CN208982182U - Lng冷能斯特林发电系统 - Google Patents

Lng冷能斯特林发电系统 Download PDF

Info

Publication number
CN208982182U
CN208982182U CN201821852482.3U CN201821852482U CN208982182U CN 208982182 U CN208982182 U CN 208982182U CN 201821852482 U CN201821852482 U CN 201821852482U CN 208982182 U CN208982182 U CN 208982182U
Authority
CN
China
Prior art keywords
lng
cold energy
energy stirling
cold
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201821852482.3U
Other languages
English (en)
Inventor
杨豫森
崔华
徐波
谭智
陈辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hempel Technology Development (beijing) Co Ltd
Hepu Technology Development Beijing Co Ltd
Original Assignee
Hempel Technology Development (beijing) Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hempel Technology Development (beijing) Co Ltd filed Critical Hempel Technology Development (beijing) Co Ltd
Priority to CN201821852482.3U priority Critical patent/CN208982182U/zh
Application granted granted Critical
Publication of CN208982182U publication Critical patent/CN208982182U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

本实用新型公开了一种LNG冷能斯特林发电系统,包括LNG储罐、LNG液相管路、LNG气相管路、冷能斯特林发电装置、LNG加热器,LNG储罐的出液口连通于LNG液相管路,冷能斯特林发电装置的冷端连接LNG液相管路以吸收LNG冷能,冷能斯特林装置的热端连接外界热源,LNG加热器通过管路与冷能斯特林装置的冷端连接,在冷能斯特林发电装置内部完成换热后的气相天然气通过LNG加热器加热以达到管道天然气或天然气撬罐车的温度压力要求后,可通过输气管道供用户使用。本实用新型有效利用LNG冷能和热端温差造成工作介质的冷却压缩和吸热膨胀,从而带动发电机发电。同时,冷能斯特林发电系统可在低压LNG系统中应用,具有结构简单、适用性强的优点。

