CN208655907U - A kind of array antenna using inversion microstrip gap waveguide feed - Google Patents

A kind of array antenna using inversion microstrip gap waveguide feed Download PDF

Info

Publication number
CN208655907U
CN208655907U CN201821264186.1U CN201821264186U CN208655907U CN 208655907 U CN208655907 U CN 208655907U CN 201821264186 U CN201821264186 U CN 201821264186U CN 208655907 U CN208655907 U CN 208655907U
Authority
CN
China
Prior art keywords
plate
network
array antenna
gap waveguide
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201821264186.1U
Other languages
Chinese (zh)
Inventor
于胜民
陈海涛
徐利军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Ling Bo Micro Information Technology Co Ltd
Original Assignee
Beijing Ling Bo Micro Information Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Ling Bo Micro Information Technology Co Ltd filed Critical Beijing Ling Bo Micro Information Technology Co Ltd
Priority to CN201821264186.1U priority Critical patent/CN208655907U/en
Application granted granted Critical
Publication of CN208655907U publication Critical patent/CN208655907U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

The utility model relates to a kind of using the array antenna for being inverted microstrip gap waveguide feed, mainly by the first transmission network network layers, radiating layer comprising the second feeding network and the slot-coupled layer being arranged between the first transmission network network layers and radiating layer composition, the first transmission network network layers setting is in being inverted microstrip gap waveguide, microstrip gap waveguide is inverted mainly to be made of two parallel-plates, the parallel-plate on upper layer is desired metallic plate, the parallel-plate of lower layer is ideal magnetic conductive board, by lower metal plate and periodically, the metal cylinder that is placed on the metal plate is equivalent forms for it, place medium plate in the surface of multiple metal cylinders, the surface of medium plate is equipped with metal conduction band, the top of medium plate is arranged in desired metallic plate;Medium plate and metal conduction band constitute the first transmission network network layers, and desired metallic plate constitutes the slot-coupled layer.Using the array antenna technique, it is possible to reduce feeder loss improves antenna gain, increases Antenna Operation bandwidth.

Description

A kind of array antenna using inversion microstrip gap waveguide feed
Technical field
The utility model relates to millimeter wave antenna technical field, especially a kind of use to be inverted microstrip gap waveguide feed Array antenna.
Background technique
In recent years, wireless communication and Radar Technology rapid development, emerge many new technologies and are quickly applied, simultaneously Cause frequency spectrum resource more and more crowded, it is necessary to develop high band resource, to meet the needs of various applications, therefore millimeter involves too Hertz frequency range is developed rapidly, and as the antenna of each communication system critical component, is faced new challenges and technical difficulty, Main concentrated reflection the following aspects: 1, the problem of efficiency, in millimeter wave frequency band, various losses such as conductor losses and medium is damaged Loss-rate low frequency is much greater, and antenna efficiency is caused to reduce.2, the problem of size, present many application fields, either radar are also Be communicate all to antenna propose low profile requirement, be intended to antenna size it is small and also height it is low, originally efficiently reflecting surface day Line is unable to satisfy requirement.3, the problem of bandwidth, in millimeter wave frequency band, various applications are all broadband systems, and antenna is needed also to have The problem of higher relative bandwidth, and traditional Waveguide slot antenna narrower bandwidth is difficult to meet the requirements, 4, cost, respectively applies quotient It is desirable in the case where meeting index request, antenna processing is simple, and cost wants low.For the design of above-mentioned millimeter wave antenna Difficult point and requirement, we have proposed a kind of using the array antenna for being inverted microstrip gap waveguide feed, can overcome previous feed The big drawback of via net loss designs the millimeter wave antenna of efficient, low profile, broadband.
Utility model content
Purpose of the utility model is to solve defects of the existing technology, provide a kind of using inversion microstrip gap The array antenna of waveguide feed.
To achieve the goals above, the technical solution adopted in the utility model is:
It is a kind of using be inverted microstrip gap waveguide feed array antenna, mainly by the first transmission network network layers, include second The radiating layer of feeding network and the slot-coupled layer being arranged between the first transmission network network layers and radiating layer composition, described first The setting of transmission network network layers is inverted microstrip gap waveguide and is mainly made of two parallel-plates in being inverted microstrip gap waveguide, upper layer Parallel-plate be desired metallic plate, the parallel-plate of lower layer is ideal magnetic conductive board, by lower metal plate and is placed on the metal Metal cylinder on plate is equivalent to be formed, and medium plate is placed on the surface of multiple metal cylinders, and the surface of medium plate is equipped with The top of medium plate is arranged in metal conduction band, the desired metallic plate;
Medium plate and metal conduction band constitute the first transmission network network layers, and desired metallic plate constitutes the slot-coupled Layer.
Above-mentioned is a kind of using the array antenna for being inverted microstrip gap waveguide feed, and the metal conduction band is on medium plate Multiple T-type power splitters are constituted, multiple T-type power splitters form the first feeding network, the feeding network on the surface of transmission network network layers With multiple free terminals, the desired metallic plate is equipped with multiple rectangular apertures corresponding with free terminal on feeding network.
Above-mentioned is a kind of using the array antenna for being inverted microstrip gap waveguide feed, and described includes the spoke of the second feeding network Penetrating layer includes dielectric-slab, is set on dielectric-slab there are four I-shaped feeding network, I-shaped feeding network is located at the rectangular aperture Top it is corresponding with rectangular aperture, for I-shaped feeding network band there are four terminals, each terminals connect radiating element.
The array antenna of microstrip gap waveguide feed, the T-type power splitter number on medium plate are inverted in a kind of above-mentioned use Amount is three, and three T-type power splitters form one point four of feeding network, and there are four free terminal, four freedom for feeding network band Motivate four rectangular apertures on desired metallic plate respectively for end, and rectangular aperture motivates the corresponding I-shaped transmission network in its top Network.
Above-mentioned is a kind of using the array antenna for being inverted microstrip gap waveguide feed, and the radiating element is rectangular metal Piece, adjacent radiation cell spacing are 0.7 free space wavelength.
Above-mentioned is a kind of using the array antenna for being inverted microstrip gap waveguide feed, four I-shaped feeding networks and company It connects radiating element and forms the array antenna of 4X4 on the surface of dielectric-slab.
Above-mentioned is a kind of using the array antenna for being inverted microstrip gap waveguide feed, the medium plate and desired metallic plate The distance between less than 0.25 space wavelength.
The utility model has the following beneficial effects: using the array antenna technique, it is possible to reduce feeder loss improves antenna and increases Benefit increases Antenna Operation bandwidth, which has biggish advantage in millimeter wave field, can be applied to millimetre-wave radar, The communications field.
Detailed description of the invention
The structural schematic diagram of Fig. 1 the utility model antenna;
The structural schematic diagram of microstrip gap waveguide is inverted in Fig. 2 the utility model;
Fig. 3 is the structural schematic diagram of transmission network network layers in the utility model;
Fig. 4 is the schematic diagram of slot-coupled layer in the utility model;
Fig. 5 is the schematic diagram of feeding network radiating layer in the utility model;
Fig. 6 is the antenna radiation pattern in the utility model;
Fig. 7 is return loss plot when the utility model is used;
Fig. 8 is radiation efficiency figure when the utility model is used.
Specific embodiment
As shown in Figures 1 to 5, a kind of using the array antenna for being inverted microstrip gap waveguide feed, mainly by the first feed Network layer 1, the radiating layer 3 comprising the second feeding network and the gap being arranged between the first transmission network network layers 1 and radiating layer 3 Coupling layer 2 forms, and the setting of the first transmission network network layers 1 is inverted microstrip gap waveguide mainly by two in being inverted microstrip gap waveguide A parallel-plate composition, the parallel-plate on upper layer are desired metallic plate 2, and the parallel-plate of lower layer is ideal magnetic conductive board, by the gold of lower layer The metal cylinder 15 that category plate 13 and periodicity are placed on the metal plate 13 is equivalent to be formed, the table of multiple metal cylinders 15 Medium plate 12 is placed in face, and the surface of medium plate 12 is equipped with metal conduction band 14, and medium plate 12 is arranged in desired metallic plate 2 Top.
Wherein, medium plate 12 and metal conduction band 14 constitute transmission network network layers 1, and desired metallic plate 2 constitutes slot-coupled layer.
Metal conduction band 14 constitutes multiple T-type power splitters on medium plate 12, and multiple T-type power splitters are in transmission network network layers Surface forms the first feeding network, which has multiple free terminals, specially the T-type power splitter on medium plate 12 Quantity is three, respectively T-type power splitter 141, T-type power splitter 142 and T-type power splitter 143;Three T-type power splitters are formed One point four of feeding network, for feeding network band there are four free terminal, respectively free terminal 144, free terminal 145 is free End 146, free terminal 147.
Further, square corresponding with free terminal on feeding network there are four being set on desired metallic plate (slot-coupled layer) 2 Shape gap, respectively rectangular aperture 21, rectangular aperture 22, rectangular aperture 23, rectangular aperture 24;
Feeding network radiating layer 3 includes dielectric-slab 35, sets that there are four I-shaped feeding networks, respectively work on dielectric-slab 35 Font feeding network 31, I-shaped feeding network 32, I-shaped feeding network 33 and I-shaped feeding network 34;
The top that I-shaped feeding network is located at rectangular aperture is corresponding with rectangular aperture, four free terminal (free terminals 144, free terminal 145, free terminal 146, free terminal 147) four rectangular aperture (squares on desired metallic plate are motivated respectively Shape gap 21, rectangular aperture 22, rectangular aperture 23, rectangular aperture 24) there are four terminals, Ge Gejie for I-shaped feeding network band Line end connects radiating element 36, rectangular aperture (rectangular aperture 21, rectangular aperture 22, rectangular aperture 23, rectangular aperture 24) excitation Its top corresponding I-shaped feeding network (I-shaped feeding network 31, I-shaped feeding network 32, I-shaped feeding network 33 And I-shaped feeding network 34).
Wherein, radiating element 36 be rectangular metal sheet, 36 spacing of adjacent radiation unit be 0.7 free space wavelength, four A I-shaped feeding network and connection radiating element dielectric-slab surface formed 4X4 array antenna, medium plate 12 with The distance between desired metallic plate 2 is less than 0.25 space wavelength.This region is filled by air dielectric, since electromagnetic wave exists completely It is transmitted in air, so in millimeter wave frequency band, transmission loss very little.Since lower metal plate 13 and periodicity are placed on it Metal cylinder 15 can be equivalent to ideal magnetic conductive board, the planar waveguide being made of the ideal magnetic conductive board and desired metallic plate 2, With band gap properties, Quasi-TEM mode can only be transmitted, inhibits other modes of all directions, so further improving feeding network Efficiency.Four free terminals (free terminal 144, free terminal 145, free terminal 146, free terminal 147) are motivated respectively Four rectangular apertures (rectangular aperture 21, rectangular aperture 22, rectangular aperture 23, rectangular aperture 24) on desired metallic plate are I-shaped There are four terminals, each terminals to connect radiating element 36, rectangular aperture (rectangular aperture 21, rectangular aperture for feeding network band 22, rectangular aperture 23, rectangular aperture 24) motivate its top corresponding I-shaped feeding network (I-shaped feeding network 31, I-shaped Type feeding network 32, I-shaped feeding network 33 and I-shaped feeding network 34), using array antenna technique, it is possible to reduce Feeder loss improves antenna gain, increases Antenna Operation bandwidth, which has biggish advantage in millimeter wave field, can To be applied to millimetre-wave radar, the communications field.
In addition, a case study on implementation as the utility model, we devise the array antenna of ka wave band.During Fig. 6 is Directional diagram after the normalizing of frequency of heart.Fig. 7 return loss plot covers 22.7GHz- using the return loss of -15dB as reference point 25GHz, bandwidth 2.3GHz.Fig. 8 is radiation efficiency figure, and radiation efficiency is both greater than 60% in whole bandwidth, reaches as high as 73%.
Basic principles, main features, and advantages of the present invention has been shown and described above.Current row The technical staff of industry is described in above embodiments and description it should be appreciated that the present utility model is not limited to the above embodiments Only the principles of the present invention, the utility model also has respectively on the premise of not departing from the spirit and scope of the utility model Kind changes and improvements, these changes and improvements are both fallen in the range of claimed invention.The requires of the utility model Protection scope defined by appended claims and its equivalent.

Claims (8)

1. it is a kind of using the array antenna for being inverted microstrip gap waveguide feed, mainly presented by the first transmission network network layers, comprising second The radiating layer of electric network and the slot-coupled layer being arranged between the first transmission network network layers and radiating layer composition, feature exist In it is mainly parallel by two to be inverted microstrip gap waveguide in being inverted microstrip gap waveguide for the first transmission network network layers setting Board group is at the parallel-plate on upper layer is desired metallic plate, and the parallel-plate of lower layer is ideal magnetic conductive board, by lower metal plate and is put Set that the metal cylinder on the metal plate is equivalent to be formed, medium plate, medium plate are placed in the surface of multiple metal cylinders Surface be equipped with metal conduction band, the top of medium plate is arranged in the desired metallic plate;
Medium plate and metal conduction band constitute the first transmission network network layers, and desired metallic plate constitutes the slot-coupled layer.
2. according to claim 1 a kind of using the array antenna for being inverted microstrip gap waveguide feed, which is characterized in that institute It states metal conduction band and constitutes multiple T-type power splitters on medium plate, multiple T-type power splitters form the on the surface of transmission network network layers One feeding network, the feeding network have multiple free terminals, and the desired metallic plate is equipped on multiple and feeding network certainly By the corresponding rectangular aperture in end.
3. according to claim 2 a kind of using the array antenna for being inverted microstrip gap waveguide feed, which is characterized in that institute Stating the radiating layer comprising the second feeding network includes dielectric-slab, sets that there are four I-shaped feeding network, I-shaped feedbacks on dielectric-slab The top that electric network is located at the rectangular aperture is corresponding with rectangular aperture, and there are four terminals for I-shaped feeding network band, each Terminals connect radiating element.
4. according to claim 3 a kind of using the array antenna for being inverted microstrip gap waveguide feed, which is characterized in that be situated between T-type power splitter quantity on lumber is three, and three T-type power splitters form one point four of feeding network, and feeding network has Four free terminals, four free terminals motivate four rectangular apertures on desired metallic plate respectively, and rectangular aperture motivates thereon The corresponding I-shaped feeding network in side.
5. according to claim 4 a kind of using the array antenna for being inverted microstrip gap waveguide feed, which is characterized in that institute Stating radiating element is rectangular metal sheet, and adjacent radiation cell spacing is 0.7 free space wavelength.
6. according to claim 4 a kind of using the array antenna for being inverted microstrip gap waveguide feed, which is characterized in that four A I-shaped feeding network and connection radiating element dielectric-slab surface formed 4X4 array antenna.
7. according to claim 1 a kind of using the array antenna for being inverted microstrip gap waveguide feed, which is characterized in that institute The distance between lumber and desired metallic plate are given an account of less than 0.25 space wavelength.
8. according to claim 1 a kind of using the array antenna for being inverted microstrip gap waveguide feed, which is characterized in that more A metal cylinder quasi-periodic on lower metal plate is placed.
CN201821264186.1U 2018-08-07 2018-08-07 A kind of array antenna using inversion microstrip gap waveguide feed Active CN208655907U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201821264186.1U CN208655907U (en) 2018-08-07 2018-08-07 A kind of array antenna using inversion microstrip gap waveguide feed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201821264186.1U CN208655907U (en) 2018-08-07 2018-08-07 A kind of array antenna using inversion microstrip gap waveguide feed

Publications (1)

Publication Number Publication Date
CN208655907U true CN208655907U (en) 2019-03-26

Family

ID=65788858

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201821264186.1U Active CN208655907U (en) 2018-08-07 2018-08-07 A kind of array antenna using inversion microstrip gap waveguide feed

Country Status (1)

Country Link
CN (1) CN208655907U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109103605A (en) * 2018-08-07 2018-12-28 北京凌波微步信息技术有限公司 A kind of array antenna using inversion microstrip gap waveguide feed

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109103605A (en) * 2018-08-07 2018-12-28 北京凌波微步信息技术有限公司 A kind of array antenna using inversion microstrip gap waveguide feed

Similar Documents

Publication Publication Date Title
CN104953256B (en) Broadband circle polarized flat plate array antenna
CN110021805B (en) Three-dimensional transition structure based on air gap waveguide in complex feed network
CN104901006B (en) Multiband micro-strip mimo antenna based on fractal structure
CN104733853B (en) A kind of multi layer substrate integrated waveguide array antenna
CN109103605A (en) A kind of array antenna using inversion microstrip gap waveguide feed
CN109216904B (en) Broadband low-profile microstrip antenna
CN106207494A (en) A kind of minimized wide-band low profile antenna array
CN111883910A (en) Dual-polarized low-profile magnetoelectric dipole antenna and wireless communication equipment
CN110518348A (en) A kind of wideband dual polarized electromagnetic dipole antenna element in the equal face E and the face H
CN205319316U (en) Be applied to wireless LAN's dual -frenquency MIMO dipole antenna
CN207282711U (en) A kind of millimeter wave circular polarised array antenna and its radiator
CN104900993A (en) Planar dual-polarized antenna
CN208655907U (en) A kind of array antenna using inversion microstrip gap waveguide feed
CN104966903B (en) A kind of suspension micro-strip antenna array and its antenna for 60GHz millimetre-wave attenuators
CN106711601A (en) Broadband millimeter wave waveguide slot antenna adopting double parabolic cylindrical surface feeding
CN107359407B (en) Wide-beam dual-polarization microstrip antenna based on short-circuit wall structure
CN205846249U (en) Antenna assembly
CN103050775A (en) High-gain high-efficiency flat plate antenna loaded with dielectric lens
CN110571520A (en) Low-profile 5G antenna radiation unit and antenna array
CN102751590A (en) Fractal yagi printed antenna of coplanar waveguide feed
CN109904629A (en) Array antenna based on defect ground structure
CN213753051U (en) Broadband high-gain printed antenna
CN108448260A (en) Sidelobe gap standing-wave array based on gap waveguide
CN208423183U (en) Sidelobe gap standing-wave array based on gap waveguide
CN210576442U (en) Low-profile 5G antenna radiation unit and antenna array

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant