机数,能够显著提升量子随机数发生器的生成速率。
以上所述仅是本实用新型的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本实用新型原理的前提下,还可以做出若干改进,这些改进应视为本实用新型的保护范围。

Claims (6)

1.一种基于光子自发辐射的高速量子随机数发生器,其特征在于,包括:
一激光光源,用于将激光束输出到干涉仪组中;
一干涉仪组,包括n个不等臂干涉仪,用于对输入的激光束发生干涉并将干涉结果输出到探测采样模块组中;
一探测采样模块组,包括n个光电转探测器和n个模数换器,用于对干涉结果的干涉强度进行探测采样,生成随机数序列并输出到随机数输出模块组中,n为正整数;
一随机数输出模块组,用于对所有的随机数进行输出。
2.根据权利要求1所述的基于光子自发辐射的高速量子随机数发生器,其特征在于,激光光源的发光方式为周期脉冲光,发光周期为f,则前后两脉冲光在时域上的时间间隔为T0=1/f。
3.根据权利要求2所述的基于光子自发辐射的高速量子随机数发生器,其特征在于,干涉仪组中的n个不等臂干涉仪之间为并联连接或串联连接,且每个不等臂干涉仪的输出端均串联一光电探测器和一模数转换器。
4.根据权利要求3所述的基于光子自发辐射的高速量子随机数发生器,其特征在于,第p个不等臂干涉仪的臂长差Lp满足:使第ap个光脉冲和第ap+ip个光脉冲干涉,即Lp=c·ip·T0/n',1≤p≤n,p为正整数,c为光速,ip为正整数,每个不等臂干涉仪的ip值均不相等,ap为正整数且ap>1,n'为光纤折射率。
5.根据权利要求2所述的基于光子自发辐射的高速量子随机数发生器,其特征在于,干涉仪组中的n个不等臂干涉仪分为2组,第一组与第二组之间为串联连接,第一组包括m个干涉仪,第二组包括n-m个干涉仪,同一组内各干涉仪为并联连接,且每个不等臂干涉仪的输出端均串联一光电探测器和一模数转换器。
6.根据权利要求5所述的基于光子自发辐射的高速量子随机数发生器,其特征在于,第一组中第q个不等臂干涉仪的臂长差Lq满足:使第aq个光脉冲和第aq+iq个光脉冲干涉,即Lq=c·iq·T0/n',1≤q≤m,q为正整数,c为光速,iq为正整数,每个不等臂干涉仪的iq值均不相等,aq为正整数且aq>1,n'为光纤折射率;
第二组中第r个不等臂干涉仪的臂长差Lr满足:使第ar个光脉冲和第ar+ir个光脉冲干涉,即Lr=c·ir·T0/n',1≤r≤n-m,r为正整数,ir为正整数,每个不等臂干涉仪的ir值均不相等,ir≠iq,ar为正整数且ar>1。
CN201822238815.XU 2018-12-28 2018-12-28 一种基于光子自发辐射的高速量子随机数发生器 Active CN209265419U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201822238815.XU CN209265419U (zh) 2018-12-28 2018-12-28 一种基于光子自发辐射的高速量子随机数发生器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201822238815.XU CN209265419U (zh) 2018-12-28 2018-12-28 一种基于光子自发辐射的高速量子随机数发生器

Publications (1)

Publication Number Publication Date
CN209265419U true CN209265419U (zh) 2019-08-16

Family

ID=67566007

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201822238815.XU Active CN209265419U (zh) 2018-12-28 2018-12-28 一种基于光子自发辐射的高速量子随机数发生器

Country Status (1)

Country Link
CN (1) CN209265419U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112511298A (zh) * 2020-12-02 2021-03-16 中南大学 基于玻色采样的随机数生成方法及量子密钥分发方法
CN114816337A (zh) * 2022-07-01 2022-07-29 国开启科量子技术(北京)有限公司 模拟信号最佳采样位置确定方法及量子随机数生成装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112511298A (zh) * 2020-12-02 2021-03-16 中南大学 基于玻色采样的随机数生成方法及量子密钥分发方法
CN114816337A (zh) * 2022-07-01 2022-07-29 国开启科量子技术(北京)有限公司 模拟信号最佳采样位置确定方法及量子随机数生成装置
CN114816337B (zh) * 2022-07-01 2023-03-03 国开启科量子技术(北京)有限公司 模拟信号最佳采样位置确定方法及量子随机数生成装置

Similar Documents

Publication Publication Date Title
CN106354476B (zh) 基于激光相位涨落的量子随机数发生器和量子随机数生成方法
CN110851111B (zh) 一种高安全的源无关量子随机数产生装置与方法
CN102637122B (zh) 基于物理噪声的奇偶性生成真随机数的方法及其系统
CN109540207B (zh) 一种计算型分布式光纤传感方法及系统
CN209265419U (zh) 一种基于光子自发辐射的高速量子随机数发生器
CN109240645A (zh) 一种量子随机数发生器及量子随机数生成方法
CN104216678B (zh) 一种无偏真随机数发生器及随机数生成方法
CN108563422B (zh) 随机数发生器及随机数发生方法
CN209103272U (zh) 一种量子随机数发生器
CN103942030A (zh) 一种真随机数产生方法以及装置
CN103793198A (zh) 基于放大真空态的量子随机数发生器及方法
CN106716266B (zh) 时间测量装置、时间测量方法、发光寿命测量装置及发光寿命测量方法
CN102508634A (zh) 一种基于y分支波导的光量子随机数发生器
CN103713879A (zh) 基于光子到达时间的无偏高速量子随机数发生器
CN101621287A (zh) 基于混沌激光的真随机码发生装置及其发生方法
CN209433389U (zh) 一种基于多纵模激光器的高速量子随机数发生装置
CN206224439U (zh) 基于激光相位涨落的量子随机数发生器
CN104243018B (zh) 一种色散测量系统
CN106610303B (zh) 一种基于fft和编码的botdr传感方法和系统
JP2022507037A (ja) 高分解能多重化システム
CN110702239B (zh) 一种无限散射单光子探测光时域反射测量方法
CN108536424A (zh) 一种基于真空涨落的量子随机数发生器
CN105606345A (zh) 基于波长编码技术光电探测器频响的测试装置及测试方法
CN109783059B (zh) 一种量子随机数产生方法及装置
CN208172776U (zh) 一种基于激光器相位涨落的量子随机数生成器

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
PP01 Preservation of patent right

Effective date of registration: 20220916

Granted publication date: 20190816

PP01 Preservation of patent right