Description

LNG冷能斯特林发电系统
技术领域
本实用新型涉及液化天然气(LNG)领域,具体涉及一种LNG冷能斯特林发电系统。
背景技术
根据我国能源中长期发展规划,天然气将成为我国能源发展战略的一个亮点和绿色能源支柱之一。在未来的时间内,我国将会大量进口天然气,其中大部分天然气将以液化天然气(LNG)的方式输送到中国。大量进口的LNG,同时携带着大量的冷能,如果不能有效地利用这些冷能,将会造成巨大的能源浪费和环境污染。因此,如何有效地利用这些冷能,就变得极为重要与必要。而利用LNG冷能发电,一方面可以有效的利用LNG的高品位冷能;另一方面,在获得巨大的经济效益的同时,不仅对天然气本身没有消耗,而且可以减少LNG气化过程中的环境污染。这对加快天然气在我国能源消耗结构中的广度与深度,提高LNG的能源利用效率,实现国家可持续发展都是非常必要的。
目前LNG冷能发电以直接膨胀法或二次媒介朗肯循环法为主,这两种方法都存在发电效率低、系统和设备结构复杂的确定,而且膨胀法仅适用于存在高压LNG的工况,对于低压LNG系统无法使用。
实用新型内容
针对现有技术的不足,本实用新型旨在提供一种结构简单、适用性强的、能在低压条件下使用的LNG冷能斯特林发电系统。
为了实现上述目的,本实用新型采用如下技术方案:
一种LNG冷能斯特林发电系统,包括LNG储罐、LNG液相管路、LNG气相管路、冷能斯特林发电装置、LNG加热器,LNG储罐的出液口连通于LNG液相管路,冷能斯特林发电装置的冷端连接LNG液相管路以吸收LNG冷能,冷能斯特林装置的热端连接外界热源,LNG气相管路分别连通于冷能斯特林装置的冷端和LNG加热器以将冷能斯特林装置的冷端的气相天然气传送到LNG加热器,LNG加热器的输出端连通于天然气的传送端。具体地,天然气的传送端可为管道天然气或天然气撬罐车。
进一步,所述LNG储罐储存的内容物为-170℃~-150℃液相LNG。液化天然气(LNG)是天然气经压缩、冷却至其沸点温度后变成液体,通常液化天然气储存在-170℃~-150℃、0.1MPa左右的低温储存罐内。
再进一步,所述冷能斯特林发电装置的冷端内设有换热盘管,液相LNG在换热盘管外部蒸发成为低温天然气。由于换热盘管外部流通低温的LNG,故换热盘管的材质为耐低温的材质。
进一步,所述换热盘管连通于冷能斯特林发电装置的气体工作介质管路,用于与从LNG液相管路而来的液相LNG换热。
再进一步,所述冷能斯特林发电装置的气体工作介质为在-170℃以下还能保持气态的气体。具体地,气体工作介质为氢气、氦气、氩气或其他惰性气体中的任意一种。
进一步,所述冷能斯特林发电装置的热端所用热源为海水、地表水、空气、烟气余热、工业余热中的任意一种。
再进一步,所述LNG加热器的热源为海水、地表水、空气、烟气余热、工业余热中的任意一种。
LNG冷能斯特林发电系统的工作方法,包括如下步骤:
S1液相LNG从LNG储罐通过LNG液相管路传送到冷能斯特林发电装置的冷端;
S2冷能斯特林发电装置的热端为冷能斯特林发电装置内部的工作介质提供热能,工作介质受热膨胀,经液相LNG冷却后体积压缩,带动气缸做活塞运动,从而输出动力带动发电机发电;
具体工作原理为:工作介质通过冷能斯特林发电装置的热端通入散热盘管内部,工作介质受热膨胀,液相LNG通过LNG液相管路进入冷能斯特林发电装置的冷端的散热盘管的外部与散热盘管内部的工作介质换热,工作介质冷却压缩,带动气缸做活塞运动,从而输出动力带动发电机发电,工作介质在散热盘管内循环使用,液相LNG在换热盘管外部受热汽化为低温气相天然气。
S3受热后的液相LNG汽化为低温气相天然气从冷能斯特林发电装置的冷端排出通过LNG气相管路传送到LNG加热器,通过加热达到管道天然气或天然气撬罐车的温度压力要求后传送到输气管道以供使用。
本实用新型的有益技术效果:
1、利用液相LNG和热端温差造成冷能斯特林发电装置内部的工作介质的冷却压缩和吸热膨胀,带动气缸做活塞运动,从而输出动力带动发电机发电,同时,冷能斯特林发电系统可在低压LNG系统中应用;
2、换热后的气相天然气在加热加压以达到管道天然气或天然气撬罐车的温度压力要求后,可通过输气管道供用户使用;
3、液相LNG作为冷端的冷能,冷能斯特林发电装置无需在冷端另外设置冷却散热器,简化了结构和步骤。
附图说明
图1为LNG冷能斯特林发电系统的结构图;
图2为LNG的温焓状态随压力变化曲线图。
附图标记
LNG储罐1;冷能斯特林发电装置2;冷端3;热端4;热端热源5;LNG加热器6;LNG加热器热源7。
具体实施方式
以下将结合附图对本实用新型作进一步的描述,需要说明的是,以下实施例以本技术方案为前提,给出了详细的实施方式和具体的操作过程,但本实用新型的保护范围并不限于本实施例。
一种LNG冷能斯特林发电系统,包括LNG储罐1、LNG液相管路、LNG气相管路、冷能斯特林发电装置2、LNG加热器6,LNG储罐1的出液口连通于LNG液相管路,冷能斯特林发电装置的冷端3连接LNG液相管路以吸收LNG冷能,冷能斯特林装置的热端4连接外界热端热源5,LNG气相管路分别连通于冷能斯特林装置的冷端3和LNG加热器6以将冷能斯特林装置的冷端3的气相天然气传送到LNG加热器6,LNG加热器6的输出端连通于天然气的传送端。具体地,天然气的传送端可为管道天然气或天然气撬罐车。
进一步,所述LNG储罐1储存的内容物为-170℃~-150℃液相LNG。液化天然气(LNG)是天然气经压缩、冷却至其沸点温度后变成液体,通常液化天然气储存在-170℃~-150℃、0.1MPa左右的低温储存罐内。
再进一步,所述冷能斯特林发电装置的冷端3内设有换热盘管,液相LNG在换热盘管外部蒸发成为低温天然气。由于换热盘管外部流通低温的LNG,故换热盘管的材质为耐低温的材质。
进一步,所述换热盘管连通于冷能斯特林发电装置2的气体工作介质管路,用于与从LNG液相管路而来的液相LNG换热。
再进一步,所述冷能斯特林发电装置2的气体工作介质为在-170℃以下还能保持气态的气体。具体地,气体工作介质为氢气、氦气、氩气或其他惰性气体中的任意一种。
进一步,所述冷能斯特林发电装置的热端4所用的热端热源5为海水、地表水、空气、烟气余热、工业余热中的任意一种。
再进一步,所述LNG加热器6的所用的LNG加热器热源7为海水、地表水、空气、烟气余热、工业余热中的任意一种。
如图1所示,LNG冷能斯特林发电系统的工作方法,包括如下步骤:
S1-170℃~-150℃的液相LNG从LNG储罐1通过LNG液相管路传送到冷能斯特林发电装置的冷端3,在本实施例中,液相LNG的温度为-162℃;
S2冷能斯特林发电装置的热端4经热端热源5加热为冷能斯特林发电装置2的换热盘管内部的工作介质提供热量,液相LNG在换热盘管外部受热汽化为低温天然气,低温天然气冷却换热盘管内部的工作介质,利用冷端3和热端4温差造成工作介质的冷却压缩和吸热膨胀,带动气缸做活塞运动,从而输出动力带动发电机发电,所述低温天然气温度为-35℃;
S3受热后的液相LNG汽化为-35℃的低温气相天然气从冷能斯特林发电装置的冷端3排出通过LNG气相管路传送到LNG加热器6,通过LNG加热器热源7加热达到29℃要求后传送到输气管道以供使用。
如图2所示,可以通过LNG冷量与LNG的温度压力的变化曲线图快速查询LNG冷量的大概数值,但准确的冷量技术需要按照下面的计算公式进行计算。
上述LNG冷能斯特林发电系统的冷能应用冷量及发电量满足下面的计算公式:
1.冷能利用及损失能量平衡式:
Q=FLNG*(T-T0)*CpLNG=QStirling+QHeater
其中:斯特林冷能利用总量QStirling=FLNG*(T2-T1)*CpLNG
LNG加热器散热损失QHeater=Q1+Q2+…+Qn
2.冷能利用发电量计算式:
P=PStirling
斯特林发电量PStirling=F工质*Q吸热Se
=F工质*Q吸热*(1-T1’/T2’)*ηe
式中,PStirling斯特林发电机发电量;F工质为斯特林机内循环工质流量;ηS为斯特林发动机热效率,ηe为发电机效率,Q吸热为斯特林机热端吸热量,其决定T2’热端平均温度,T1’为冷端平均温度由斯特林冷能利用总量QStirling决定。
对于本领域的技术人员来说,可以根据以上的技术方案和构思,给出各种相应的改变和变形,而所有的这些改变和变形,都应该包括在本实用新型权利要求的保护范围之内。

Claims (7)

1.一种LNG冷能斯特林发电系统,其特征在于,包括LNG储罐、LNG液相管路、LNG气相管路、冷能斯特林发电装置、LNG加热器,LNG储罐的出液口连通于LNG液相管路,冷能斯特林发电装置的冷端连接LNG液相管路以吸收LNG冷能,冷能斯特林装置的热端连接外界热源,LNG气相管路分别连通于冷能斯特林装置的冷端和LNG加热器以将冷能斯特林装置的冷端的气相天然气传送到LNG加热器,LNG加热器的输出端连通于天然气的传送端。
2.根据权利要求1所述的LNG冷能斯特林发电系统,其特征在于,所述LNG储罐储存的内容物为-170℃~-150℃液相LNG。
3.根据权利要求1所述的LNG冷能斯特林发电系统,其特征在于,所述冷能斯特林发电装置的冷端内设有换热盘管。
4.根据权利要求3所述的LNG冷能斯特林发电系统,其特征在于,所述换热盘管连通于冷能斯特林发电装置的气体工作介质管路,用于与从LNG液相管路而来的液相LNG换热。
5.根据权利要求4所述的LNG冷能斯特林发电系统,其特征在于,所述冷能斯特林发电装置的气体工作介质为在-170℃以下还能保持气态的气体。
6.根据权利要求1所述的LNG冷能斯特林发电系统,其特征在于,所述冷能斯特林发电装置的热端所用热源为海水、地表水、空气、烟气余热、工业余热中的任意一种。
7.根据权利要求1所述的LNG冷能斯特林发电系统,其特征在于,所述LNG加热器的热源为海水、地表水、空气、烟气余热、工业余热中的任意一种。
CN201821852482.3U 2018-11-12 2018-11-12 Lng冷能斯特林发电系统 Active CN208982182U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201821852482.3U CN208982182U (zh) 2018-11-12 2018-11-12 Lng冷能斯特林发电系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201821852482.3U CN208982182U (zh) 2018-11-12 2018-11-12 Lng冷能斯特林发电系统

Publications (1)

Publication Number Publication Date
CN208982182U true CN208982182U (zh) 2019-06-14

Family

ID=66790778

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201821852482.3U Active CN208982182U (zh) 2018-11-12 2018-11-12 Lng冷能斯特林发电系统

Country Status (1)

Country Link
CN (1) CN208982182U (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110417301A (zh) * 2019-08-29 2019-11-05 河北工业大学 一种基于海水气化器的lng冷能温差发电系统
CN113432758A (zh) * 2021-06-21 2021-09-24 合肥智测电子有限公司 一种利用斯特林制冷机的超低温便携式干式炉
WO2023047937A1 (ja) * 2021-09-21 2023-03-30 株式会社神戸製鋼所 液体水素気化装置及び水素を生成する生成方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110417301A (zh) * 2019-08-29 2019-11-05 河北工业大学 一种基于海水气化器的lng冷能温差发电系统
CN113432758A (zh) * 2021-06-21 2021-09-24 合肥智测电子有限公司 一种利用斯特林制冷机的超低温便携式干式炉
CN113432758B (zh) * 2021-06-21 2022-05-24 合肥智测电子有限公司 一种利用斯特林制冷机的超低温便携式干式炉
WO2023047937A1 (ja) * 2021-09-21 2023-03-30 株式会社神戸製鋼所 液体水素気化装置及び水素を生成する生成方法

Similar Documents

Publication Publication Date Title
Yang et al. Multi-objective optimization of combined cooling, heating, and power systems with supercritical CO2 recompression Brayton cycle
CN208982182U (zh) Lng冷能斯特林发电系统
CN101329118B (zh) 能够大幅提升余热温度、紧凑型吸收式热泵装置
CN108918175B (zh) 一种热性能测试系统
WO2020073698A1 (zh) 一种带回热循环的利用lng冷能和工业废热的orc发电系统
CN102797522B (zh) 一种实现冷电/热电联产的中低温余热回收系统
CN112554984B (zh) 一种带有储热的恒压型抽水压缩空气储能系统及运行方法
CN108731303B (zh) 热泵式交替储能供电方法及装置
CN113339090B (zh) 布雷顿-有机朗肯循环式储能供电方法及装置
CN103727703A (zh) 一种再利用冷热电三联供系统
CN102094772B (zh) 一种太阳能驱动的联供装置
CN103742291B (zh) 一种余热回收式分布式能源与海洋温差能耦合发电系统
CN101818967B (zh) 热化学变温吸附冷热联供复合储能供能装置
WO2022121484A1 (zh) 一种基于气电互补的制冷系统
CN102536367A (zh) 斯特林发动机余热发电方法
CN103148587A (zh) 发电厂余热制取生活热水的方法及装置
Lin et al. Experimental investigation on heat transportation over long distance by ammonia–water absorption cycle
CN203614267U (zh) 一种燃气发电机组余热利用装置
CN208982183U (zh) Lng冷能斯特林发电耦合附加工质循环发电机组系统
CN208982132U (zh) Lng冷能斯特林发电耦合膨胀发电机组系统
Ma et al. Performance analysis and validation on transportation of heat energy over long distance by ammonia–water absorption cycle
CN104879943A (zh) 工质热机热水器
CN201916138U (zh) 一种太阳能驱动的联供装置
CN204665737U (zh) 工质热机热水器
CN101975487B (zh) 应用太阳能的扩散吸收制冷和热水系统

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant