CN208723068U - A multiple resonant cavity based on multiple metal composite nano-dielectric pillars - Google Patents

A multiple resonant cavity based on multiple metal composite nano-dielectric pillars Download PDF

Info

Publication number
CN208723068U
CN208723068U CN201821700744.4U CN201821700744U CN208723068U CN 208723068 U CN208723068 U CN 208723068U CN 201821700744 U CN201821700744 U CN 201821700744U CN 208723068 U CN208723068 U CN 208723068U
Authority
CN
China
Prior art keywords
dielectric
metal composite
composite nano
column
dielectric column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201821700744.4U
Other languages
Chinese (zh)
Inventor
张晓萌
余观夏
杜文文
付晶晶
吕航
吕一航
骆敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Forestry University
Original Assignee
Nanjing Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Forestry University filed Critical Nanjing Forestry University
Priority to CN201821700744.4U priority Critical patent/CN208723068U/en
Application granted granted Critical
Publication of CN208723068U publication Critical patent/CN208723068U/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Plasma Technology (AREA)

Abstract

The utility model discloses a kind of multiple resonant cavities based on multiple metal composite nano dielectric posts, belong to electromagnetic technology field.The multiple resonant cavity of the utility model is made of three layers of 18 metal composite nano dielectric posts altogether, and 6 metal composite nano dielectric posts of first layer press rectangular arranged, each 6 of second and third layer are evenly distributed in respectively on inside and outside two circles;The structure constitutes 9 cavitys of 4 kinds of difference in size.The multiple resonant cavity of the utility model passes through the gap between dielectric posts, by external excitation resonance, the resonance plasma wave of incidence wave excitation simultaneously forms six kinds of entirely different resonance mechanism by 9 cavitys of 4 kinds of different sizes in different frequency, the plasma wave for exciting resonance to the incidence wave of different frequency is realized by the size of the material and thickness and the relative dielectric constant of innermost layer dielectric core that change metal coating, realizes the diversified multiple cavity resonator structure of different frequency.

Description

一种基于多个金属复合纳米介质柱的多重谐振腔A multiple resonant cavity based on multiple metal composite nano-dielectric pillars

技术领域technical field

本实用新型属于电磁技术领域,具体地说,涉及一种电磁谐振腔,更具体地说,涉及一种基于多个金属复合纳米介质柱的多重谐振腔。The utility model belongs to the field of electromagnetic technology, in particular to an electromagnetic resonance cavity, and more particularly to a multiple resonance cavity based on a plurality of metal composite nanometer dielectric columns.

背景技术Background technique

普通电磁波的谐振腔必须通过在腔体内馈源才能有效谐振,而且普通的电磁谐振腔在尺寸和形状确定的情况下,谐振模式只能是确定的低频和高频谐振模式,并且一般电磁谐振腔的几何尺寸就决定了谐振频率。The resonant cavity of ordinary electromagnetic waves must be fed in the cavity to effectively resonate, and when the size and shape of the ordinary electromagnetic resonant cavity are determined, the resonant mode can only be determined low-frequency and high-frequency resonant modes, and the general electromagnetic resonant cavity can only resonate effectively. The geometric size of , determines the resonant frequency.

随着纳米科技的迅速发展,纳米金属材料不同于纯介质纳米柱材料,它不仅有纳米材料的优良性质,更集合了金属独有的特性,因此在物理和化学领域的展现独特性能。纳米金属材料应用在各个领域基础研究中的影响令人瞩目。尤其是金、银等贵金属可用于涂覆层,具有良好的光学性能。此外,一些金属纳米材料对温度、光线、声音及气体都很敏感,可用纳米金属材料来制备满足不同性能要求的传感器。在纳米光子学领域,表面等离子体光学逐渐凸显其优势。金属表面等离子体是一种独特的表面电磁波,其本质是由入射光与金属内部自由电子相互作用形成的。在金属与介质的分界面表面处产生表面等离激元,表面等离子激元是一种由光子与金属表面自由电子作用形成的光子-电子耦合态,这种耦合态使得表面等离子体局域场增强。With the rapid development of nanotechnology, nano-metal materials are different from pure dielectric nano-pillar materials. They not only have the excellent properties of nano-materials, but also integrate the unique characteristics of metals, so they show unique properties in the fields of physics and chemistry. The impact of the application of nano-metal materials in basic research in various fields is remarkable. In particular, precious metals such as gold and silver can be used for the coating layer and have good optical properties. In addition, some metal nanomaterials are sensitive to temperature, light, sound and gas, and nanometer metal materials can be used to prepare sensors that meet different performance requirements. In the field of nanophotonics, surface plasmon optics has gradually highlighted its advantages. Metal surface plasmon is a unique surface electromagnetic wave, which is essentially formed by the interaction of incident light and free electrons inside the metal. Surface plasmon is generated at the interface surface of metal and medium. Surface plasmon is a photon-electron coupled state formed by the interaction between photons and free electrons on the metal surface. This coupled state makes the surface plasmon localized field enhanced.

发明内容SUMMARY OF THE INVENTION

针对传统电磁谐振腔存在的上述缺点和不足,本实用新型的目的在于提供一种由三层金属复合纳米介质柱组成的多重谐振腔结构,具有独特的光学特性和谐振模式。Aiming at the above-mentioned shortcomings and deficiencies of traditional electromagnetic resonators, the purpose of the present invention is to provide a multi-resonator structure composed of three-layer metal composite nano-dielectric columns, which has unique optical characteristics and resonant modes.

为了解决上述问题,本实用新型所采用的技术方案如下:In order to solve the above-mentioned problems, the technical scheme adopted by the present utility model is as follows:

一种基于多个金属复合纳米介质柱的多重谐振腔,包括分别设置在内层区域、中层区域和外层区域内的18个金属复合纳米介质柱,所述内层区域、中层区域和外层区域的中心点重合;所述18个金属复合纳米介质柱中的6个金属复合纳米介质柱在内层区域内按照矩形排列,所述18个金属复合纳米介质柱中的另外6个金属复合纳米介质柱在中层区域内按照圆形均匀排列,所述18个金属复合纳米介质柱中的其余6个金属复合纳米介质柱在外层区域中按照圆形均匀排列,所述中层区域中的金属复合纳米介质柱和所述外层区域中的金属复合纳米介质柱一一交错布置;所述18个金属复合纳米介质柱之间互不接触,所述18个金属复合纳米介质柱之间形成四种形状各异的9个空腔。A multiple resonant cavity based on a plurality of metal composite nano-dielectric columns, comprising 18 metal composite nano-dielectric columns respectively arranged in an inner layer area, a middle layer area and an outer layer area, the inner layer area, the middle layer area and the outer layer area. The center points of the regions are coincident; 6 metal composite nano-media columns in the 18 metal composite nano-media columns are arranged in a rectangle in the inner layer region, and the other 6 metal composite nano-media columns in the 18 metal composite nano-media columns are arranged in a rectangle. The dielectric columns are uniformly arranged in a circle in the middle layer area, the remaining 6 metal composite nanometer dielectric columns in the 18 metal composite nanometer dielectric columns are uniformly arranged in a circle in the outer layer area, and the metal composite nanometer medium columns in the middle layer area are uniformly arranged in a circle. The dielectric pillars and the metal composite nano dielectric pillars in the outer layer area are staggered one by one; the 18 metal composite nano dielectric pillars are not in contact with each other, and four shapes are formed between the 18 metal composite nano dielectric pillars 9 different cavities.

进一步地,所述18个金属复合纳米介质柱包括内层介质柱Ⅰ、内层介质柱Ⅱ、中层介质柱和外层介质柱;所述内层区域为矩形,所述内层介质柱Ⅰ有4个,分别设置在所述内层区域的四个顶点上,所述内层介质柱Ⅱ有2个,分别设置在所述内层区域的两条长边的中点上,所述内层介质柱Ⅰ的外径大于所述内层介质柱Ⅱ;所述中层区域为圆形,所述中层介质柱有6个,均匀分布在所述中层区域的边界上;所述外层区域为圆形,所述外层介质柱有6个,均匀分布在所述外层区域的边界上。Further, the 18 metal composite nano dielectric columns include inner layer dielectric column I, inner layer dielectric column II, middle layer dielectric column and outer layer dielectric column; the inner layer area is rectangular, and the inner layer dielectric column I has 4, which are respectively arranged on the four vertices of the inner layer area, there are 2 of the inner layer dielectric columns II, which are respectively arranged on the midpoints of the two long sides of the inner layer area, and the inner layer The outer diameter of the dielectric column I is larger than that of the inner layer dielectric column II; the middle layer area is circular, and there are 6 middle layer dielectric columns, which are evenly distributed on the boundary of the middle layer area; the outer layer area is circular There are six outer layer dielectric columns, which are evenly distributed on the boundary of the outer layer region.

更进一步地,所述中层区域的半径为208.75nm,所述外层区域的半径为257nm,所述内层介质柱Ⅰ的半径为60nm,所述内层介质柱Ⅰ的圆心与所述内层区域的中心点的距离为120.8nm,所述内层介质柱Ⅱ的半径为43.9nm,所述中层介质柱的半径为60nm,所述外层介质柱的半径为67.5nm。Further, the radius of the middle layer region is 208.75nm, the radius of the outer layer region is 257nm, the radius of the inner layer dielectric column I is 60nm, the center of the inner layer dielectric column I and the inner layer The distance between the center points of the region is 120.8 nm, the radius of the inner layer dielectric column II is 43.9 nm, the radius of the middle layer dielectric column is 60 nm, and the radius of the outer layer dielectric column is 67.5 nm.

更进一步地,所述金属复合纳米介质柱的金属涂层的厚度为14~30nm。Further, the thickness of the metal coating of the metal composite nano-dielectric column is 14-30 nm.

更进一步地,所述金属复合纳米介质柱的金属涂层的材质为金或银。Further, the material of the metal coating of the metal composite nano-media column is gold or silver.

更进一步地,所述金属复合纳米介质柱的最内层介质核的相对介电常数范围为3.9~11.5。Furthermore, the relative permittivity of the innermost dielectric core of the metal composite nano-dielectric column ranges from 3.9 to 11.5.

更进一步地,所述金属复合纳米介质柱的最内层介质核的材质为硅或二氧化硅。Further, the material of the innermost dielectric core of the metal composite nano dielectric column is silicon or silicon dioxide.

更进一步地,所述金属复合纳米介质柱的相对磁导率为1。Further, the relative magnetic permeability of the metal composite nano-media pillars is 1.

更进一步地,所述金属复合纳米介质柱置于空气环境中。Further, the metal composite nano-media column is placed in an air environment.

相比于现有技术,本实用新型的有益效果为:Compared with the prior art, the beneficial effects of the present utility model are:

(1)相比于普通的电磁谐振腔来说,本实用新型的金属复合纳米介质柱组成的等离子波谐振腔可以通过介质柱之间的缝隙,由外部激发谐振。(1) Compared with the common electromagnetic resonator, the plasmon wave resonator composed of the metal composite nano-dielectric pillars of the present invention can pass through the gaps between the dielectric pillars to excite resonance from the outside.

(2)相比于传统的电磁谐振腔单一的谐振模式,本实用新型的谐振腔结构可以实现对于多种频率入射电磁波多样化的谐振机制,不同频率激发的等离子体波在不同的空腔形成不同形式的谐振。(2) Compared with the single resonance mode of the traditional electromagnetic resonance cavity, the resonance cavity structure of the present invention can realize the diversified resonance mechanism for the incident electromagnetic waves of various frequencies, and the plasma waves excited by different frequencies are formed in different cavities. Different forms of resonance.

(3)普通谐振腔的电磁谐振腔几何尺寸就决定了谐振频率,而本实用新型的金属复合纳米介质柱通过改变金属层的厚度,可有效的改变等离子体波的谐振频率,而且等离子波的谐振空间不仅仅是金属所围成几何空间,还包括界面部分空间。(3) The geometric size of the electromagnetic resonance cavity of the common resonance cavity determines the resonance frequency, and the metal composite nano-dielectric column of the present utility model can effectively change the resonance frequency of the plasma wave by changing the thickness of the metal layer, and the plasma wave The resonance space is not only the geometric space enclosed by the metal, but also includes the interface part of the space.

(4)本实用新型的谐振腔结构可以通过对最内层介质核和外层金属涂层的材料的改变,对不同频率的入射波激发谐振的等离子体波。(4) The resonant cavity structure of the present invention can excite resonant plasma waves for incident waves of different frequencies by changing the materials of the innermost dielectric core and the outer metal coating.

附图说明Description of drawings

图1为本实用新型的多重谐振腔的多重区域及多个金属复合纳米介质柱的示意图;1 is a schematic diagram of multiple regions and multiple metal composite nano-dielectric pillars of the multiple resonant cavity of the present invention;

图中:1、内层介质柱Ⅰ;2、内层介质柱Ⅱ;3、中层介质柱;4、外层介质柱。In the figure: 1, inner layer dielectric column I; 2, inner layer dielectric column II; 3, middle layer dielectric column; 4, outer layer dielectric column.

图2为本实用新型的三层金属复合纳米介质柱的排列示意图;2 is a schematic diagram of the arrangement of the three-layer metal composite nano-dielectric column of the present invention;

图中:101、第一内层介质柱Ⅰ;102、第二内层介质柱Ⅰ;103、第三内层介质柱Ⅰ;104、第四内层介质柱Ⅰ;201、第一内层介质柱Ⅱ;202、第二内层介质柱Ⅱ;301、第一中层介质柱;302、第二中层介质柱;303、第三中层介质柱;304;第四中层介质柱;305、第五中层介质柱;306、第六中层介质柱;401、第一外层介质柱;402、第二外层介质柱;403、第三外层介质柱;404、第四外层介质柱;405、第五外层介质柱;406、第六外层介质柱。In the figure: 101, the first inner layer dielectric column I; 102, the second inner layer dielectric column I; 103, the third inner layer dielectric column I; 104, the fourth inner layer dielectric column I; 201, the first inner layer dielectric Column II; 202, the second inner layer dielectric column II; 301, the first intermediate layer dielectric column; 302, the second intermediate layer dielectric column; 303, the third intermediate layer dielectric column; 304; the fourth intermediate layer dielectric column; 305, the fifth intermediate layer Dielectric column; 306, the sixth medium layer medium column; 401, the first outer layer medium column; 402, the second outer layer medium column; 403, the third outer layer medium column; 404, the fourth outer layer medium column; 405, the first Five outer layer dielectric columns; 406, sixth outer layer dielectric columns.

图3为外界平面波入射角为0°入射,所有三层金属复合纳米介质柱为18nm厚的银涂层的吸收截面示意图。FIG. 3 is a schematic diagram of the absorption cross-section of an external plane wave with an incident angle of 0°, and all three-layer metal composite nano-dielectric columns are 18 nm thick silver coatings.

图4为图3中吸收截面的六个峰值的近磁场分布图;Fig. 4 is the near magnetic field distribution diagram of six peaks of absorption cross section in Fig. 3;

其中,a为入射频率f(a)=9.261×1013Hz,b为入射频率f(b)=1.347×1014Hz,c为入射频率f(c)=1.563×1014Hz,d为入射频率f(d)=1.682×1014Hz,e为入射频率f(e)=1.779×1014Hz,f为入射频率f(f)=2.152×1014Hz时的等离子波谐振模式。Among them, a is the incident frequency f(a)=9.261×10 13 Hz, b is the incident frequency f(b)=1.347×10 14 Hz, c is the incident frequency f(c)=1.563×10 14 Hz, and d is the incident frequency The frequency f(d)=1.682×10 14 Hz, e is the incident frequency f(e)=1.779×10 14 Hz, and f is the plasmon resonance mode when the incident frequency f(f)=2.152×10 14 Hz.

图5为改变金属涂层银的厚度(14nm、18nm、30nm)得到的三层金属复合纳米介质柱的吸收截面示意图。5 is a schematic diagram of the absorption cross-section of the three-layer metal composite nano-dielectric column obtained by changing the thickness (14 nm, 18 nm, 30 nm) of the metal-coated silver.

图6为金属层厚度为30nm时六个峰值对应的近场图;Figure 6 is a near-field image corresponding to six peaks when the thickness of the metal layer is 30 nm;

其中,a为第一峰值对应的入射频率f(a)=0.9583×1014Hz的磁场分布图,b为第二峰值对应的入射频率f(b)=1.422×1014Hz时的磁场分布图,c为第三峰值对应的入射频率为f(c)=1.706×1014Hz磁场分布图,d为第四峰值对应的入射频率f(d)=1.851×1014Hz时的磁场分布图,e为第五峰值对应的入射频率f(e)=1.983×1014Hz时的磁场分布图,f为第六峰值对应的入射频率f(f)=2.381×1014Hz的磁场分布图。Among them, a is the magnetic field distribution at the incident frequency f(a)=0.9583×10 14 Hz corresponding to the first peak, and b is the magnetic field distribution at the incident frequency f(b)=1.422×10 14 Hz corresponding to the second peak , c is the magnetic field distribution diagram corresponding to the incident frequency of the third peak at f(c)=1.706×10 14 Hz, d is the magnetic field distribution diagram corresponding to the incident frequency f(d)=1.851×10 14 Hz of the fourth peak, e is the magnetic field distribution at the incident frequency f(e)=1.983×10 14 Hz corresponding to the fifth peak, and f is the magnetic field distribution at the incident frequency f(f)=2.381×10 14 Hz corresponding to the sixth peak.

图7为最内层核介质材料分别为硅、二氧化硅时得到的吸收截面图。FIG. 7 is an absorption cross-sectional view obtained when the innermost core dielectric material is silicon and silicon dioxide, respectively.

图8为金属涂层材料分别为金、银时得到的吸收截面图。8 is an absorption cross-sectional view obtained when the metal coating materials are gold and silver, respectively.

具体实施方式Detailed ways

下面结合具体实施例对本实用新型进一步进行描述。The present utility model will be further described below with reference to specific embodiments.

如图1~8所示的基于多个金属复合纳米介质柱的多重谐振腔,包括18个金属复合纳米介质柱。内层介质柱Ⅰ1、内层介质柱Ⅱ2、中层介质柱3和外层介质柱4四种介质柱分别设置在内层区域、中层区域和外层区域的边界上,内层区域为矩形,中层区域和外层区域为圆形,内层区域、中层区域和外层区域的中心点重合。As shown in Figures 1-8, the multiple resonant cavity based on a plurality of metal composite nano-dielectric columns includes 18 metal composite nano-dielectric columns. The inner layer dielectric column I1, the inner layer dielectric column II2, the middle layer dielectric column 3 and the outer layer dielectric column 4 are respectively arranged on the boundary of the inner layer area, the middle layer area and the outer layer area. The area and the outer area are circular, and the center points of the inner area, the middle area and the outer area coincide.

其中:第一内层介质柱Ⅰ101、第二内层介质柱Ⅰ102、第三内层介质柱Ⅰ103和第四内层介质柱Ⅰ104位于内层区域的四个顶点上;第一内层介质柱Ⅱ201和第二内层介质柱Ⅱ202分别位于内层区域的两条长边的中点上。第一中层介质柱301、第二中层介质柱302、第三中层介质柱303、第四中层介质柱304、第五中层介质柱305和第六中层介质柱306均匀分布在中层区域的边界上。第一外层介质柱401、第二外层介质柱402、第三外层介质柱403、第四外层介质柱404、第五外层介质柱405和第六外层介质柱406均匀分布在外层区域的边界上。中层介质柱3和外层介质柱4一一交错设置。内层介质柱Ⅰ1的圆心和内层区域的中心点的连线与2个内层介质柱Ⅱ2的圆心之间的连线呈60°或120°,第二中层介质柱302和第五中层介质柱305的圆心的连线垂直于第一内层介质柱Ⅱ201和第二内层介质柱Ⅱ202的圆心的连线;第三外层介质柱403、第六外层介质柱406与第一内层介质柱Ⅱ201、第二内层介质柱Ⅱ202位于同一条直线上。Among them: the first inner layer dielectric column I101, the second inner layer dielectric column I102, the third inner layer dielectric column I103 and the fourth inner layer dielectric column I104 are located on the four vertices of the inner layer area; the first inner layer dielectric column II201 and the second inner layer dielectric column II 202 are respectively located at the midpoints of the two long sides of the inner layer region. The first middle layer dielectric column 301 , the second middle layer dielectric column 302 , the third middle layer dielectric column 303 , the fourth middle layer dielectric column 304 , the fifth middle layer dielectric column 305 and the sixth middle layer dielectric column 306 are uniformly distributed on the boundary of the middle layer region. The first outer dielectric column 401 , the second outer dielectric column 402 , the third outer dielectric column 403 , the fourth outer dielectric column 404 , the fifth outer dielectric column 405 and the sixth outer dielectric column 406 are evenly distributed in the outer layer. on the boundary of the layer region. The middle-layer dielectric columns 3 and the outer-layer dielectric columns 4 are staggered one by one. The connection line between the center of the inner layer dielectric column I1 and the center point of the inner layer area and the connection line between the centers of the two inner layer dielectric columns II2 are at 60° or 120°. The second middle layer dielectric column 302 and the fifth middle layer dielectric The line connecting the center of the column 305 is perpendicular to the line connecting the centers of the first inner layer dielectric column II 201 and the second inner layer dielectric column II 202; the third outer layer dielectric column 403, the sixth outer layer dielectric column 406 and the first inner layer The dielectric column II 201 and the second inner layer dielectric column II 202 are located on the same straight line.

该18个纳米介质柱之间并不接触而是有缝隙,互相之间形成了4种大小各异的9个空腔,包括:左右两个大空腔(第一中层介质柱301、第六外层介质柱406、第六中层介质柱306、第四内层介质柱Ⅰ104、第一内层介质柱Ⅱ201、第一内层介质柱Ⅰ101之间;第二内层介质柱Ⅰ102、第二内层介质柱Ⅱ202、第三内层介质柱Ⅰ103、第四中层介质柱304、第三外层介质柱403、第三中层介质柱303之间),中心区域一个空腔(第一内层介质柱Ⅰ101、第二内层介质柱Ⅰ102、第三内层介质柱Ⅰ103和第四内层介质柱Ⅰ104、第一内层介质柱Ⅱ201、第二内层介质柱Ⅱ202之间),上下两个小三角形空腔(第一内层介质柱Ⅰ101、第二内层介质柱Ⅰ102、第二中层介质柱302之间;第三内层介质柱Ⅰ103、第四内层介质柱Ⅰ104、第五中层介质柱305之间)以及最外层四个小空腔(第一内层介质柱Ⅰ101、第一中层介质柱301、第一外层介质柱401、第二中层介质柱302之间;第二中层介质柱302、第二外层介质柱402、第三中层介质柱303、第二内层介质柱Ⅰ102之间;第三内层介质柱Ⅰ103、第四中层介质柱304、第四外层介质柱404、第五中层介质柱305之间;第四内层介质柱Ⅰ104、第五中层介质柱305、第五外层介质柱405、第六中层介质柱306之间)。The 18 nanometer dielectric pillars are not in contact with each other but have gaps, and 9 cavities of different sizes are formed between them, including: two large cavities on the left and right (the first middle-layer dielectric pillar 301, the sixth outer Between the layer dielectric column 406, the sixth intermediate layer dielectric column 306, the fourth inner layer dielectric column I104, the first inner layer dielectric column II201, and the first inner layer dielectric column I101; the second inner layer dielectric column I102, the second inner layer between the dielectric column II 202, the third inner layer dielectric column I103, the fourth middle layer dielectric column 304, the third outer layer dielectric column 403, and the third middle layer dielectric column 303), and a cavity in the central area (the first inner layer dielectric column I101 , between the second inner layer dielectric column I102, the third inner layer dielectric column I103 and the fourth inner layer dielectric column I104, the first inner layer dielectric column II201, and the second inner layer dielectric column II202), the upper and lower two small triangles are empty Cavity (between the first inner layer dielectric column I101, the second inner layer dielectric column I102, and the second middle layer dielectric column 302; between the third inner layer dielectric column I103, the fourth inner layer dielectric column I104, and the fifth middle layer dielectric column 305 between) and the outermost four small cavities (between the first inner layer dielectric column I101, the first middle layer dielectric column 301, the first outer layer dielectric column 401, and the second middle layer dielectric column 302; the second middle layer dielectric column 302 , between the second outer dielectric column 402, the third intermediate dielectric column 303, and the second inner dielectric column I102; the third inner dielectric column I103, the fourth intermediate dielectric column 304, the fourth outer dielectric column 404, the Between five middle-layer dielectric columns 305; between the fourth inner-layer dielectric column I104, the fifth middle-layer dielectric column 305, the fifth outer-layer dielectric column 405, and the sixth middle-layer dielectric column 306).

金属复合纳米介质柱的最内层介质核的相对介电常数为3.9~11.5,可采用硅或二氧化硅,金属涂层厚度为14nm~30nm,可采用金或银涂层,介质柱的相对磁导率μ=1。金属涂层的相对介电常数可以用Drude-Lorentz色散模型来计算,具体的公式为:The relative dielectric constant of the innermost dielectric core of the metal composite nano-dielectric column is 3.9 to 11.5, silicon or silicon dioxide can be used, the thickness of the metal coating is 14 nm to 30 nm, and the gold or silver coating can be used. Magnetic permeability μ=1. The relative permittivity of metal coatings can be calculated using the Drude-Lorentz dispersion model, the specific formula is:

其中,ω为光的角频率,ε为当ω→∞时的相对介电常数;ωp为等离子频率;Δ为Lorentz项权重;ΓL为振动谱宽;ΩL为Lorentz谐振子强度;下标L表示Lorentz模型;i是虚数单位。Among them, ω is the angular frequency of light, ε is the relative permittivity when ω→∞; ω p is the plasma frequency; Δ is the weight of the Lorentz term; Γ L is the vibration spectrum width; Ω L is the strength of the Lorentz harmonic oscillator; The subscript L denotes the Lorentz model; i is the imaginary unit.

其中,银的相关参数如下:ω为入射光的角频率,ε=2.4046,ωP=2π×2214.6×1012Hz,Δ=1.6604,ΓL=2π×620.7×1012Hz,ΩL=2π×1330.1×1012Hz,i是虚数单位,γ=4.8×2π×1012Hz;金的相关参数如下:ω为光的角频率,ε=4.0903,ωP=2π×2170.7×1012Hz,Δ=4.9603,ΓL=2π×849.1×1012Hz,ΩL=2π×1006.4×1012Hz,i是虚数单位,γ=17.4×2π×1012Hz。Among them, the relevant parameters of silver are as follows: ω is the angular frequency of the incident light, ε = 2.4046, ω P = 2π×2214.6×10 12 Hz, Δ=1.6604, Γ L = 2π×620.7×10 12 Hz, Ω L = 2π×1330.1×10 12 Hz, i is the imaginary unit, γ=4.8×2π×10 12 Hz; the relevant parameters of gold are as follows: ω is the angular frequency of light, ε =4.0903, ω P =2π×2170.7×10 12 Hz, Δ=4.9603, Γ L = 2π×849.1×10 12 Hz, Ω L = 2π×1006.4×10 12 Hz, i is an imaginary unit, γ=17.4×2π×10 12 Hz.

上述谐振腔选择频率为5.0×1013Hz~2.5×1014Hz电磁波从左边界入射(包括且不限于平面波),入射角度θ=0°(入射波的角度可以任意取值,不限于0°,在计算中为方便起见,取了0°的入射角),具体可参见图2(箭头为入射平面波)。对于设有涂层的金属复合纳米介质柱,整个区域分成三个区域,区域1为三层金属复合纳米介质柱以外的自由空间区域,区域2为金属涂层区域,区域3为介质柱内核区域。以xoy坐标系为全局坐标系,假设一TE平面波入射,假设入射角根据柱面散射特点,将入射波Hz写成柱面波的形式假设(ρj,φj)表示j阶金属复合纳米介质柱的本地坐标系,将(Φ0,ΦM,ΦD)和(Ψ0和ΨM)定义为在各自区域中的入射圆柱波和散射波,其中Φ表示贝塞尔函数,Ψ表示汉克尔函数。由麦克斯韦方程、Graf加法定理和边界条件,可推导出外层自由空间ρj>r1,中间金属层r2<ρj<r1,最内层介质核ρj<r2处的磁场分量|Hz|的表达式为:The selected frequency of the above resonator is 5.0×10 13 Hz~2.5×10 14 Hz. The electromagnetic wave is incident from the left boundary (including but not limited to plane waves), and the incident angle θ=0° (the angle of the incident wave can be any value, not limited to 0° , in the calculation, for the sake of convenience, the incident angle of 0° is taken), see Figure 2 for details (the arrow is the incident plane wave). For the metal composite nano-dielectric column with coating, the whole area is divided into three areas, area 1 is the free space area outside the three-layer metal composite nano-dielectric column, area 2 is the metal coating area, and area 3 is the inner core area of the dielectric column . Taking the xoy coordinate system as the global coordinate system, assuming that a TE plane wave is incident, Assumed angle of incidence According to the characteristics of cylindrical scattering, the incident wave H z is written in the form of cylindrical wave Assuming that (ρ j , φ j ) represent the local coordinate system of the j-order metal composite nanodielectric pillars, (Φ 0 , Φ M , Φ D ) and (Ψ 0 and Ψ M ) are defined as the incident cylindrical waves in the respective regions and scattered waves, where Φ represents the Bessel function and Ψ represents the Hankel function. From Maxwell's equation, Graf addition theorem and boundary conditions, it can be deduced that the outer free space ρ j >r 1 , the middle metal layer r 2j <r 1 , the magnetic field component at the innermost dielectric core ρ j <r 2 | The expression for Hz| is:

其中,是由圆柱傅里叶级数展开式表示的入射波的振幅系数,其中是入射角;式(3)~(4)的左边和右边的部分分别代表入射波和散射波,即(Φ0,ΦM,ΦD)代表向内传播的波,(Ψ0和ΨM)代表向外的散射波,具体表达式如下:in, is the amplitude coefficient of the incident wave represented by the cylindrical Fourier series expansion, where is the angle of incidence; the left and right parts of equations (3) to (4) represent the incident wave and the scattered wave respectively, namely (Φ 0 , Φ M , Φ D ) represent the inward propagating wave, (Ψ 0 and Ψ M ) represents the outward scattered wave, and the specific expression is as follows:

其中Jm是m阶贝塞尔函数,是m阶第一类汉克尔函数;where J m is a Bessel function of order m, is a Hankel function of the first kind of order m;

式(5)中Gj表示不同坐标系的相互转换,下标j表示其他圆柱的散射场变换到j物体,处于一个j阶的散射场中,Gi和Dj同理;式(5)中的σq,j和αq均为加法定理的变换因子,表达式如下:In Equation (5), G j represents the mutual conversion of different coordinate systems, and the subscript j represents the transformation of the scattering field of other cylinders to the j object, which is in a j-order scattering field, G i and D j are the same; Equation (5) σ q,j and α q in are the transformation factors of the addition theorem, and the expressions are as follows:

Ap=-T(1)·kp(p=2,3,...,N) (12)A p = -T (1) k p (p=2,3,...,N) (12)

Dj=[ein(j-1)θδnn′] (14)D j =[e in(j-1)θ δ nn′ ] (14)

其中,Λp,Ap,kp都是使用Graf加法定理获得的变换因子,I是一个单位矩阵,δm是克罗内克函数,k0是自由空间的波数,是金属层的波数,是介质内核的波数,b是入射波的振幅矢量;基于本地坐标系(ρ,φ),进行如下柱坐标和平面坐标之间的坐标变换:Among them, Λ p , A p , k p are all transformation factors obtained using the Graf addition theorem, I is an identity matrix, δ m is the Kronecker function, k 0 is the wavenumber of free space, is the wavenumber of the metal layer, is the wavenumber of the medium core, and b is the amplitude vector of the incident wave; based on the local coordinate system (ρ, φ), the following coordinate transformation between cylindrical coordinates and plane coordinates is performed:

ζp=π/2-(p-1)θ/2 (15)ζ p = π/2-(p-1)θ/2 (15)

dp=2Rsin[(p-1)θ/2] (16)d p = 2Rsin[(p-1)θ/2] (16)

式(2)~(5)中,T(1),T(2),T(3)和T(4)都是两种区域中的场的变换矩阵,表示变换矩阵的加法定理,且均为对角矩阵,表达式如下:In equations (2) to (5), T (1) , T (2) , T (3) and T (4) are the transformation matrices of the fields in the two regions, representing the addition theorem of transformation matrices, and all is a diagonal matrix, the expression is as follows:

T(1)=Rfm+Ffm·Rmd·(I-Rmf·Rmd)-1·Fmf (18)T (1) = R fm + F fm · R md · (IR mf · R md ) -1 · F mf (18)

T(2)=(I-Rmf·Rmd)-1·Fmf (19)T (2) = (IR mf · R md ) -1 · F mf (19)

T(3)=Rmd·(I-Rmf·Rmd)-1·Fmf (20)T (3) = R md · (IR mf · R md ) -1 · F mf (20)

T(4)=Fdm·(I-Rmf·Rmd)-1·Fmf (21)T (4) = F dm · (IR mf · R md ) -1 · F mf (21)

其中,Rij和Fij(i,j=f,m,d)是表示从“j”区域射向“i”区域的反射和透射柱波的对角矩阵,指数f,m,d表示自由空间、金属层和介质内核;Rfm和Ffm表示从金属层界面到自由空间的反射矩阵和透射矩阵、Rmd表示从介质内核到金属界面的反射矩阵、Rmf和Fmf表示从外层自由空间到中间金属层界面的反射矩阵和透射矩阵。where R ij and F ij (i, j=f, m, d) are diagonal matrices representing the reflected and transmitted cylindrical waves from the “j” area to the “i” area, and the indices f, m, d represent the free Space, metal layer, and dielectric core; R fm and F fm represent the reflection and transmission matrices from the metal layer interface to the free space, R md represent the reflection matrix from the dielectric core to the metal interface, R mf and F mf represent the reflection matrix from the outer layer The reflection and transmission matrices of the free space to the intermediate metal layer interface.

为了更全面的量化研究有金属涂覆层的纳米圆柱结构的光学特性,通过对吸收截面σabs和散射截面σsca的数值分析,探究金属复合纳米圆柱结构的远场特性。In order to quantitatively study the optical properties of the metal-coated nano-cylindrical structures, the far-field properties of the metal composite nano-cylindrical structures were explored by numerical analysis of the absorption cross-section σ abs and the scattering cross-section σ sca .

为了构建多个金属复合纳米介质柱结构的模型,需将使用局部坐标系(i=1,2….)中表达散射场的公式转换成在全局坐标系中表达散射场公式。以两个金属复合纳米柱为例,使用转换矩阵β01、β02,将局部坐标系中的Ψ0,1中的Ψ0,2转换为Ψ0,可以得到外部散射场的表达公式:In order to model multiple metal composite nanodielectric pillar structures, a local coordinate system will be used (i=1,2....) The formulas expressing the scattered field are converted into the global coordinate system The scattered field formula is expressed in . Taking two metal composite nanopillars as an example, using the transformation matrix β 01 , β 02 , the local coordinate system Ψ 0,1 in and Converting Ψ 0,2 in Ψ 0 to Ψ 0 , the expression formula of the external scattered field can be obtained:

其中:in:

β01(m,n)=(-1)m-nJm-n(k0d/2) (24)β 01 (m,n)=(-1) mn J mn (k 0 d/2) (24)

β02(m,n)=Jm-n(k0d/2) (25)β 02 (m,n)=J mn (k 0 d/2) (25)

其中表示两个金属复合纳米圆柱结构的散射振幅系数。in Represents the scattering amplitude coefficients of two metal composite nanocylindrical structures.

可以推导出两个金属复合纳米圆柱结构的散射和吸收截面,具体表达式如下所示:The scattering and absorption cross sections of the two metal composite nanocylindrical structures can be deduced, and the specific expressions are as follows:

式中,公式(27)中散射振幅系数A的第(m,n)个元素,Pn表示入射平面波的振幅系数。In the formula, The (m, n)th element of the scattering amplitude coefficient A in formula (27), P n represents the amplitude coefficient of the incident plane wave.

实施例1Example 1

参照图1和图2,在本实施例中,中层区域的半径为208.75nm,外层区域的半径为257nm;内层介质柱Ⅰ1的半径为60nm,其圆心与内层区域的中心点的距离为120.8nm;内层介质柱Ⅱ2的半径为43.9nm;中层介质柱3的半径为60nm;外层介质柱4的半径为67.5nm。1 and 2, in this embodiment, the radius of the middle layer region is 208.75nm, the radius of the outer layer region is 257nm; the radius of the inner layer dielectric column I1 is 60nm, the distance between the center of the circle and the center point of the inner layer region The radius of the inner layer dielectric column II2 is 43.9 nm; the radius of the middle layer dielectric column 3 is 60 nm; the radius of the outer layer dielectric column 4 is 67.5 nm.

本实施例多重谐振腔的金属复合纳米介质柱采用银涂层,内层介质核相对介电常数为10的普通硅介质,相对磁导率大小为1。The metal composite nano-dielectric column of the multi-resonant cavity in this embodiment is coated with silver, and the inner layer dielectric core has an ordinary silicon medium with a relative permittivity of 10 and a relative magnetic permeability of 1.

根据纳米柱的大小,选择频率为5.0×1013Hz~2.5×1014Hz的电磁波从左边界入射,入射角度θ=0°,数值求解得到三层金属复合纳米介质柱的σabs(吸收截面),从如图3所示的吸收截面示意图可以清楚的看到有6个峰值存在,峰值代表了入射电磁波的能量将引起等离子体波的共振,产生耦合吸收,导致反射波能量降低,在吸收截面上出现吸收峰值。根据该6个峰值,作出6个共振峰值所对应的近磁场Hz的分布如图4所示,可以清楚地看出,6个共振峰对应6种不同的谐振模式。According to the size of the nanopillars, the electromagnetic wave with a frequency of 5.0× 1013 Hz~2.5× 1014 Hz is selected to be incident from the left boundary, and the incident angle θ=0°. The σ abs (absorptive cross section of the three-layer metal composite nano-dielectric column is obtained by numerical solution) ), from the schematic diagram of the absorption cross-section shown in Figure 3, it can be clearly seen that there are 6 peaks, the peaks represent that the energy of the incident electromagnetic wave will cause the resonance of the plasma wave, resulting in coupling absorption, resulting in the reduction of the reflected wave energy. Absorption peaks appear on the cross section. According to the 6 peaks, the distribution of the near magnetic field Hz corresponding to the 6 resonance peaks is shown in Fig. 4. It can be clearly seen that the 6 resonance peaks correspond to 6 different resonance modes.

第一种谐振模式如图4(a)所示,入射频率为9.261×1013Hz。该频率时磁场主要分布在由第一内层介质柱Ⅰ101、第二内层介质柱Ⅰ102、第三内层介质柱Ⅰ103和第四内层介质柱Ⅰ104、第一内层介质柱Ⅱ201和第二内层介质柱Ⅱ202所围成的中心区域,并形成了较强的谐振。The first resonance mode is shown in Fig. 4(a), and the incident frequency is 9.261×10 13 Hz. At this frequency, the magnetic field is mainly distributed in the first inner layer dielectric column I101, the second inner layer dielectric column I102, the third inner layer dielectric column I103, the fourth inner layer dielectric column I104, the first inner layer dielectric column II201 and the second inner layer dielectric column I104. The central area surrounded by the inner layer dielectric column II 202 forms a strong resonance.

第二种谐振模式如图4(b)所示,入射频率为1.347×1014Hz。激发的等离子波在第一中层介质柱301、第六外层介质柱406、第六中层介质柱306、第四内层介质柱Ⅰ104、第一内层介质柱Ⅱ201和第一内层介质柱Ⅰ101以及第二内层介质柱Ⅰ102、第二内层介质柱Ⅱ202、第三内层介质柱Ⅰ103、第四中层介质柱304、第三外层介质柱403和第三中层介质柱303分别围成的左右两个较大的空腔内形成了强烈的谐振,在两个谐振腔中,谐振的等离子波相位相反。The second resonance mode is shown in Fig. 4(b), and the incident frequency is 1.347×10 14 Hz. The excited plasma waves are generated in the first intermediate layer dielectric column 301, the sixth outer layer dielectric column 406, the sixth intermediate layer dielectric column 306, the fourth inner layer dielectric column I104, the first inner layer dielectric column II 201 and the first inner layer dielectric column I101. and the second inner layer dielectric column I102, the second inner layer dielectric column II 202, the third inner layer dielectric column I103, the fourth middle layer dielectric column 304, the third outer layer dielectric column 403 and the third middle layer dielectric column 303 are respectively surrounded by Strong resonances are formed in the two larger cavities on the left and right. In the two resonant cavities, the resonant plasma waves have opposite phases.

第三种谐振模式如图4(c)所示,入射频率为1.563×1014Hz。在此频率下,等离子集中在除了和图4(b)相同的区域外还有第一内层介质柱Ⅰ101、第二内层介质柱Ⅰ102和第二中层介质柱302以及第三内层介质柱Ⅰ103、第四内层介质柱Ⅰ104和第五中层介质柱305分别围成的上下两个小三角形区域,而且谐振的等离子波在左右两个谐振腔相位相同,上下两个空腔相位一致,且与左右空腔的等离子波相位相反。The third resonance mode is shown in Fig. 4(c), and the incident frequency is 1.563×10 14 Hz. At this frequency, the plasma is concentrated in the first inner layer dielectric column I101, the second inner layer dielectric column I102, the second middle layer dielectric column 302 and the third inner layer dielectric column except for the same area as in FIG. 4(b). I103, the fourth inner layer dielectric column I104 and the fifth middle layer dielectric column 305 are respectively surrounded by two small triangle areas, and the resonant plasma wave has the same phase in the left and right resonant cavities, and the upper and lower cavities have the same phase, and The phase of the plasma wave is opposite to that of the left and right cavities.

第四种谐振模式如图4(d)所示,入射频率为1.682×1014Hz。等离子主要集中在中心的空腔(与图4(a)相同)以及第一内层介质柱Ⅰ101、第一中层介质柱301、第一外层介质柱401和第二中层介质柱302,第二中层介质柱302、第二外层介质柱402、第三中层介质柱303和第二内层介质柱Ⅰ102,第三内层介质柱Ⅰ103、第四中层介质柱304、第四外层介质柱404和第五中层介质柱305,第四内层介质柱Ⅰ104、第五中层介质柱305、第五外层介质柱405和第六中层介质柱306分别围成的最外层四个小空腔中,同时中心区域的谐振等离子波的相位与外部四个小空腔区域等离子波相位相反。The fourth resonance mode is shown in Fig. 4(d), and the incident frequency is 1.682×10 14 Hz. The plasma is mainly concentrated in the central cavity (same as Fig. 4(a)) and the first inner layer dielectric column I101, the first middle layer dielectric column 301, the first outer layer dielectric column 401 and the second middle layer dielectric column 302, the second Intermediate dielectric column 302, second outer dielectric column 402, third intermediate dielectric column 303, second inner dielectric column I102, third inner dielectric column I103, fourth intermediate dielectric column 304, fourth outer dielectric column 404 and the fifth middle-layer dielectric column 305, the fourth inner-layer dielectric column I104, the fifth middle-layer dielectric column 305, the fifth outer-layer dielectric column 405 and the sixth middle-layer dielectric column 306 are respectively enclosed in the outermost four small cavities. , and the phase of the resonant plasma wave in the central region is opposite to the phase of the plasma wave in the outer four small cavity regions.

第五种谐振模式如图4(e)所示,入射频率为1.779×1014Hz。此时等离子波只是在最外层四个小空腔中形成了谐振,且左右的小腔中的等离子波相位相反。The fifth resonance mode is shown in Fig. 4(e), and the incident frequency is 1.779×10 14 Hz. At this time, the plasma wave only formed resonance in the outermost four small cavities, and the plasma waves in the left and right small cavities were opposite in phase.

第六种谐振模式如图4(f)所示,入射频率为2.152×1014Hz。此时入射波的频率较高,导致最外层四个小空腔、上下两个三角形空腔和中心区域都出现了较强的谐振的等离子波,其中对称分布的两个三角形区域和其他强谐振区域相位相反。The sixth resonance mode is shown in Fig. 4(f) with an incident frequency of 2.152×10 14 Hz. At this time, the frequency of the incident wave is relatively high, resulting in strong resonant plasma waves in the outermost four small cavities, the upper and lower two triangular cavities, and the central area. The resonant regions are in opposite phase.

实施例2Example 2

本实施例的三层金属复合纳米介质柱排列方式及各参数与实施例1基本相同,所不同之处在于金属涂层的厚度。The arrangement and parameters of the three-layer metal composite nano-dielectric column in this example are basically the same as those in Example 1, and the difference lies in the thickness of the metal coating.

分别取银涂层的厚度为14nm,18nm,30nm,选择频率从5×1013Hz到2.5×1014Hz平面波从左边界入射,入射角度θ=0°,得到图5所示的三种厚度对应的吸收截面图,银层厚度14nm用实线表示,厚度18nm用虚线表示,厚度30nm用点线表示。可以看出,随着金属层厚度的增加,吸收截面(ACS)谐振峰的激励频率会变大,在吸收截面图上显示的峰值的右移,而且频率越高对应的峰值右移越明显。图6为金属层厚度为30nm时六个峰值对应的近场图,由图6可知,虽然金属层厚度改变,但是金属复合纳米圆柱所围成的空腔结构的几何尺寸并没有改变,所以出现了六个共振峰对应相同的六种等离子波谐振模式,与图4一致,但所对应的频率更高,由此也可知道入射电磁波在多层复合介质柱空腔中激发的等离子波谐振与一般的电磁波谐振不同,不存在固定的谐振模式或频率。The thickness of the silver coating is taken as 14nm, 18nm and 30nm respectively, and the selected frequency is from 5×10 13 Hz to 2.5×10 14 Hz plane wave is incident from the left boundary, and the incident angle θ=0°, and the three thicknesses shown in Figure 5 are obtained. Corresponding absorption cross-sectional diagrams, the thickness of the silver layer is 14 nm with solid lines, the thickness of 18 nm is shown with dotted lines, and the thickness of 30 nm is shown with dotted lines. It can be seen that as the thickness of the metal layer increases, the excitation frequency of the absorption cross section (ACS) resonance peak will increase, and the peak displayed on the absorption cross section will shift to the right, and the higher the frequency, the more obvious the right shift of the peak. Figure 6 shows the near-field images corresponding to the six peaks when the thickness of the metal layer is 30 nm. It can be seen from Figure 6 that although the thickness of the metal layer changes, the geometry of the cavity structure enclosed by the metal composite nano-cylinders does not change, so the The six resonance peaks correspond to the same six plasmonic wave resonance modes, which are consistent with Fig. 4, but the corresponding frequencies are higher. It can also be known that the plasmonic wave resonance excited by the incident electromagnetic wave in the multilayer composite dielectric column cavity is similar to Unlike general electromagnetic wave resonance, there is no fixed resonance mode or frequency.

实施例3Example 3

本实施例的三层金属复合纳米介质柱排列方式及各参数与实施例1基本相同,所不同之处在于最内核介质的材料。The arrangement and parameters of the three-layer metal composite nano-media columns in this embodiment are basically the same as those in Embodiment 1, and the difference lies in the material of the innermost core medium.

分别选用相对介电常数为11.5的硅和相对介电常数为3.9的二氧化硅,得到图7所示三层金属复合纳米介质柱的吸收截面图,其中硅用实线表示,二氧化硅用虚线表示。由图7可以看出,由于多个金属纳米复合柱的几何结构相同,形成的纳米介质柱空腔数量和结构也相同,虽然介质柱内层材料的介电常数不同,但仍然各自出现了相应的六个吸收峰,说明介质柱的介电常数的变化并没有改变等离子波在复合结构中的谐振规律。但是同时可以看到当相对介电常数减小时,激发的等离子波形成的谐振峰明显右移,频率越高,右移越大,这说明介质柱的相对介电常数越小,在介质和金属表面形成等离子波而产生谐振峰的入射频率越高,因此,可以通过改变最内核介质的材料来获得不同的等离子谐振。Using silicon with a relative permittivity of 11.5 and silicon dioxide with a relative permittivity of 3.9, respectively, the absorption cross-sectional view of the three-layer metal composite nano-dielectric column shown in Figure 7 is obtained, in which silicon is represented by a solid line, and silicon dioxide is Dotted line indicates. It can be seen from Figure 7 that since the geometrical structures of the multiple metal nanocomposite pillars are the same, the number and structure of the cavities formed in the nanometer dielectric pillars are also the same. Although the dielectric constants of the inner layer materials of the dielectric pillars are different, there are still corresponding The six absorption peaks of , indicating that the change of the dielectric constant of the dielectric column does not change the resonance law of the plasma wave in the composite structure. But at the same time, it can be seen that when the relative permittivity decreases, the resonance peak formed by the excited plasma wave obviously shifts to the right. The higher the incident frequency of the resonance peak generated by the plasma wave formed on the surface, the different plasma resonances can be obtained by changing the material of the innermost core medium.

实施例4Example 4

本实施例的三层金属复合纳米介质柱排列方式及各参数与实施例1基本相同,所不同之处在于外层金属涂层的材料。The arrangement and parameters of the three-layer metal composite nano-dielectric column in this example are basically the same as those in Example 1, and the difference lies in the material of the outer metal coating.

分别采用18nm厚的银和金两种不同的涂层,都采用Drude-Lorentz色散模型来描述,具体计算由(1)式确定。此时对得到的相对应的金和银涂层的复合纳米介质柱的吸收截面(见图8)分析可以发现,在相同18nm的厚度下,银的电磁吸收截面明显大于金的吸收截面。特别是在高频成分,金的吸收截面明显减小,同时高频等离子的谐振频率消失,也就是说金在高频情况下在复合纳米柱腔体的等离子的激发强度减弱,不能形成明显的谐振,说明银对于高频电磁波感应比金更灵敏。同时可以看到,相对于银,金纳米复合柱形成的等离子波共振频率在相同模式下略低于银的频率。Two different coatings of silver and gold with a thickness of 18 nm are respectively used, both of which are described by the Drude-Lorentz dispersion model, and the specific calculation is determined by the formula (1). At this time, the absorption cross-section of the corresponding gold and silver-coated composite nano-dielectric pillars (see Figure 8) can be analyzed, and it can be found that under the same thickness of 18 nm, the electromagnetic absorption cross-section of silver is significantly larger than that of gold. Especially in the high-frequency component, the absorption cross section of gold is significantly reduced, and the resonance frequency of high-frequency plasma disappears, that is to say, the excitation intensity of gold in the composite nano-column cavity is weakened at high frequency, and no obvious Resonance, indicating that silver is more sensitive to high-frequency electromagnetic wave induction than gold. At the same time, it can be seen that the resonance frequency of the plasmon wave formed by the gold nanocomposite pillars is slightly lower than that of silver in the same mode, relative to silver.

Claims (9)

1.一种基于多个金属复合纳米介质柱的多重谐振腔,其特征在于,包括分别设置在内层区域、中层区域和外层区域内的18个金属复合纳米介质柱,所述内层区域、中层区域和外层区域的中心点重合;所述18个金属复合纳米介质柱中的6个金属复合纳米介质柱在内层区域内按照矩形排列,所述18个金属复合纳米介质柱中的另外6个金属复合纳米介质柱在中层区域内按照圆形均匀排列,所述18个金属复合纳米介质柱中的其余6个金属复合纳米介质柱在外层区域中按照圆形均匀排列,所述中层区域中的金属复合纳米介质柱和所述外层区域中的金属复合纳米介质柱一一交错布置;所述18个金属复合纳米介质柱之间互不接触,所述18个金属复合纳米介质柱之间形成四种形状各异的9个空腔。1. a multiple resonant cavity based on a plurality of metal composite nano-dielectric columns, is characterized in that, comprises 18 metal composite nano-dielectric columns respectively arranged in the inner layer region, the middle layer region and the outer layer region, the inner layer region , the center points of the middle layer area and the outer layer area are coincident; 6 metal composite nanometer dielectric pillars of the 18 metal composite nanometer dielectric pillars are arranged in a rectangle in the inner layer area, and 6 of the 18 metal composite nanometer dielectric pillars are arranged in a rectangle. The other 6 metal composite nano dielectric columns are uniformly arranged in a circle in the middle layer area, and the remaining 6 metal composite nano dielectric columns among the 18 metal composite nano dielectric columns are uniformly arranged in a circle in the outer layer area, and the middle layer The metal composite nanomedia dielectric pillars in the region and the metal composite nanomedia dielectric pillars in the outer region are arranged in a staggered manner; the 18 metal composite nano dielectric pillars do not contact each other, and the 18 metal composite nano dielectric pillars are not in contact with each other. Nine cavities with four different shapes are formed between them. 2.根据权利要求1所述的多重谐振腔,其特征在于,所述18个金属复合纳米介质柱包括内层介质柱Ⅰ(1)、内层介质柱Ⅱ(2)、中层介质柱(3)和外层介质柱(4);所述内层区域为矩形,所述内层介质柱Ⅰ(1)有4个,分别设置在所述内层区域的四个顶点上,所述内层介质柱Ⅱ(2)有2个,分别设置在所述内层区域的两条长边的中点上,所述内层介质柱Ⅰ(1)的外径大于所述内层介质柱Ⅱ(2);所述中层区域为圆形,所述中层介质柱(3)有6个,均匀分布在所述中层区域的边界上;所述外层区域为圆形,所述外层介质柱(4)有6个,均匀分布在所述外层区域的边界上。2 . The multiple resonant cavity according to claim 1 , wherein the 18 metal composite nano-dielectric pillars comprise inner-layer dielectric pillars I (1), inner-layer dielectric pillars II (2), and middle-layer dielectric pillars (3 . 3 . ) and an outer layer dielectric column (4); the inner layer region is rectangular, and there are four inner layer dielectric columns I (1), which are respectively arranged on the four vertices of the inner layer region. There are two dielectric columns II (2), which are respectively arranged at the midpoints of the two long sides of the inner layer region, and the outer diameter of the inner layer dielectric column I (1) is larger than that of the inner layer dielectric column II ( 2); the middle layer area is circular, and there are 6 middle layer dielectric columns (3), which are evenly distributed on the boundary of the middle layer area; the outer layer area is circular, and the outer layer dielectric columns ( 4) There are 6, which are evenly distributed on the boundary of the outer layer area. 3.根据权利要求2所述的多重谐振腔,其特征在于,所述中层区域的半径为208.75nm,所述外层区域的半径为257nm,所述内层介质柱Ⅰ(1)的半径为60nm,所述内层介质柱Ⅰ(1)的圆心与所述内层区域的中心点的距离为120.8nm,所述内层介质柱Ⅱ(2)的半径为43.9nm,所述中层介质柱(3)的半径为60nm,所述外层介质柱(4)的半径为67.5nm。3. The multiple resonant cavity according to claim 2, wherein the radius of the middle layer region is 208.75nm, the radius of the outer layer region is 257nm, and the radius of the inner layer dielectric column I(1) is 60 nm, the distance between the center of the inner layer dielectric column I (1) and the center point of the inner layer region is 120.8 nm, the radius of the inner layer dielectric column II (2) is 43.9 nm, and the middle layer dielectric column is 43.9 nm. The radius of (3) is 60 nm, and the radius of the outer layer dielectric column (4) is 67.5 nm. 4.根据权利要求1或3所述的多重谐振腔,其特征在于,所述金属复合纳米介质柱的金属涂层的厚度为14~30nm。4 . The multiple resonant cavity according to claim 1 or 3 , wherein the thickness of the metal coating of the metal composite nano-dielectric column is 14-30 nm. 5 . 5.根据权利要求1或3所述的多重谐振腔,其特征在于,所述金属复合纳米介质柱的金属涂层的材质为金或银。5 . The multiple resonant cavity according to claim 1 or 3 , wherein the metal coating of the metal composite nano-dielectric column is made of gold or silver. 6 . 6.根据权利要求1或3所述的多重谐振腔,其特征在于,所述金属复合纳米介质柱的最内层介质核的相对介电常数范围为3.9~11.5。6 . The multiple resonant cavity according to claim 1 or 3 , wherein the relative permittivity of the innermost dielectric core of the metal composite nano-dielectric column ranges from 3.9 to 11.5. 7 . 7.根据权利要求1或3所述的多重谐振腔,其特征在于,所述金属复合纳米介质柱的最内层介质核的材质为硅或二氧化硅。7 . The multiple resonant cavity according to claim 1 or 3 , wherein the material of the innermost dielectric core of the metal composite nano-dielectric column is silicon or silicon dioxide. 8 . 8.根据权利要求1或3所述的多重谐振腔,其特征在于,所述金属复合纳米介质柱的相对磁导率为1。8 . The multiple resonant cavity according to claim 1 or 3 , wherein the relative magnetic permeability of the metal composite nano-dielectric column is 1. 9 . 9.根据权利要求1或3所述的多重谐振腔,其特征在于,所述金属复合纳米介质柱置于空气环境中。9 . The multiple resonant cavity according to claim 1 or 3 , wherein the metal composite nano-dielectric column is placed in an air environment. 10 .
CN201821700744.4U 2018-10-19 2018-10-19 A multiple resonant cavity based on multiple metal composite nano-dielectric pillars Expired - Fee Related CN208723068U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201821700744.4U CN208723068U (en) 2018-10-19 2018-10-19 A multiple resonant cavity based on multiple metal composite nano-dielectric pillars

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201821700744.4U CN208723068U (en) 2018-10-19 2018-10-19 A multiple resonant cavity based on multiple metal composite nano-dielectric pillars

Publications (1)

Publication Number Publication Date
CN208723068U true CN208723068U (en) 2019-04-09

Family

ID=65983567

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201821700744.4U Expired - Fee Related CN208723068U (en) 2018-10-19 2018-10-19 A multiple resonant cavity based on multiple metal composite nano-dielectric pillars

Country Status (1)

Country Link
CN (1) CN208723068U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109149046A (en) * 2018-10-19 2019-01-04 南京林业大学 A kind of multiple resonant cavity and its application based on multiple metal composite nano dielectric posts

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109149046A (en) * 2018-10-19 2019-01-04 南京林业大学 A kind of multiple resonant cavity and its application based on multiple metal composite nano dielectric posts
CN109149046B (en) * 2018-10-19 2023-10-24 南京林业大学 Multiple resonant cavity based on multiple metal composite nano medium columns and application thereof

Similar Documents

Publication Publication Date Title
Shi et al. Ultra-narrow multi-band polarization-insensitive plasmonic perfect absorber for sensing
Patel et al. Review on graphene-based absorbers for infrared to ultraviolet frequencies
Liu et al. One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering
Katyal et al. Localized surface plasmon resonance and refractive index sensitivity of metal–dielectric–metal multilayered nanostructures
Khan et al. Plasmonic Fano resonances in single-layer gold conical nanoshells
Daneshfar et al. Optical and spectral tunability of multilayer spherical and cylindrical nanoshells
Zhong et al. Near-infrared multi-narrowband absorber based on plasmonic nanopillar metamaterial
Mortazavi et al. Developing LSPR design guidelines
Novin et al. Field enhancement in metamaterial split ring resonator aperture nano-antenna with spherical nano-particle arrangement
Sekhi et al. Ultra-broadband, wide-angle, and polarization-insensitive metamaterial perfect absorber for solar energy harvesting
CN208723068U (en) A multiple resonant cavity based on multiple metal composite nano-dielectric pillars
Phua et al. Study of circular dichroism modes through decomposition of planar nanostructures
Mejdoubi et al. Optical scattering and electric field enhancement from core–shell plasmonic nanostructures
Zhang et al. Plasmonic properties of welded metal nanoparticles
Soheilifar The wideband optical absorber based on plasmonic metamaterials for optical sensing
Zeng et al. Multiple resonances induced terahertz broadband filtering in a bilayer metamaterial
CN114264644A (en) Surface enhanced Raman scattering substrate
CN109149046B (en) Multiple resonant cavity based on multiple metal composite nano medium columns and application thereof
Liu et al. Plasmonic plano-semi-cylindrical nanocavities with high-efficiency local-field confinement
Zoghi Goos–Hanchen shift in a metasurface of core–shell nanoparticles
Guclu et al. Array of dipoles near a hyperbolic metamaterial: Evanescent-to-propagating Floquet wave transformation
CN208208953U (en) A kind of much frequency resonance chamber based on metal nano dielectric posts
Kang et al. Double-layered metal nano-strip antennas for sensing applications
Ahmadivand et al. Localization, hybridization, and coupling of plasmon resonances in an aluminum nanomatryushka
Firoozi et al. Effects of geometry and size of noble metal nanoparticles on enhanced refractive index sensitivity

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190409

Termination date: 20211019