CN209008845U - A kind of high aspect ratio wing of high lift-rising - Google Patents

A kind of high aspect ratio wing of high lift-rising Download PDF

Info

Publication number
CN209008845U
CN209008845U CN201821584842.6U CN201821584842U CN209008845U CN 209008845 U CN209008845 U CN 209008845U CN 201821584842 U CN201821584842 U CN 201821584842U CN 209008845 U CN209008845 U CN 209008845U
Authority
CN
China
Prior art keywords
wing
flap
lift
aspect ratio
wing flap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201821584842.6U
Other languages
Chinese (zh)
Inventor
姚皆可
冯文梁
陈斌
张斌
曹世坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Aircraft Industrial Group Co Ltd
Original Assignee
Chengdu Aircraft Industrial Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Aircraft Industrial Group Co Ltd filed Critical Chengdu Aircraft Industrial Group Co Ltd
Priority to CN201821584842.6U priority Critical patent/CN209008845U/en
Application granted granted Critical
Publication of CN209008845U publication Critical patent/CN209008845U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The utility model belongs to aircraft aerodynamic arrangement design field more particularly to a kind of high aspect ratio wing of high lift-rising.It is made of main wing 1 and wing flap 2.By the design to flap gap parameter Gap, seam lap-joint Over-lap, the high lift-rising effect of high aspect ratio wing is realized, guarantee that there is good takeoff and landing performance and landing safety while high cruise performance.The utility model is simple and easy, and wing flap is deflected to simple deflection mechanism, does not need complicated wing flap withdrawing mechanism, can reduce the complexity and reliability of system.

Description

A kind of high aspect ratio wing of high lift-rising
Technical field
The utility model belongs to aircraft aerodynamic arrangement design field more particularly to a kind of high aspect ratio wing of high lift-rising.
Background technique
The design of aircraft wing aerodynamic arrangement must combine high low-speed performance, and often exist therebetween conflicting Relationship.In high-performance cruise, it is desirable that wing area is as small as possible, and aspect ratio is as big as possible, to reduce wing aerodynamic resistance, improves Cruise lift resistance ratio, and then promotes voyage and endurance, improves cruise performance, however since structural strength etc. limits, wingspan length is not May be infinitely great, therefore when wingspan length can not increase, the increase of aspect ratio can only be realized by reducing wing chord length, this It will cause the reduction of wing area;In the low speed landing stage, it is desirable that wing area is as big as possible, to increase lower-speed state lift System reduces speed of departing, reduces landing speed, reduces distance of landing run, reduce the probability that aircraft guns off the runway, promoted Landing safety.Therefore, in wing design, contradiction between height is solved, it is necessary to which design can increase low speed on wing The movable rudder face of landing stage lift, i.e. lift-increasing flap.Traditional camber flap is to increase lift by increasing wing camber The purpose of coefficient, however be easy to separate from the side for generating suction due to flowing, tail is simultaneously unstable, the flap under middle isogonic With regard to separating on the wing, so bring lift increase is not considerable.And single slotted flap can be set by reasonable seam parameter Meter improves the flow field quality between seam, improves the boundary layer conditions on aerofoil by seam jet stream, and then enhance boundary layer The ability of adverse pressure gradient is born, to delay to separate, realizes the purpose that available lift is significantly increased.
Separately having Chinese patent notification number is CN106542081A, and a kind of wing flap design is disclosed on March 29th, 2017. A kind of single seam fowler formula wing flap design of (1) -0313 aerofoil profile of NASA MS, the wing flap chord length account for the 29% of the total chord length of aerofoil profile, the i.e. flap The wing is by 71% position of aerofoil profile chord length, until airfoil trailing edge;The relative radius on wing flap section head is 0.7%, and wing flap cuts open The relative thickness in face is 7%;The wing flap cabin of the wing flap extends to always wing flap chord length since 71% position of aerofoil profile string 96% position, therefore aerofoil profile upper surface is actually to be overlapped with flap upper surface from aerofoil profile chord length 96% to 100%;With calculating In main plane and the flap when wing flap expansion of fluid dynamics techniques (CFD) numerical simulation calculation NASA MS (1) -0313 aerofoil profile Air-flow mobility status on the wing, calculated result show that the air-flow of main plane lower surface can actually accelerate to flow through wing flap and main plane Between gap, and be directly injected in flap upper surface with higher speed.The seam of above-mentioned patent is designed for wing flap The effect is unsatisfactory for lift-rising.
Utility model content
In order to overcome the drawbacks of the prior art, the utility model provides a kind of high aspect ratio wing of high lift-rising, mesh Be reach the takeoff and landing stage improve lift, promoted landing safety.
In order to solve the above-mentioned technical problem, the technical solution adopted in the utility model is:
A kind of high aspect ratio wing of high lift-rising, including main wing and wing flap, it is characterised in that: point of the wing flap and main wing Boundary line is formed by connecting by 3 points of burble point A, B, C with curve;The burble point A is the separation of the wing flap and main wing of upper surface of the airfoil Point, burble point A are 0.81 times of local chord, and the burble point C is the wing flap of wing lower surface and the burble point of main wing, burble point C is 0.736 times of local chord, and burble point B is wing flap leading edge point, and burble point B is 0.71 times of local chord.The local string When a length of wing flap does not deflect, some opened up along wing put to the end to section First Point apart from (see figure 1).
Deflection angle of the wing flap 2 in takeoff and landing is 10 °~40 °, preferably 30 °.
Flap gap width after the wing flap deflection is 0.005~0.03 times of local chord, preferably 0.01 times of locality Chord length.
The amount of lap of the flap gap is.0.02~0.07 times of local chord, preferably 0.06 times of local chord.
The utility model has the advantage that
The lift in takeoff and landing stage can be significantly increased in the trailing edge single slotted flap design of the utility model, reduce Fly and landing speed, reduction distance of landing run reduce the probability for flying to gun off the runway, promote landing safety.
Detailed description of the invention
Fig. 1 is wing flap shape and deflection design diagram;
Fig. 2 is influence curve figure of the seam width to lift-rising effect;
Fig. 3 is influence curve figure of the seam amount of lap to lift-rising effect;
Fig. 4 is two sections of single slotted flap schematic diagrames inside and outside high aspect ratio wing rear;
Fig. 5 is different wing flap lift-rising effect contrast figures (results of wind tunnel).
Marked in the figure: 1, main wing, 2, wing flap, 3, local chord, 4, wing rear spar, 5, main wing envelope edge strip.
Specific embodiment
The utility model is further elaborated with reference to the accompanying drawing, but the utility model is not limited to following embodiment, The method is conventional method unless otherwise instructed, and the material can be gotten from open business unless otherwise instructed.
Whether process one: marking on wing structure back rest 4(figure, with) it is 0.69 times of local chord 3, wing flap, which must not design, to be surpassed The wing structure back rest 4 out, in the burble point A of 3 Position Design wing flap and main wing of 0.81 times of local chord of upper surface of the airfoil, in wing The burble point C of 0.736 times of lower surface local chord 3 Position Design wing flap and main wing, selects point B appropriate before burble point, 0.71 times of local chord 3 is wing flap leading edge point, and spline curve is used to connect 3 points of A, B, C lines of demarcation as wing flap 2 and main wing 1, Designing 2 deflection angle of wing flap is 30 °, is specifically shown in Fig. 1;
Process two: flap gap width design.Seam width indication is shown in Fig. 1.Based on dimensional airfoil, seam is kept to take The amount of connecing Over-lap is that 0.015 times of local chord 3 is constant, using CFD means, the lift that wing flap under different seam width is generated Calculating analysis is carried out, calculating state is α=6 °, Ma=0.2, Re=4.66 × 106, as a result see that Fig. 2, Cong Tuzhong see, it is wide with seam Degree increases, and lift coefficient first increases and reduces afterwards, and when Gap is 0.01 times of local chord 3, lift coefficient reaches maximum, shows at this time Flap gap amount of jet is most strong, and to improving, flow separation effect is most significant, therefore, chooses 0.01 times of local chord 3 of seam width For the best seam width of wing flap;
Process three: flap gap amount of lap design.Seam amount of lap schematic diagram is shown in Fig. 1.Based on dimensional airfoil, keep Seam width G ap is that 0.016 times of local chord 3 is constant, using CFD means, the liter that wing flap under different seam amounts of lap is generated Power carries out calculating analysis, and calculating state is α=6 °, Ma=0.2, Re=4.66 × 106, as a result see that Fig. 3, Cong Tuzhong see, with seam Road amount of lap increases, and lift coefficient presentation first increases the trend reduced afterwards, reaches when Over-lap is 0.06 times of local chord 3 Maximum shows that the jet stream of wing flap at this time and main wing reaches best match state, has the jet stream of sufficient intensity to produce separation Effect control, and the energy of flow in main plane boundary layer is increased, therefore, choosing 0.06 times of local chord 3 of seam amount of lap is The best seam amount of lap of wing flap;
Process four: designing inside and outside two sections of wing flaps on the high aspect ratio wing that half length is 8.9 meters, and flap gap width is 0.01 times of local chord 3, seam amount of lap are 0.06 times of local chord 3.Final wing flap design parameter is as follows:
Inner segment wing flap length is 1.228 meters, and wing flap is opened up to most inner side apart from 1.01 meters of the aircraft plane of symmetry, wing flap root distance The reserved 0.3 meter of space of wing wing root is that inner segment wing flap installs steering engine consideration, and 1.87 meters of wing flap wing root wing chord length, wing flap chord length are 0.494 meter, seam width be 18.7 millimeters, seam amount of lap is 112.2 millimeters, wing flap wingtip airfoil chord is 1.088 meters a length of, the flap Wing chord is 0.287 meter a length of, seam width is 10.88 millimeters, seam amount of lap is 65.28 millimeters, and angle of flap deflection degree is 30 °, It is specifically shown in Fig. 4.
Outer segment wing flap length is 1.5575 meters, and wing flap root is outer apart from the reserved 0.115 meter of space of inner segment wing flap wingtip Section wing flap installation steering engine considers that wing flap wing root airfoil chord is 1.043 meters a length of, wing flap chord length is 0.274 meter, seam width is 10.43 millimeters, seam amount of lap be 62.58 millimeters, wing flap wingtip airfoil chord is 0.9 meter a length of, wing flap chord length is 0.2376 meter, seam Road width is 9 millimeters, seam amount of lap is 54 millimeters, and angle of flap deflection degree is 30 °, is specifically shown in Fig. 4.
Process five: design processing model in wind tunnel simultaneously carries out wind tunnel test verifying and confirmation to its lift-rising effect, sees figure 5.To see from figure, compared with full machine lift coefficient when no wing flap, camber flap lift coefficient only increases by 0.25 or so, and It is separated in High Angle of Attack, lift-rising effect decreases, and single slotted flap lift coefficient increase described in the utility model reaches 0.5 or so, it is twice compared with lift-rising effect caused by camber flap, simultaneously as seam jet stream improves wing flap and main wing Separation, therefore single slotted flap described in the utility model is still fine in the small lift-rising effect of High Angle of Attack.
By quality and Performance Evaluation, trailing edge single slotted flap designed by the utility model can make to take off from Ground speed reduces 35km/h, and rotation speed of taking off reduces 27km/h, and landing speed reduces 31km/h, and distance of landing run reduces The performance and landing safety in landing stage greatly improved in 220m.

Claims (4)

1. a kind of high aspect ratio wing of high lift-rising, including main wing (1) and wing flap (2), it is characterised in that: the wing flap (2) with The line of demarcation of main wing (1) is formed by connecting by 3 points of burble point A, B, C with curve;The burble point A is the wing flap of upper surface of the airfoil (2) with the burble point of main wing (1), burble point A is 0.81 times of local chord (3), and the burble point C is the wing flap of wing lower surface (2) with the burble point of main wing envelope edge strip (5), burble point C is 0.736 times of local chord (3), and burble point B is wing flap leading edge point, point It is 0.71 times of local chord (3) from point B.
2. a kind of high aspect ratio wing of high lift-rising according to claim 1, it is characterised in that: the wing flap (2) is flying Deflection angle when machine landing is 10 °~40 °.
3. a kind of high aspect ratio wing of high lift-rising according to claim 1, it is characterised in that: wing flap (2) deflection Flap gap width afterwards is 0.005~0.03 times of local chord (3).
4. a kind of high aspect ratio wing of high lift-rising according to claim 1, it is characterised in that: the flap gap is taken The amount of connecing is 0.02~0.07 times of local chord (3).
CN201821584842.6U 2018-09-28 2018-09-28 A kind of high aspect ratio wing of high lift-rising Active CN209008845U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201821584842.6U CN209008845U (en) 2018-09-28 2018-09-28 A kind of high aspect ratio wing of high lift-rising

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201821584842.6U CN209008845U (en) 2018-09-28 2018-09-28 A kind of high aspect ratio wing of high lift-rising

Publications (1)

Publication Number Publication Date
CN209008845U true CN209008845U (en) 2019-06-21

Family

ID=66834688

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201821584842.6U Active CN209008845U (en) 2018-09-28 2018-09-28 A kind of high aspect ratio wing of high lift-rising

Country Status (1)

Country Link
CN (1) CN209008845U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109131833A (en) * 2018-09-28 2019-01-04 成都飞机工业(集团)有限责任公司 A kind of high aspect ratio wing of high lift-rising
CN113704886A (en) * 2021-08-16 2021-11-26 成都飞机工业(集团)有限责任公司 Rapid and preferred seam channel airfoil design method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109131833A (en) * 2018-09-28 2019-01-04 成都飞机工业(集团)有限责任公司 A kind of high aspect ratio wing of high lift-rising
CN113704886A (en) * 2021-08-16 2021-11-26 成都飞机工业(集团)有限责任公司 Rapid and preferred seam channel airfoil design method
CN113704886B (en) * 2021-08-16 2023-10-03 成都飞机工业(集团)有限责任公司 Rapid and preferential design method for seam airfoil

Similar Documents

Publication Publication Date Title
CN109131833A (en) A kind of high aspect ratio wing of high lift-rising
US10773796B2 (en) Wing-tip arrangement having vortilons attached to a lower surface, and aircraft having such a wing-tip arrangement and the use of vortilons on a wing-tip arrangement
US20110260008A1 (en) Fluid flow control device for an aerofoil
CN105129090B (en) A kind of supersonic aircraft of low-resistance quick-fried layout in a low voice
CN108639339B (en) Pneumatic layout of unmanned aerial vehicle
US20110309202A1 (en) Wingtec Holding Limited
US10384766B2 (en) Aircraft wing roughness strip and method
CN202320772U (en) High lift device of double-aisle large-type passenger plane
CN110525679B (en) Hypersonic embedded waverider design method
CN103231795A (en) Corporate aircraft engine upper placement and front swept wing duck type layout
CN108750073B (en) Variable wing leading edge with both subsonic and supersonic aerodynamic performance
CN209008845U (en) A kind of high aspect ratio wing of high lift-rising
US11718386B2 (en) Cupola fairing for an aircraft and method for fabricating the same
CN104608919A (en) Leading-edge slat with drainage groove and designing method of drainage groove
CN107336842A (en) A kind of hypersonic rider canard aerodynamic arrangement
CN108502138A (en) A kind of buzzard-type wing expanded letter high subsonic flight device aerodynamic arrangement using leading edge braced wing
CN103419935A (en) Vertical take-off and landing aircraft in saucer-shaped arrangement and based on novel high-lift device
CN103419923A (en) Thrust gain device with high-speed wall attached air flow
CN104494843B (en) A kind of aircraft slotted flap design method
CN208216978U (en) A kind of aircraft horizontal tail root vortex generator
CN106828872A (en) The HAE tandem rotor aircraft aerodynamic arrangement of empennage is supported using rear wing high
CN107264774B (en) A kind of M shape wing high subsonic flight device aerodynamic arrangement using leading edge braced wing
CN109895996A (en) A kind of high-lift wing of light-duty sport plane
US20190329874A1 (en) Aircraft wing and wing tip device
CN109484622A (en) A kind of high subsonic speed sweep wing aircraft aerodynamic arrangement using leading edge braced wing

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant