CN208621784U - A kind of grating waveguide device of flexibility insertion type medical catheter curvature of space detection - Google Patents

A kind of grating waveguide device of flexibility insertion type medical catheter curvature of space detection Download PDF

Info

Publication number
CN208621784U
CN208621784U CN201820352393.6U CN201820352393U CN208621784U CN 208621784 U CN208621784 U CN 208621784U CN 201820352393 U CN201820352393 U CN 201820352393U CN 208621784 U CN208621784 U CN 208621784U
Authority
CN
China
Prior art keywords
grating
medical catheter
wavelength
grating waveguide
microstructure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201820352393.6U
Other languages
Chinese (zh)
Inventor
姜辉
刘月明
徐程
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN201820352393.6U priority Critical patent/CN208621784U/en
Application granted granted Critical
Publication of CN208621784U publication Critical patent/CN208621784U/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The utility model is a kind of grating waveguide device of flexible insertion type medical catheter curvature of space detection, belongs to fiber optic sensor technology field.Such as Fig. 1: wideband light source 1, medical catheter 2, optical waveguide 3, wavelength λ1Grating microstructure 4, wavelength λ2Grating microstructure 5, wavelength λ3Grating microstructure 6, covering 7, signal demodulation 8.The polymer material that grating microstructure selects flexible biocompatible good, it is made of microreplicated technology, the polymer that covering choosing matches with sandwich layer, coating thickness is controlled by spin coating method, having a size of 5 μm~10 μm, polymer is covered on the grating microstructure made, grating waveguide device is made.It is λ by wavelength1、λ2、λ3Grating waveguide paste and fix in 120 ° of angles, and need be fixed on medical catheter surface under pre- tension state.It is bent when medical catheter enters human body, according to 3D shape detection algorithm, the bending size and Orientation of conduit can be determined by output signal.

Description

A kind of grating waveguide device of flexibility insertion type medical catheter curvature of space detection
Technical field
The present invention relates to a kind of technical field of optical fiber sensing more particularly to a kind of flexible insertion type medical catheter curvature of space The grating waveguide device of detection.
Background technique
With the development of the progress society in epoch, many equipment of hospital have all gradually updated, but insertion type is cured The speed updated with conduit is slower than other equipment.Present insertion type conduit is to get involved in human body using the external force of operator Diseased region, this there is risk, it is possible to pressure is excessive to will result in disorganization and perforation, and such case be can not It avoids.In light of this situation, it is therefore necessary to invent a kind of grating light wave of flexible insertion type medical catheter curvature of space detection Device is led, for detecting the bending size and Orientation of Medical light-guiding pipe in human body.The advantage of this device is: first, not only It can detecte out the degree of bending and can also detect that curved direction, and this device is suitable for various complicated tables Face;Second, this device is that have good flexibility and biological safety, while also inheriting using polymeric material The detectability of fiber grating sensor high sensitivity.
Although present Fiber Bragg Grating technology is very mature, since one side quartz material is inadequate compared with conduit Softness, the rigidity of the importing meeting additional conduits of fiber grating, so that the yarage of medical catheter is reduced, and second, quartzy material Expect it is easily broken, when for insertion type medical catheter enter human body after, can not show a candle to the highly-safe and biocompatibility of polymer material It is good, therefore actually present fiber grating and it is unsatisfactory for needs at this time.
Present grating waveguide generally uses semiconductor lithography process to process, this photoetching process is not only expensive, Fabrication cycle is also grown, and the needs of batch machining are not suitable for.It is that nanometer is microreplicated that grating waveguide processing technology of the present invention, which uses, The advantages of technology is suitble to grating waveguide flexible to process, this technology, is: it is not only at low cost, the process-cycle is short, but also Apparent advantage can be machined with compared with semiconductor lithography with batch machining.
In order to accurately detect the size and Orientation of medical catheter curvature of space, the present invention is by the light of three different wave lengths Grid optical waveguide is pasted onto the surface of medical catheter in 120 ° of angles.Its purpose is to measure the curvature of space of medical catheter letter Breath, according to medical catheter 3D shape detection algorithm, can detect the curvature of space size and Orientation of medical catheter, this method Advantage be: first, precision is high;Second, complicated spatial form can be used in.
Summary of the invention
It is an object of the invention to the needs for the detection of current insertion type medical catheter curvature of space, have devised one kind The grating waveguide device of flexible insertion type medical catheter curvature of space detection, the device good, biocompatibility with flexibility Advantage good, degree of safety is high, high sensitivity and detection accuracy are high.
The technical solution adopted by the invention is as follows: being λ including 1 wideband light source, 2 medical catheters, 3 optical waveguides, 4 wavelength1's Grating microstructure, 5 wavelength are the grating microstructure of λ 2,6 wavelength are the grating microstructure of λ 3,7 coverings and the demodulation of 8 signals, such as Fig. 1 It is shown.The grating waveguide that wavelength is 1 grating waveguide of λ, wavelength is the grating waveguide of λ 2, wavelength is λ 3 is in 120 ° of angles It is pasted onto the surface of medical catheter, its purpose is to measure the curvature of space information of medical catheter, according to medical catheter three-dimensional SHAPE DETECTION algorithm, can detect the curvature of space size and Orientation of medical catheter, and this method has complicated spatial form Very high detection accuracy.And grating waveguide is to paste fixation using both-end point under pre- tension state to be fixed on medical catheter It is inaccurate to will cause measurement result its purpose is to generate chirp grating after preventing device bend for surface.Grating waveguide by Polymeric material, and processed using the microreplicated technology of nanometer, screen periods are 0.5 μm~1.2 μm, and sectional dimension is 20 μm~60 μm of width, be highly 2 μm~5 μm, has high good flexibility, good biocompatibility, degree of safety, high sensitivity and inspection Survey advantage with high accuracy.Covering selects the polymer material to match with grating waveguide, and coating thickness can pass through spin coating method Control, having a size of 5 μm~10 μm.
The beneficial effects of the present invention are:
1, the present invention is a kind of grating waveguide device of flexible insertion type medical catheter curvature of space detection, is both maintained Traditional devices high-precision and high sensitivity, and make operation treatment with more safety, accuracy and convenience.
2, the present invention is a kind of grating waveguide device of flexible insertion type medical catheter curvature of space detection, not only can be with With in the detection of medical catheter curvature of space, other fields for having same technique, such as robot brachiocylloosis may be also used in Detection etc..
3, using the microreplicated technology of nanometer, the micro element duplication dimensional accuracy of the technology is reachable for sandwich layer part of the present invention To 10nm, the working ability with very high degree of precision can the inexpensive micro element for producing nanoscale in batches.
Detailed description of the invention
With reference to the accompanying drawing and embodiment the present invention is further described:
Fig. 1 is that a kind of structure of the grating waveguide device of flexible insertion type medical catheter curvature of space detection of the present invention is shown It is intended to.In Fig. 1: 1 being wideband light source, 2 be medical catheter, 3 be optical waveguide, 4 be wavelength be λ1Grating microstructure, 5 be wavelength For λ2Grating microstructure, 6 be wavelength be λ3Grating microstructure, 8 for signal demodulate.
Fig. 2 is the grating waveguide in a kind of grating waveguide device of flexible insertion type medical catheter curvature of space detection Sectional view: 7 be covering.
Fig. 3 is medical in a kind of grating waveguide device of flexible insertion type medical catheter curvature of space detection of the present invention The sectional view of conduit.In Fig. 3: 9 be wavelength be λ1Grating waveguide, 10 be wavelength be λ2Grating waveguide, 11 are for wavelength λ3Grating waveguide, 12-14 be conduit in other function pipeline.
Specific embodiment
In Fig. 1, Fig. 2 and Fig. 3, a kind of the technical solution adopted in the present invention: flexibility insertion type medical catheter curvature of space The grating waveguide device of detection, comprising: wideband light source 1, medical catheter 2, optical waveguide 3, wavelength λ1Grating microstructure 4, Wavelength is λ2Grating microstructure 5, wavelength λ3Grating microstructure 6, covering 7, signal demodulation 8, wavelength λ1Grating light wave 9 are led, wavelength λ2Grating waveguide 10, wavelength λ3Grating waveguide 11, the pipeline 12-14 of other function in conduit.
The bandwidth light source 1, can export λ0nThe light of wavelength passes through grating waveguide reflectance signature wavelength value Translational movement △ λ can measure the bending situation of medical catheter.
The wavelength is λ1、λ2、λ3Grating waveguide 4-6, using polymer material, with the microreplicated technology system of nanometer Make.The micrometer-nanometer processing technology of the microreplicated mold of nanometer, the process means used is electron beam lithography combination fast atoms Shu Jiagong It is processed with reactive ion etching technology, to meet the requirement on machining accuracy of the microreplicated mold of nanometer.Grating waveguide device of the present invention Part selects heat cure liquid medium effectively to fill mold, then carries out heat cure to replicated architecture, then demoulds micro element, thus Form the optical grating construction of grating waveguide.
The covering 7, selection are covered on the grating waveguide made with the polymer that sandwich layer matches, and are coated Thickness be 5 μm~10 μm, the present invention use photoresist spin coating method, in order to avoid there is bubble to be mixed into, it is necessary to clad material into Row Fruit storage.
The signal demodulation 8, the optical signal △ λ reflected is handled, and detect that the microbend of conduit is big Small and direction.
The wavelength is λ1、λ2、λ3Grating waveguide 9-11, the surface of medical catheter is pasted onto 120 ° of angles, Purpose is the curvature of space information in order to measure medical catheter, according to medical catheter 3D shape detection algorithm, can detect to cure With the curvature of space size and Orientation of conduit, and the high error of precision is small.
The wavelength is λ1、λ2、λ3Grating waveguide 9-11, need to paste fixation using both-end point under pre- tension state It is fixed on medical catheter surface, is to generate chirp grating after device bend in order to prevent, it is inaccurate to will cause measurement result.
Guiding-tube bend size detection principle of the present invention: principle signal of the grating waveguide for micromachined membrane flexure detection Figure: after micro-bend flexure occurs for micromachined membrane, corresponding change will occur for the screen periods of grating waveguide thereon, thus It causes to be moved by the characteristic wavelength that grating waveguide is reflected back, it is assumed that waveguide optical grating mechanical periodicity caused by micro-bend flexure is △ Λ, then by the Λ of λ=2 neffIt is found that the translational movement △ λ of reflectance signature wavelength value can be expressed as the Λ of λ=2 neff.It uses up Spectrometer or Wavelength demodulation circuit measure this reflectance signature wavelength shift amount △ λ, so that it may determine the big of the curved deflection of device under test It is small.

Claims (3)

1. a kind of grating waveguide device of flexibility insertion type medical catheter curvature of space detection, including wideband light source, medical lead Pipe, the grating microstructure, covering and signal that wavelength is the grating microstructure of λ 1, wavelength is the grating microstructure of λ 2, wavelength is λ 3 Demodulation, it is characterized in that: the grating microstructure selects the polymer material of good biocompatibility flexible, microreplicated using nanometer Technology production, screen periods are 0.5 μm~1.2 μm, and it is highly 2 μm~5 μm that sectional dimension, which is 20 μm~60 μm of width, wavelength It is pasted onto the surface of medical catheter in 120 ° of angles for λ 1, λ 2,3 grating waveguide of λ, and is under pre- tension state using both-end point It pastes fixation and is fixed on medical catheter surface.
2. a kind of grating waveguide device of flexible insertion type medical catheter curvature of space detection according to claim 1, It is characterized in that: covering coating thickness can be controlled by spin coating method, having a size of 5 μm~10 μm.
3. a kind of grating waveguide device of flexible insertion type medical catheter curvature of space detection according to claim 1, Match polymer material it is characterized in that: the covering is used with grating waveguide, using polymer heat cure forming method Preparation.
CN201820352393.6U 2018-03-15 2018-03-15 A kind of grating waveguide device of flexibility insertion type medical catheter curvature of space detection Expired - Fee Related CN208621784U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201820352393.6U CN208621784U (en) 2018-03-15 2018-03-15 A kind of grating waveguide device of flexibility insertion type medical catheter curvature of space detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201820352393.6U CN208621784U (en) 2018-03-15 2018-03-15 A kind of grating waveguide device of flexibility insertion type medical catheter curvature of space detection

Publications (1)

Publication Number Publication Date
CN208621784U true CN208621784U (en) 2019-03-19

Family

ID=65694398

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201820352393.6U Expired - Fee Related CN208621784U (en) 2018-03-15 2018-03-15 A kind of grating waveguide device of flexibility insertion type medical catheter curvature of space detection

Country Status (1)

Country Link
CN (1) CN208621784U (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109061798A (en) * 2018-03-15 2018-12-21 中国计量大学 A kind of grating waveguide device of flexibility insertion type medical catheter curvature of space detection
US11194159B2 (en) 2015-01-12 2021-12-07 Digilens Inc. Environmentally isolated waveguide display
US11281013B2 (en) 2015-10-05 2022-03-22 Digilens Inc. Apparatus for providing waveguide displays with two-dimensional pupil expansion
US11307432B2 (en) 2014-08-08 2022-04-19 Digilens Inc. Waveguide laser illuminator incorporating a Despeckler
US11442222B2 (en) 2019-08-29 2022-09-13 Digilens Inc. Evacuated gratings and methods of manufacturing
US11448937B2 (en) 2012-11-16 2022-09-20 Digilens Inc. Transparent waveguide display for tiling a display having plural optical powers using overlapping and offset FOV tiles
US11543594B2 (en) 2019-02-15 2023-01-03 Digilens Inc. Methods and apparatuses for providing a holographic waveguide display using integrated gratings
US11586046B2 (en) 2017-01-05 2023-02-21 Digilens Inc. Wearable heads up displays
US11703645B2 (en) 2015-02-12 2023-07-18 Digilens Inc. Waveguide grating device
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
US11726323B2 (en) 2014-09-19 2023-08-15 Digilens Inc. Method and apparatus for generating input images for holographic waveguide displays
US11747568B2 (en) 2019-06-07 2023-09-05 Digilens Inc. Waveguides incorporating transmissive and reflective gratings and related methods of manufacturing

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
US11448937B2 (en) 2012-11-16 2022-09-20 Digilens Inc. Transparent waveguide display for tiling a display having plural optical powers using overlapping and offset FOV tiles
US11307432B2 (en) 2014-08-08 2022-04-19 Digilens Inc. Waveguide laser illuminator incorporating a Despeckler
US11709373B2 (en) 2014-08-08 2023-07-25 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
US11726323B2 (en) 2014-09-19 2023-08-15 Digilens Inc. Method and apparatus for generating input images for holographic waveguide displays
US11726329B2 (en) 2015-01-12 2023-08-15 Digilens Inc. Environmentally isolated waveguide display
US11194159B2 (en) 2015-01-12 2021-12-07 Digilens Inc. Environmentally isolated waveguide display
US11740472B2 (en) 2015-01-12 2023-08-29 Digilens Inc. Environmentally isolated waveguide display
US11703645B2 (en) 2015-02-12 2023-07-18 Digilens Inc. Waveguide grating device
US11281013B2 (en) 2015-10-05 2022-03-22 Digilens Inc. Apparatus for providing waveguide displays with two-dimensional pupil expansion
US11754842B2 (en) 2015-10-05 2023-09-12 Digilens Inc. Apparatus for providing waveguide displays with two-dimensional pupil expansion
US11586046B2 (en) 2017-01-05 2023-02-21 Digilens Inc. Wearable heads up displays
CN109061798A (en) * 2018-03-15 2018-12-21 中国计量大学 A kind of grating waveguide device of flexibility insertion type medical catheter curvature of space detection
CN109061798B (en) * 2018-03-15 2024-01-23 中国计量大学 Grating optical waveguide device for flexible interventional medical catheter space bending detection
US11543594B2 (en) 2019-02-15 2023-01-03 Digilens Inc. Methods and apparatuses for providing a holographic waveguide display using integrated gratings
US11747568B2 (en) 2019-06-07 2023-09-05 Digilens Inc. Waveguides incorporating transmissive and reflective gratings and related methods of manufacturing
US11442222B2 (en) 2019-08-29 2022-09-13 Digilens Inc. Evacuated gratings and methods of manufacturing
US11592614B2 (en) 2019-08-29 2023-02-28 Digilens Inc. Evacuated gratings and methods of manufacturing
US11899238B2 (en) 2019-08-29 2024-02-13 Digilens Inc. Evacuated gratings and methods of manufacturing

Similar Documents

Publication Publication Date Title
CN208621784U (en) A kind of grating waveguide device of flexibility insertion type medical catheter curvature of space detection
EP3717993A1 (en) Elastomeric lightguide coupling for continuous position localization in 1,2, and 3d
JPWO2007094365A1 (en) Measuring probe, sample surface measuring apparatus, and sample surface measuring method
CN113503917A (en) Flexible temperature and pressure sensor based on micro-nano optical fiber
Meng et al. Shape sensing using two outer cores of multicore fiber and optical frequency domain reflectometer
CN109029805A (en) Pressure sensor based on flexible polymer waveguides
Roodsari et al. Fabrication and characterization of a flexible FBG-based shape sensor using single-mode fibers
JPH1130503A (en) Sensor and method for measuring distance to medium and/ or physical characteristics of medium
CN109061798A (en) A kind of grating waveguide device of flexibility insertion type medical catheter curvature of space detection
CN110726681A (en) Integrated optical fiber Bragg grating sensor for detecting temperature, humidity and pH value
Harun et al. Fiber optic displacement sensors and their applications
CN109425375A (en) Fiber sensor measuring device
Oh et al. Optical pressure sensors based on vertical directional coupling with flexible polymer waveguides
CN114486016A (en) Micro-nano optical fiber touch sensor based on liquid sac structure
CN109373889A (en) A kind of metal strain perception device and its manufacturing method and application method
CN206906563U (en) Magnetic field intensity detection sensor based on single mode multimode coreless fiber structure
JP2003156367A (en) Probe-type optical fiber sensor
CN113494890B (en) Fiber bragg grating strain sensor precision measuring device and method based on FPI interferometer
Ghaffar et al. POF sensor for measurement of the clock and anti-clockwise rotation based on cascading of TMBC
CN110986819B (en) Fabry-Perot cavity type optical fiber curvature sensing probe and manufacturing method thereof
CN114061801A (en) Optical fiber V-groove cladding SPR strain sensor and manufacturing method thereof
Sun et al. Flexible membrane curvature sensor based on multilayer polyimide substrate and optical fiber implantation
CN108168449A (en) Miniature Fiber optic displacement sensor with high resolution
Heo et al. Desgin of TR-EFPI Fiber Optic Pressure Sensor ofr the Medical Application
Liu et al. Modeling and prototyping of a fiber Bragg grating-based dynamic micro-coordinate measuring machine probe

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190319

Termination date: 20200315