CN208477189U - 光学成像镜头 - Google Patents
光学成像镜头 Download PDFInfo
- Publication number
- CN208477189U CN208477189U CN201820868390.8U CN201820868390U CN208477189U CN 208477189 U CN208477189 U CN 208477189U CN 201820868390 U CN201820868390 U CN 201820868390U CN 208477189 U CN208477189 U CN 208477189U
- Authority
- CN
- China
- Prior art keywords
- lens
- optical imaging
- imaging lens
- focal length
- image side
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Lenses (AREA)
Abstract
本申请公开了一种光学成像镜头,该镜头沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。第一透镜具有光焦度,其物侧面为凸面,像侧面为凹面;第二透镜具有正光焦度;第三透镜具有负光焦度;第四透镜具有光焦度;第五透镜具有负光焦度,其像侧面为凹面;第六透镜具有光焦度;以及第一透镜的物侧面至光学成像镜头的成像面在光轴上的距离TTL与光学成像镜头的总有效焦距f满足TTL/f<1。
Description
技术领域
本申请涉及一种光学成像镜头,更具体地,本申请涉及一种包括六片透镜的长焦镜头。
背景技术
随着例如智能手机和平板电脑等便携式电子产品的快速发展,消费者对于产品端摄像镜头的要求日益多样化。除了要求摄像镜头具有小型化、高像素、高分辨率和高相对亮度等特性,还对摄像镜头的焦距、解像力和小型化等方面提出了要求。
目前,为实现在自动对焦的情况下得到放大倍率且质量良好的像,兴起了组合使用由长焦镜头和广角镜头的双摄镜头。在双摄镜头的应用中,为了能够更好地达到变焦目的并获得质量优良的像,对其中的长焦镜头在具有长焦距、高解像力、高成像质量等方面均提出了相应的要求。
实用新型内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的光学成像镜头,例如,长焦镜头。
一方面,本申请提供了这样一种光学成像镜头,该镜头由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。第一透镜具有光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有正光焦度;第三透镜可具有负光焦度;第四透镜具有光焦度;第五透镜可具有负光焦度,其像侧面可为凹面;第六透镜具有光焦度。其中,第一透镜的物侧面至光学成像镜头的成像面在光轴上的距离TTL与光学成像镜头的总有效焦距f可满足TTL/f<1。
在一个实施方式中,光学成像镜头的总有效焦距f与第二透镜的有效焦距f2可满足2<f/f2<3。
在一个实施方式中,光学成像镜头的总有效焦距f与第一透镜的有效焦距f1可满足|f/f1|<0.2。
在一个实施方式中,第一透镜的物侧面和像侧面均可为球面。
在一个实施方式中,第一透镜的物侧面的曲率半径R1与第一透镜的像侧面的曲率半径R2可满足0.5<R1/R2<1.5。
在一个实施方式中,光学成像镜头的总有效焦距f与第二透镜的物侧面的曲率半径R3可满足4<f/R3<5。
在一个实施方式中,光学成像镜头的总有效焦距f与第一透镜和第二透镜的组合焦距f12可满足2<f/f12<3。
在一个实施方式中,第三透镜的有效焦距f3与第三透镜的像侧面的曲率半径R6可满足-2.5≤f3/R6≤-1.5。
在一个实施方式中,第五透镜的有效焦距f5与第五透镜的像侧面的曲率半径R10可满足-2<f5/R10<-1。
在一个实施方式中,第五透镜和第六透镜的组合焦距f56与光学成像镜头的总有效焦距f可满足-2<f56/f<-1。
在一个实施方式中,第四透镜和第五透镜在光轴上的间隔距离T45与第六透镜于光轴上的中心厚度CT6可满足1<T45/CT6<2。
在一个实施方式中,第二透镜于光轴上的中心厚度CT2与第四透镜于光轴上的中心厚度CT4可满足2<CT2/CT4<3。
在一个实施方式中,第一透镜于光轴上的中心厚度CT1与第一透镜和第二透镜在光轴上的间隔距离T12可满足2.3<CT1/T12<3.8。
在一个实施方式中,光学成像镜头的成像面上有效像素区域对角线长的一半ImgH与光学成像镜头的总有效焦距f可满足ImgH/f<0.5。
另一方面,本申请提供了这样一种光学成像镜头,该镜头由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。第一透镜具有光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有正光焦度;第三透镜可具有负光焦度;第四透镜具有光焦度;第五透镜可具有负光焦度,其像侧面可为凹面;第六透镜具有光焦度。其中,光学成像镜头的成像面上有效像素区域对角线长的一半ImgH与光学成像镜头的总有效焦距f可满足ImgH/f<0.5。
又一方面,本申请还提供了这样一种光学成像镜头,该镜头由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。第一透镜具有光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有正光焦度;第三透镜可具有负光焦度;第四透镜具有光焦度;第五透镜可具有负光焦度,其像侧面可为凹面;第六透镜具有光焦度。其中,光学成像镜头的总有效焦距f与第二透镜的有效焦距f2可满足2<f/f2<3。
又一方面,本申请还提供了这样一种光学成像镜头,该镜头由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。第一透镜具有光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有正光焦度;第三透镜可具有负光焦度;第四透镜具有光焦度;第五透镜可具有负光焦度,其像侧面可为凹面;第六透镜具有光焦度。其中,第三透镜的有效焦距f3与第三透镜的像侧面的曲率半径R6可满足-2.5≤f3/R6≤-1.5。
又一方面,本申请还提供了这样一种光学成像镜头,该镜头由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。第一透镜具有光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有正光焦度;第三透镜可具有负光焦度;第四透镜具有光焦度;第五透镜可具有负光焦度,其像侧面可为凹面;第六透镜具有光焦度。其中,光学成像镜头的总有效焦距f与第二透镜的物侧面的曲率半径R3可满足4<f/R3<5。
又一方面,本申请还提供了这样一种光学成像镜头,该镜头由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。第一透镜具有光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有正光焦度;第三透镜可具有负光焦度;第四透镜具有光焦度;第五透镜可具有负光焦度,其像侧面可为凹面;第六透镜具有光焦度。其中,光学成像镜头的总有效焦距f与第一透镜和第二透镜的组合焦距f12可满足2<f/f12<3。
又一方面,本申请还提供了这样一种光学成像镜头,该镜头由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。第一透镜具有光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有正光焦度;第三透镜可具有负光焦度;第四透镜具有光焦度;第五透镜可具有负光焦度,其像侧面可为凹面;第六透镜具有光焦度。其中,第四透镜和第五透镜在光轴上的间隔距离T45与第六透镜于光轴上的中心厚度CT6可满足1<T45/CT6<2。
又一方面,本申请还提供了这样一种光学成像镜头,该镜头由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。第一透镜具有光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有正光焦度;第三透镜可具有负光焦度;第四透镜具有光焦度;第五透镜可具有负光焦度,其像侧面可为凹面;第六透镜具有光焦度。其中,第二透镜于光轴上的中心厚度CT2与第四透镜于光轴上的中心厚度CT4可满足2<CT2/CT4<3。
本申请采用了多片(例如,六片)透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述光学成像镜头具有小型化、长焦距、高成像品质等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的光学成像镜头的结构示意图;
图2A至图2D分别示出了实施例1的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图3示出了根据本申请实施例2的光学成像镜头的结构示意图;
图4A至图4D分别示出了实施例2的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图5示出了根据本申请实施例3的光学成像镜头的结构示意图;
图6A至图6D分别示出了实施例3的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图7示出了根据本申请实施例4的光学成像镜头的结构示意图;
图8A至图8D分别示出了实施例4的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图9示出了根据本申请实施例5的光学成像镜头的结构示意图;
图10A至图10D分别示出了实施例5的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图11示出了根据本申请实施例6的光学成像镜头的结构示意图;
图12A至图12D分别示出了实施例6的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图13示出了根据本申请实施例7的光学成像镜头的结构示意图;
图14A至图14D分别示出了实施例7的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图15示出了根据本申请实施例8的光学成像镜头的结构示意图;
图16A至图16D分别示出了实施例8的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图17示出了根据本申请实施例9的光学成像镜头的结构示意图;
图18A至图18D分别示出了实施例9的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜靠近物侧的表面称为该透镜的物侧面,每个透镜靠近像侧的表面称为该透镜的像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的光学成像镜头可包括例如六片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。这六片透镜沿着光轴由物侧至像侧依序排列。
在示例性实施方式中,第一透镜具有正光焦度或负光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有正光焦度;第三透镜可具有负光焦度;第四透镜具有正光焦度或负光焦度;第五透镜可具有负光焦度,其像侧面可为凹面;第六透镜具有正光焦度或负光焦度。
在示例性实施方式中,第一透镜的物侧面和像侧面均可为球面。将第一透镜的物侧面和像侧面均布置为球面,可有效地平衡光学系统的像质,并有利于保证光学系统的良好的可加工性。
在示例性实施方式中,第二透镜的物侧面可为凸面。
在示例性实施方式中,第三透镜的像侧面可为凹面。
在示例性实施方式中,本申请的光学成像镜头可满足条件式TTL/f<1,其中,TTL为第一透镜的物侧面至光学成像镜头的成像面在光轴上的距离,f为光学成像镜头的总有效焦距。更具体地,TTL和f进一步可满足0.95<TTL/f<1,例如,0.96≤TTL/f≤0.98。通过控制从第一透镜物侧面至成像面的轴上距离和光学成像系统的总有效焦距,使其成像镜头具有长焦特性,且同时满足小型化要求。
在示例性实施方式中,本申请的光学成像镜头可满足条件式2<f/f2<3,其中,f为光学成像镜头的总有效焦距,f2为第二透镜的有效焦距。更具体地,f和f2进一步可满足2<f/f2<2.5,例如,2.10≤f/f2≤2.25。合理控制光学系统的总有效焦距与第二透镜的有效焦距的比值,可有效分配系统光焦度,并矫正色差。
在示例性实施方式中,本申请的光学成像镜头可满足条件式-2.5≤f3/R6≤-1.5,其中,f3为第三透镜的有效焦距,R6为第三透镜的像侧面的曲率半径。更具体地,f3和R6进一步可满足-2.19≤f3/R6≤-1.50。合理控制第三透镜的有效焦距与第三透镜像侧面的曲率半径的比值,可有效地减小光学系统的象散和畸变。
在示例性实施方式中,本申请的光学成像镜头可满足条件式-2<f5/R10<-1,其中,f5为第五透镜的有效焦距,R10为第五透镜的像侧面的曲率半径。更具体地,f5和R10进一步可满足-1.84≤f5/R10≤-1.27。合理控制第五透镜的有效焦距与第五透镜像侧面的曲率半径的比值,可有效地减小光学系统的象散和畸变。
在示例性实施方式中,本申请的光学成像镜头可满足条件式ImgH/f<0.5,其中,ImgH为光学成像镜头的成像面上有效像素区域对角线长的一半,f为光学成像镜头的总有效焦距。更具体地,ImgH和f进一步可满足0.4<ImgH/f<0.5,例如,0.42≤ImgH/f≤0.45。满足条件式ImgH/f<0.5,能有效压缩光学系统的尺寸,保证镜头紧凑的尺寸特性。
在示例性实施方式中,本申请的光学成像镜头可满足条件式0.5<R1/R2<1.5,其中,R1为第一透镜的物侧面的曲率半径,R2为第一透镜的像侧面的曲率半径。更具体地,R1和R2进一步可满足0.7<R1/R2<1.2,例如,0.76≤R1/R2≤1.09。合理控制第一透镜的物侧面曲率半径和像侧面曲率半径的比值,可使光学系统较好地与芯片的主光线角度匹配。
在示例性实施方式中,本申请的光学成像镜头可满足条件式4<f/R3<5,其中,f为光学成像镜头的总有效焦距,R3为第二透镜的物侧面的曲率半径。更具体地,f和R3进一步可满足4<f/R3<4.5,例如,4.11≤f/R3≤4.27。合理控制光学系统的总有效焦距与第二透镜物侧面的曲率半径的比值,可有效地减小系统的球差和象散。
在示例性实施方式中,本申请的光学成像镜头可满足条件式2<f/f12<3,其中,f为光学成像镜头的总有效焦距,f12为第一透镜和第二透镜的组合焦距。更具体地,f和f12进一步可满足2<f/f12<2.5,例如,2.05≤f/f12≤2.24。合理的分配光学系统的总有效焦距与第一透镜和第二透镜的组合焦距的比值,能有效改善系统的敏感性。
在示例性实施方式中,本申请的光学成像镜头可满足条件式-2<f56/f<-1,其中,f56为第五透镜和第六透镜的组合焦距,f为光学成像镜头的总有效焦距。更具体地,f56和f进一步可满足-1.79≤f56/f≤-1.31。合理分配第五透镜和第六透镜的组合焦距与光学系统的总有效焦距的比值,有利于减缓光线偏折角度,降低光学系统敏感性,改善光学系统的像质。
在示例性实施方式中,本申请的光学成像镜头可满足条件式1<T45/CT6<2,其中,T45为第四透镜和第五透镜在光轴上的间隔距离,CT6为第六透镜于光轴上的中心厚度。更具体地,T45和CT6进一步可满足1.28≤T45/CT6≤1.76。满足条件式1<T45/CT6<2,可改善光学系统的象散和畸变,同时减小光学系统的后端尺寸。
在示例性实施方式中,本申请的光学成像镜头可满足条件式2<CT2/CT4<3,其中,CT2为第二透镜于光轴上的中心厚度,CT4为第四透镜于光轴上的中心厚度。更具体地,CT2和CT4进一步可满足2.25≤CT2/CT4≤2.95。合理布置第二透镜和第四透镜的中心厚度,可保证镜头小型化,使光线偏折趋于缓和,降低系统敏感性,并减小系统的彗差和象散。
在示例性实施方式中,本申请的光学成像镜头可满足条件式|f/f1|<0.2,其中,f为光学成像镜头的总有效焦距,f1为第一透镜的有效焦距。更具体地,f和f1进一步可满足0<|f/f1|<0.1,例如,0.01≤|f/f1|≤0.08。合理控制光学系统的总有效焦距与第一透镜的有效焦距的比值,能够有效地平衡光学系统的色差。
在示例性实施方式中,本申请的光学成像镜头可满足条件式2.3<CT1/T12<3.8,其中,CT1为第一透镜于光轴上的中心厚度,T12为第一透镜和第二透镜在光轴上的间隔距离。更具体地,CT1和T12进一步可满足2.39≤CT1/T12≤3.67。合理控制第一透镜的中心厚度与第一透镜和第二透镜在光轴上的空气间隔的比值,可有效地减小光学系统的前端尺寸,保证光学系统的小型化。
在示例性实施方式中,上述光学成像镜头还可包括至少一个光阑,以提升镜头的成像质量。光阑可根据需要设置在任意位置处,例如,光阑可设置在第一透镜与第二透镜之间。
可选地,上述光学成像镜头还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
本申请提出了一种六片式长焦镜头,该长焦镜头可与其他公知的广角镜头搭配构成双摄镜头,从而达到变焦的目的,以在自动对焦情况下得到理想放大倍率以及质量良好的像,适合于拍摄远处的对象。同时,本申请的长焦镜头通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,有效地缩小了长焦镜头的体积、降低长焦镜头的敏感度并提高长焦镜头的可加工性,使得上述长焦镜头更有利于生产加工并且可适用于便携式电子产品。
在本申请的实施方式中,除第一透镜以外的其余具有光焦度的透镜多采用非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以六个透镜为例进行了描述,但是该光学成像镜头不限于包括六个透镜。如果需要,该光学成像镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学成像镜头的具体实施例。
实施例1
以下参照图1至图2D描述根据本申请实施例1的光学成像镜头。图1示出了根据本申请实施例1的光学成像镜头的结构示意图。
如图1所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表1示出了实施例1的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表1
由表1可知,第一透镜E1的物侧面S1和像侧面S2均为球面,第二透镜E2至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S3-S12的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S3 | 9.2960E-03 | -2.3620E-02 | 1.3802E-01 | -3.9881E-01 | 7.0112E-01 | -7.3634E-01 | 4.4024E-01 | -1.2915E-01 | 1.1358E-02 |
S4 | 1.4872E-02 | 3.4942E-02 | -5.7930E-02 | 2.4784E-02 | 1.9307E-01 | -6.0821E-01 | 8.1732E-01 | -5.5599E-01 | 1.5175E-01 |
S5 | 5.4930E-02 | 2.3013E-01 | -4.1617E-01 | 1.2277E+00 | -3.4314E+00 | 6.3596E+00 | -7.1648E+00 | 4.3385E+00 | -1.0800E+00 |
S6 | -9.7150E-02 | 3.5634E-01 | -1.3159E+00 | 9.1431E+00 | -4.0121E+01 | 1.0753E+02 | -1.7016E+02 | 1.4639E+02 | -5.2885E+01 |
S7 | -6.2510E-02 | 2.3524E-01 | -5.2087E-01 | 2.0720E+00 | -4.2372E+00 | 4.4413E+00 | -1.9091E+00 | 0.0000E+00 | 0.0000E+00 |
S8 | 2.1800E-02 | 1.1097E-01 | 3.8131E-01 | -2.6792E+00 | 9.7265E+00 | -2.0053E+01 | 2.3760E+01 | -1.5018E+01 | 3.8779E+00 |
S9 | -1.9696E-01 | 1.0317E-01 | -1.1586E-01 | 7.7671E-02 | 5.9499E-02 | -1.4177E-01 | 9.9098E-02 | -3.0790E-02 | 3.6110E-03 |
S10 | -9.5280E-02 | 1.1284E-01 | -1.1130E-01 | 4.7705E-02 | -8.5000E-04 | -7.8900E-03 | 3.2530E-03 | -5.4000E-04 | 3.3900E-05 |
S11 | -1.5383E-01 | 3.2892E-01 | -3.6125E-01 | 2.3707E-01 | -9.8740E-02 | 2.6372E-02 | -4.3800E-03 | 4.1200E-04 | -1.7000E-05 |
S12 | -9.9310E-02 | 6.8535E-02 | -3.1530E-02 | 8.7280E-03 | -7.6000E-04 | -2.7000E-04 | 8.9300E-05 | -9.8000E-06 | 3.6800E-07 |
表2
表3给出实施例1中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及最大半视场角HFOV。
f1(mm) | 1132.39 | f6(mm) | 8.11 |
f2(mm) | 2.75 | f(mm) | 5.92 |
f3(mm) | -4.35 | TTL(mm) | 5.70 |
f4(mm) | -586.58 | HFOV(°) | 19.2 |
f5(mm) | -4.07 |
表3
实施例1中的光学成像镜头满足:
TTL/f=0.96,其中,TTL为第一透镜E1的物侧面S1至成像面S15在光轴上的距离,f为光学成像镜头的总有效焦距;
f/f2=2.15,其中,f为光学成像镜头的总有效焦距,f2为第二透镜E2的有效焦距;
f3/R6=-2.09,其中,f3为第三透镜E3的有效焦距,R6为第三透镜E3的像侧面S6的曲率半径;
f5/R10=-1.44,其中,f5为第五透镜E5的有效焦距,R10为第五透镜E5的像侧面S10的曲率半径;
ImgH/f=0.44,其中,ImgH为成像面S15上有效像素区域对角线长的一半,f为光学成像镜头的总有效焦距;
R1/R2=0.99,其中,R1为第一透镜E1的物侧面S1的曲率半径,R2为第一透镜E1的像侧面S2的曲率半径;
f/R3=4.25,其中,f为光学成像镜头的总有效焦距,R3为第二透镜E2的物侧面S3的曲率半径;
f/f12=2.14,其中,f为光学成像镜头的总有效焦距,f12为第一透镜E1和第二透镜E2的组合焦距;
f56/f=-1.60,其中,f56为第五透镜E5和第六透镜E6的组合焦距,f为光学成像镜头的总有效焦距;
T45/CT6=1.57,其中,T45为第四透镜E4和第五透镜E5在光轴上的间隔距离,CT6为第六透镜E6于光轴上的中心厚度;
CT2/CT4=2.85,其中,CT2为第二透镜E2于光轴上的中心厚度,CT4为第四透镜E4于光轴上的中心厚度;
|f/f1|=0.01,其中,f为光学成像镜头的总有效焦距,f1为第一透镜E1的有效焦距;
CT1/T12=3.64,其中,CT1为第一透镜E1于光轴上的中心厚度,T12为第一透镜E1和第二透镜E2在光轴上的间隔距离。
图2A示出了实施例1的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图2B示出了实施例1的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图2D示出了实施例1的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的光学成像镜头能够实现良好的成像品质。
实施例2
以下参照图3至图4D描述根据本申请实施例2的光学成像镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的光学成像镜头的结构示意图。
如图3所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表4示出了实施例2的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表4
由表4可知,在实施例2中,第一透镜E1的物侧面S1和像侧面S2均为球面,第二透镜E2至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表5示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S3 | 9.2963E-03 | -2.3620E-02 | 1.3802E-01 | -3.9881E-01 | 7.0112E-01 | -7.3634E-01 | 4.4024E-01 | -1.2915E-01 | 1.1358E-02 |
S4 | 1.4872E-02 | 3.4942E-02 | -5.7930E-02 | 2.4784E-02 | 1.9307E-01 | -6.0821E-01 | 8.1732E-01 | -5.5599E-01 | 1.5175E-01 |
S5 | -5.4927E-02 | 2.3013E-01 | -4.1617E-01 | 1.2277E+00 | -3.4314E+00 | 6.3596E+00 | -7.1648E+00 | 4.3385E+00 | -1.0800E+00 |
S6 | -9.7155E-02 | 3.5634E-01 | -1.3159E+00 | 9.1431E+00 | -4.0121E+01 | 1.0753E+02 | -1.7016E+02 | 1.4639E+02 | -5.2885E+01 |
S7 | -6.2510E-02 | 2.3524E-01 | -5.2087E-01 | 2.0720E+00 | -4.2372E+00 | 4.4413E+00 | -1.9091E+00 | 0.0000E+00 | 0.0000E+00 |
S8 | 2.1800E-02 | 1.1097E-01 | 3.8131E-01 | -2.6792E+00 | 9.7265E+00 | -2.0053E+01 | 2.3760E+01 | -1.5018E+01 | 3.8779E+00 |
S9 | -1.9696E-01 | 1.0317E-01 | -1.1586E-01 | 7.7671E-02 | 5.9499E-02 | -1.4177E-01 | 9.9098E-02 | -3.0790E-02 | 3.6110E-03 |
S10 | -9.5279E-02 | 1.1284E-01 | -1.1130E-01 | 4.7705E-02 | -8.5000E-04 | -7.8900E-03 | 3.2530E-03 | -5.4000E-04 | 3.3900E-05 |
S11 | -1.5383E-01 | 3.2892E-01 | -3.6125E-01 | 2.3707E-01 | -9.8740E-02 | 2.6372E-02 | -4.3800E-03 | 4.1200E-04 | -1.7000E-05 |
S12 | -9.9314E-02 | 6.8535E-02 | -3.1530E-02 | 8.7280E-03 | -7.6000E-04 | -2.7000E-04 | 8.9300E-05 | -9.8000E-06 | 3.6800E-07 |
表5
表6给出实施例2中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及最大半视场角HFOV。
f1(mm) | 567.27 | f6(mm) | 6.26 |
f2(mm) | 2.63 | f(mm) | 5.89 |
f3(mm) | -4.04 | TTL(mm) | 5.69 |
f4(mm) | -66.01 | HFOV(°) | 19.1 |
f5(mm) | -3.47 |
表6
图4A示出了实施例2的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图4B示出了实施例2的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图4D示出了实施例2的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的光学成像镜头能够实现良好的成像品质。
实施例3
以下参照图5至图6D描述了根据本申请实施例3的光学成像镜头。图5示出了根据本申请实施例3的光学成像镜头的结构示意图。
如图5所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表7示出了实施例3的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表7
由表7可知,在实施例3中,第一透镜E1的物侧面S1和像侧面S2均为球面,第二透镜E2至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表8示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S3 | 9.2963E-03 | -2.3620E-02 | 1.3802E-01 | -3.9881E-01 | 7.0112E-01 | -7.3634E-01 | 4.4024E-01 | -1.2915E-01 | 1.1358E-02 |
S4 | 1.4872E-02 | 3.4942E-02 | -5.7930E-02 | 2.4784E-02 | 1.9307E-01 | -6.0821E-01 | 8.1732E-01 | -5.5599E-01 | 1.5175E-01 |
S5 | -5.4927E-02 | 2.3013E-01 | -4.1617E-01 | 1.2277E+00 | -3.4314E+00 | 6.3596E+00 | -7.1648E+00 | 4.3385E+00 | -1.0800E+00 |
S6 | -9.7155E-02 | 3.5634E-01 | -1.3159E+00 | 9.1431E+00 | -4.0121E+01 | 1.0753E+02 | -1.7016E+02 | 1.4639E+02 | -5.2885E+01 |
S7 | -6.2510E-02 | 2.3524E-01 | -5.2087E-01 | 2.0720E+00 | -4.2372E+00 | 4.4413E+00 | -1.9091E+00 | 0.0000E+00 | 0.0000E+00 |
S8 | 2.1800E-02 | 1.1097E-01 | 3.8131E-01 | -2.6792E+00 | 9.7265E+00 | -2.0053E+01 | 2.3760E+01 | -1.5018E+01 | 3.8779E+00 |
S9 | -1.9696E-01 | 1.0317E-01 | -1.1586E-01 | 7.7671E-02 | 5.9499E-02 | -1.4177E-01 | 9.9098E-02 | -3.0790E-02 | 3.6110E-03 |
S10 | -9.5279E-02 | 1.1284E-01 | -1.1130E-01 | 4.7705E-02 | -8.5000E-04 | -7.8900E-03 | 3.2530E-03 | -5.4000E-04 | 3.3900E-05 |
S11 | -1.5383E-01 | 3.2892E-01 | -3.6125E-01 | 2.3707E-01 | -9.8740E-02 | 2.6372E-02 | -4.3800E-03 | 4.1200E-04 | -1.7000E-05 |
S12 | -9.9314E-02 | 6.8535E-02 | -3.1530E-02 | 8.7280E-03 | -7.6000E-04 | -2.7000E-04 | 8.9300E-05 | -9.8000E-06 | 3.6800E-07 |
表8
表9给出实施例3中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及最大半视场角HFOV。
f1(mm) | 77.34 | f6(mm) | 7.13 |
f2(mm) | 2.72 | f(mm) | 5.89 |
f3(mm) | -4.21 | TTL(mm) | 5.70 |
f4(mm) | -44.71 | HFOV(°) | 19.2 |
f5(mm) | -3.76 |
表9
图6A示出了实施例3的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图6B示出了实施例3的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图6D示出了实施例3的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的光学成像镜头能够实现良好的成像品质。
实施例4
以下参照图7至图8D描述了根据本申请实施例4的光学成像镜头。图7示出了根据本申请实施例4的光学成像镜头的结构示意图。
如图7所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表10示出了实施例4的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表10
由表10可知,在实施例4中,第一透镜E1的物侧面S1和像侧面S2均为球面,第二透镜E2至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表11示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S3 | 9.2963E-03 | -2.3624E-02 | 1.3802E-01 | -3.9881E-01 | 7.0112E-01 | -7.3634E-01 | 4.4024E-01 | -1.2915E-01 | 1.1358E-02 |
S4 | 1.4872E-02 | 3.4942E-02 | -5.7930E-02 | 2.4784E-02 | 1.9307E-01 | -6.0821E-01 | 8.1732E-01 | -5.5599E-01 | 1.5175E-01 |
S5 | -5.4927E-02 | 2.3013E-01 | -4.1617E-01 | 1.2277E+00 | -3.4314E+00 | 6.3596E+00 | -7.1648E+00 | 4.3385E+00 | -1.0800E+00 |
S6 | -9.7155E-02 | 3.5634E-01 | -1.3159E+00 | 9.1431E+00 | -4.0121E+01 | 1.0753E+02 | -1.7016E+02 | 1.4639E+02 | -5.2885E+01 |
S7 | -6.2510E-02 | 2.3524E-01 | -5.2087E-01 | 2.0720E+00 | -4.2372E+00 | 4.4413E+00 | -1.9091E+00 | 0.0000E+00 | 0.0000E+00 |
S8 | 2.1800E-02 | 1.1097E-01 | 3.8131E-01 | -2.6792E+00 | 9.7265E+00 | -2.0053E+01 | 2.3760E+01 | -1.5018E+01 | 3.8779E+00 |
S9 | -1.9696E-01 | 1.0317E-01 | -1.1586E-01 | 7.7671E-02 | 5.9499E-02 | -1.4177E-01 | 9.9098E-02 | -3.0790E-02 | 3.6110E-03 |
S10 | -9.5279E-02 | 1.1284E-01 | -1.1130E-01 | 4.7705E-02 | -8.5000E-04 | -7.8900E-03 | 3.2530E-03 | -5.4000E-04 | 3.3900E-05 |
S11 | -1.5383E-01 | 3.2892E-01 | -3.6125E-01 | 2.3707E-01 | -9.8740E-02 | 2.6372E-02 | -4.3800E-03 | 4.1200E-04 | -1.7000E-05 |
S12 | -9.9314E-02 | 6.8535E-02 | -3.1530E-02 | 8.7280E-03 | -7.6000E-04 | -2.7000E-04 | 8.9300E-05 | -9.8000E-06 | 3.6800E-07 |
表11
表12给出实施例4中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及最大半视场角HFOV。
表12
图8A示出了实施例4的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图8B示出了实施例4的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图8D示出了实施例4的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的光学成像镜头能够实现良好的成像品质。
实施例5
以下参照图9至图10D描述了根据本申请实施例5的光学成像镜头。图9示出了根据本申请实施例5的光学成像镜头的结构示意图。
如图9所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表13示出了实施例5的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表13
由表13可知,在实施例5中,第一透镜E1的物侧面S1和像侧面S2均为球面,第二透镜E2至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表14示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S3 | 9.2963E-03 | -2.3624E-02 | 1.3802E-01 | -3.9881E-01 | 7.0112E-01 | -7.3634E-01 | 4.4024E-01 | -1.2915E-01 | 1.1358E-02 |
S4 | 1.4872E-02 | 3.4942E-02 | -5.7930E-02 | 2.4784E-02 | 1.9307E-01 | -6.0821E-01 | 8.1732E-01 | -5.5599E-01 | 1.5175E-01 |
S5 | -5.4927E-02 | 2.3013E-01 | -4.1617E-01 | 1.2277E+00 | -3.4314E+00 | 6.3596E+00 | -7.1648E+00 | 4.3385E+00 | -1.0800E+00 |
S6 | -9.7155E-02 | 3.5634E-01 | -1.3159E+00 | 9.1431E+00 | -4.0121E+01 | 1.0753E+02 | -1.7016E+02 | 1.4639E+02 | -5.2885E+01 |
S7 | -6.2510E-02 | 2.3524E-01 | -5.2087E-01 | 2.0720E+00 | -4.2372E+00 | 4.4413E+00 | -1.9091E+00 | 0.0000E+00 | 0.0000E+00 |
S8 | 2.1800E-02 | 1.1097E-01 | 3.8131E-01 | -2.6792E+00 | 9.7265E+00 | -2.0053E+01 | 2.3760E+01 | -1.5018E+01 | 3.8779E+00 |
S9 | -1.9696E-01 | 1.0317E-01 | -1.1586E-01 | 7.7671E-02 | 5.9499E-02 | -1.4177E-01 | 9.9098E-02 | -3.0790E-02 | 3.6110E-03 |
S10 | -9.5279E-02 | 1.1284E-01 | -1.1130E-01 | 4.7705E-02 | -8.5000E-04 | -7.8900E-03 | 3.2530E-03 | -5.4000E-04 | 3.3900E-05 |
S11 | -1.5383E-01 | 3.2892E-01 | -3.6125E-01 | 2.3707E-01 | -9.8740E-02 | 2.6372E-02 | -4.3800E-03 | 4.1200E-04 | -1.7000E-05 |
S12 | -9.9314E-02 | 6.8535E-02 | -3.1530E-02 | 8.7280E-03 | -7.6000E-04 | -2.7000E-04 | 8.9300E-05 | -9.8000E-06 | 3.6800E-07 |
表14
表15给出实施例5中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S15在光轴上的距离TTL以及最大半视场角HFOV。
f1(mm) | 499.32 | f6(mm) | 6.90 |
f2(mm) | 2.71 | f(mm) | 5.84 |
f3(mm) | -4.43 | TTL(mm) | 5.70 |
f4(mm) | -47.72 | HFOV(°) | 19.6 |
f5(mm) | -3.59 |
表15
图10A示出了实施例5的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图10B示出了实施例5的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图10D示出了实施例5的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的光学成像镜头能够实现良好的成像品质。
实施例6
以下参照图11至图12D描述了根据本申请实施例6的光学成像镜头。图11示出了根据本申请实施例6的光学成像镜头的结构示意图。
如图11所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凹面,像侧面S12为凸面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表16示出了实施例6的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表16
由表16可知,在实施例6中,第一透镜E1的物侧面S1和像侧面S2均为球面,第二透镜E2至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表17示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表17
表18给出实施例6中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及最大半视场角HFOV。
f1(mm) | 547.87 | f6(mm) | 8.03 |
f2(mm) | 2.76 | f(mm) | 5.91 |
f3(mm) | -4.34 | TTL(mm) | 5.70 |
f4(mm) | 1491.97 | HFOV(°) | 19.2 |
f5(mm) | -4.20 |
表18
图12A示出了实施例6的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图12B示出了实施例6的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图12D示出了实施例6的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图12A至图12D可知,实施例6所给出的光学成像镜头能够实现良好的成像品质。
实施例7
以下参照图13至图14D描述了根据本申请实施例7的光学成像镜头。图13示出了根据本申请实施例7的光学成像镜头的结构示意图。
如图13所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表19示出了实施例7的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表19
由表19可知,在实施例7中,第一透镜E1的物侧面S1和像侧面S2均为球面,第二透镜E2至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表20示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S3 | 9.2963E-03 | -2.3624E-02 | 1.3802E-01 | -3.9881E-01 | 7.0112E-01 | -7.3634E-01 | 4.4024E-01 | -1.2915E-01 | 1.1358E-02 |
S4 | 1.4872E-02 | 3.4942E-02 | -5.7930E-02 | 2.4784E-02 | 1.9307E-01 | -6.0821E-01 | 8.1732E-01 | -5.5599E-01 | 1.5175E-01 |
S5 | -5.4927E-02 | 2.3013E-01 | -4.1617E-01 | 1.2277E+00 | -3.4314E+00 | 6.3596E+00 | -7.1648E+00 | 4.3385E+00 | -1.0800E+00 |
S6 | -9.7155E-02 | 3.5634E-01 | -1.3159E+00 | 9.1431E+00 | -4.0121E+01 | 1.0753E+02 | -1.7016E+02 | 1.4639E+02 | -5.2885E+01 |
S7 | -6.2510E-02 | 2.3524E-01 | -5.2087E-01 | 2.0720E+00 | -4.2372E+00 | 4.4413E+00 | -1.9091E+00 | 0.0000E+00 | 0.0000E+00 |
S8 | 2.1800E-02 | 1.1097E-01 | 3.8131E-01 | -2.6792E+00 | 9.7265E+00 | -2.0053E+01 | 2.3760E+01 | -1.5018E+01 | 3.8779E+00 |
S9 | -1.9696E-01 | 1.0317E-01 | -1.1586E-01 | 7.7671E-02 | 5.9499E-02 | -1.4177E-01 | 9.9098E-02 | -3.0790E-02 | 3.6110E-03 |
S10 | -9.5279E-02 | 1.1284E-01 | -1.1130E-01 | 4.7705E-02 | -8.5000E-04 | -7.8900E-03 | 3.2530E-03 | -5.4000E-04 | 3.3900E-05 |
S11 | -1.5383E-01 | 3.2892E-01 | -3.6125E-01 | 2.3707E-01 | -9.8740E-02 | 2.6372E-02 | -4.3800E-03 | 4.1200E-04 | -1.7000E-05 |
S12 | -9.9314E-02 | 6.8535E-02 | -3.1530E-02 | 8.7280E-03 | -7.6000E-04 | -2.7000E-04 | 8.9300E-05 | -9.8000E-06 | 3.6800E-07 |
表20
表21给出实施例7中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及最大半视场角HFOV。
f1(mm) | 499.92 | f6(mm) | 6.46 |
f2(mm) | 2.61 | f(mm) | 5.87 |
f3(mm) | -4.02 | TTL(mm) | 5.70 |
f4(mm) | -53.81 | HFOV(°) | 19.2 |
f5(mm) | -3.55 |
表21
图14A示出了实施例7的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图14B示出了实施例7的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图14D示出了实施例7的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图14A至图14D可知,实施例7所给出的光学成像镜头能够实现良好的成像品质。
实施例8
以下参照图15至图16D描述了根据本申请实施例8的光学成像镜头。图15示出了根据本申请实施例8的光学成像镜头的结构示意图。
如图15所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表22示出了实施例8的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表22
由表22可知,在实施例8中,第一透镜E1的物侧面S1和像侧面S2均为球面,第二透镜E2至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表23示出了可用于实施例8中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S3 | 9.2963E-03 | -2.3624E-02 | 1.3802E-01 | -3.9881E-01 | 7.0112E-01 | -7.3634E-01 | 4.4024E-01 | -1.2915E-01 | 1.1358E-02 |
S4 | 1.4872E-02 | 3.4942E-02 | -5.7930E-02 | 2.4784E-02 | 1.9307E-01 | -6.0821E-01 | 8.1732E-01 | -5.5599E-01 | 1.5175E-01 |
S5 | -5.4927E-02 | 2.3013E-01 | -4.1617E-01 | 1.2277E+00 | -3.4314E+00 | 6.3596E+00 | -7.1648E+00 | 4.3385E+00 | -1.0800E+00 |
S6 | -9.7155E-02 | 3.5634E-01 | -1.3159E+00 | 9.1431E+00 | -4.0121E+01 | 1.0753E+02 | -1.7016E+02 | 1.4639E+02 | -5.2885E+01 |
S7 | -6.2510E-02 | 2.3524E-01 | -5.2087E-01 | 2.0720E+00 | -4.2372E+00 | 4.4413E+00 | -1.9091E+00 | 0.0000E+00 | 0.0000E+00 |
S8 | 2.1800E-02 | 1.1097E-01 | 3.8131E-01 | -2.6792E+00 | 9.7265E+00 | -2.0053E+01 | 2.3760E+01 | -1.5018E+01 | 3.8779E+00 |
S9 | -1.9696E-01 | 1.0317E-01 | -1.1586E-01 | 7.7671E-02 | 5.9499E-02 | -1.4177E-01 | 9.9098E-02 | -3.0790E-02 | 3.6110E-03 |
S10 | -9.5279E-02 | 1.1284E-01 | -1.1130E-01 | 4.7705E-02 | -8.5000E-04 | -7.8900E-03 | 3.2530E-03 | -5.4000E-04 | 3.3900E-05 |
S11 | -1.5383E-01 | 3.2892E-01 | -3.6125E-01 | 2.3707E-01 | -9.8740E-02 | 2.6372E-02 | -4.3800E-03 | 4.1200E-04 | -1.7000E-05 |
S12 | -9.9314E-02 | 6.8535E-02 | -3.1530E-02 | 8.7280E-03 | -7.6000E-04 | -2.7000E-04 | 8.9300E-05 | -9.8000E-06 | 3.6800E-07 |
表23
表24给出实施例8中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及最大半视场角HFOV。
f1(mm) | -893.11 | f6(mm) | 8.03 |
f2(mm) | 2.73 | f(mm) | 5.91 |
f3(mm) | -4.33 | TTL(mm) | 5.70 |
f4(mm) | 626.94 | HFOV(°) | 19.3 |
f5(mm) | -3.98 |
表24
图16A示出了实施例8的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图16B示出了实施例8的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16C示出了实施例8的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图16D示出了实施例8的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图16A至图16D可知,实施例8所给出的光学成像镜头能够实现良好的成像品质。
实施例9
以下参照图17至图18D描述了根据本申请实施例9的光学成像镜头。图17示出了根据本申请实施例9的光学成像镜头的结构示意图。
如图17所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凸面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表25示出了实施例9的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表25
由表25可知,在实施例9中,第一透镜E1的物侧面S1和像侧面S2均为球面,第二透镜E2至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表26示出了可用于实施例9中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S3 | 9.2963E-03 | -2.3624E-02 | 1.3802E-01 | -3.9881E-01 | 7.0112E-01 | -7.3634E-01 | 4.4024E-01 | -1.2915E-01 | 1.1358E-02 |
S4 | 1.4872E-02 | 3.4942E-02 | -5.7930E-02 | 2.4784E-02 | 1.9307E-01 | -6.0821E-01 | 8.1732E-01 | -5.5599E-01 | 1.5175E-01 |
S5 | -5.4927E-02 | 2.3013E-01 | -4.1617E-01 | 1.2277E+00 | -3.4314E+00 | 6.3596E+00 | -7.1648E+00 | 4.3385E+00 | -1.0800E+00 |
S6 | -9.7155E-02 | 3.5634E-01 | -1.3159E+00 | 9.1431E+00 | -4.0121E+01 | 1.0753E+02 | -1.7016E+02 | 1.4639E+02 | -5.2885E+01 |
S7 | -6.2510E-02 | 2.3524E-01 | -5.2087E-01 | 2.0720E+00 | -4.2372E+00 | 4.4413E+00 | -1.9091E+00 | 0.0000E+00 | 0.0000E+00 |
S8 | 2.1800E-02 | 1.1097E-01 | 3.8131E-01 | -2.6792E+00 | 9.7265E+00 | -2.0053E+01 | 2.3760E+01 | -1.5018E+01 | 3.8779E+00 |
S9 | -1.9696E-01 | 1.0317E-01 | -1.1586E-01 | 7.7671E-02 | 5.9499E-02 | -1.4177E-01 | 9.9098E-02 | -3.0790E-02 | 3.6110E-03 |
S10 | -9.5279E-02 | 1.1284E-01 | -1.1130E-01 | 4.7705E-02 | -8.5000E-04 | -7.8900E-03 | 3.2530E-03 | -5.4000E-04 | 3.3900E-05 |
S11 | -1.5383E-01 | 3.2892E-01 | -3.6125E-01 | 2.3707E-01 | -9.8740E-02 | 2.6372E-02 | -4.3800E-03 | 4.1200E-04 | -1.7000E-05 |
S12 | -9.9314E-02 | 6.8535E-02 | -3.1530E-02 | 8.7280E-03 | -7.6000E-04 | -2.7000E-04 | 8.9300E-05 | -9.8000E-06 | 3.6800E-07 |
表26
表27给出实施例9中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及最大半视场角HFOV。
f1(mm) | -244.27 | f6(mm) | -1000.32 |
f2(mm) | 2.79 | f(mm) | 5.87 |
f3(mm) | -4.60 | TTL(mm) | 5.67 |
f4(mm) | 134.19 | HFOV(°) | 19.2 |
f5(mm) | -7.55 |
表27
图18A示出了实施例9的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图18B示出了实施例9的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图18C示出了实施例9的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图18D示出了实施例9的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图18A至图18D可知,实施例9所给出的光学成像镜头能够实现良好的成像品质。
综上,实施例1至实施例9分别满足表28中所示的关系。
条件式\实施例 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
TTL/f | 0.96 | 0.97 | 0.97 | 0.97 | 0.98 | 0.96 | 0.97 | 0.96 | 0.97 |
f/f2 | 2.15 | 2.24 | 2.16 | 2.18 | 2.15 | 2.14 | 2.25 | 2.16 | 2.10 |
f3/R6 | -2.09 | -1.50 | -1.89 | -1.88 | -2.01 | -2.19 | -1.65 | -2.04 | -2.11 |
f5/R10 | -1.44 | -1.48 | -1.60 | -1.58 | -1.84 | -1.27 | -1.53 | -1.38 | -1.58 |
ImgH/f | 0.44 | 0.42 | 0.43 | 0.42 | 0.45 | 0.44 | 0.45 | 0.44 | 0.45 |
R1/R2 | 0.99 | 0.98 | 0.76 | 0.77 | 0.97 | 0.98 | 0.97 | 1.03 | 1.09 |
f/R3 | 4.25 | 4.12 | 4.13 | 4.13 | 4.19 | 4.27 | 4.11 | 4.23 | 4.18 |
f/f12 | 2.14 | 2.23 | 2.22 | 2.23 | 2.14 | 2.13 | 2.24 | 2.13 | 2.05 |
f56/f | -1.60 | -1.53 | -1.49 | -1.48 | -1.33 | -1.79 | -1.53 | -1.55 | -1.31 |
T45/CT6 | 1.57 | 1.56 | 1.54 | 1.57 | 1.28 | 1.76 | 1.53 | 1.55 | 1.62 |
CT2/CT4 | 2.85 | 2.88 | 2.48 | 2.44 | 2.85 | 2.64 | 2.95 | 2.82 | 2.25 |
|f/f1| | 0.01 | 0.01 | 0.08 | 0.07 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 |
CT1/T12 | 3.64 | 2.75 | 2.68 | 2.70 | 2.58 | 3.67 | 2.39 | 3.41 | 3.21 |
表28
本申请还提供一种成像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。成像装置可以是诸如数码相机的独立成像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学成像镜头。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
Claims (40)
1.光学成像镜头,沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,其特征在于,
所述第一透镜具有光焦度,其物侧面为凸面,像侧面为凹面;
所述第二透镜具有正光焦度;
所述第三透镜具有负光焦度;
所述第四透镜具有光焦度;
所述第五透镜具有负光焦度,其像侧面为凹面;
所述第六透镜具有光焦度;以及
所述第一透镜的物侧面至所述光学成像镜头的成像面在光轴上的距离TTL与所述光学成像镜头的总有效焦距f满足TTL/f<1。
2.根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第二透镜的有效焦距f2满足2<f/f2<3。
3.根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第一透镜的有效焦距f1满足|f/f1|<0.2。
4.根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜的物侧面和像侧面均为球面。
5.根据权利要求4所述的光学成像镜头,其特征在于,所述第一透镜的物侧面的曲率半径R1与所述第一透镜的像侧面的曲率半径R2满足0.5<R1/R2<1.5。
6.根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第二透镜的物侧面的曲率半径R3满足4<f/R3<5。
7.根据权利要求1至6中任一项所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第一透镜和所述第二透镜的组合焦距f12满足2<f/f12<3。
8.根据权利要求1所述的光学成像镜头,其特征在于,所述第三透镜的有效焦距f3与所述第三透镜的像侧面的曲率半径R6满足-2.5≤f3/R6≤-1.5。
9.根据权利要求1所述的光学成像镜头,其特征在于,所述第五透镜的有效焦距f5与所述第五透镜的像侧面的曲率半径R10满足-2<f5/R10<-1。
10.根据权利要求1或9所述的光学成像镜头,其特征在于,所述第五透镜和所述第六透镜的组合焦距f56与所述光学成像镜头的总有效焦距f满足-2<f56/f<-1。
11.根据权利要求1所述的光学成像镜头,其特征在于,所述第四透镜和所述第五透镜在所述光轴上的间隔距离T45与所述第六透镜于所述光轴上的中心厚度CT6满足1<T45/CT6<2。
12.根据权利要求1所述的光学成像镜头,其特征在于,所述第二透镜于所述光轴上的中心厚度CT2与所述第四透镜于所述光轴上的中心厚度CT4满足2<CT2/CT4<3。
13.根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜于所述光轴上的中心厚度CT1与所述第一透镜和所述第二透镜在所述光轴上的间隔距离T12满足2.3<CT1/T12<3.8。
14.根据权利要求11至13中任一项所述的光学成像镜头,其特征在于,所述光学成像镜头的成像面上有效像素区域对角线长的一半ImgH与所述光学成像镜头的总有效焦距f满足ImgH/f<0.5。
15.光学成像镜头,沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,其特征在于,
所述第一透镜具有光焦度,其物侧面为凸面,像侧面为凹面;
所述第二透镜具有正光焦度;
所述第三透镜具有负光焦度;
所述第四透镜具有光焦度;
所述第五透镜具有负光焦度,其像侧面为凹面;
所述第六透镜具有光焦度;以及
所述光学成像镜头的成像面上有效像素区域对角线长的一半ImgH与所述光学成像镜头的总有效焦距f满足ImgH/f<0.5。
16.根据权利要求15所述的光学成像镜头,其特征在于,所述第一透镜的物侧面的曲率半径R1与所述第一透镜的像侧面的曲率半径R2满足0.5<R1/R2<1.5。
17.根据权利要求16所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第一透镜的有效焦距f1满足|f/f1|<0.2。
18.根据权利要求16所述的光学成像镜头,其特征在于,所述第一透镜的物侧面和像侧面均为球面。
19.根据权利要求15所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第二透镜的有效焦距f2满足2<f/f2<3。
20.根据权利要求15所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第二透镜的物侧面的曲率半径R3满足4<f/R3<5。
21.根据权利要求15所述的光学成像镜头,其特征在于,所述第三透镜的有效焦距f3与所述第三透镜的像侧面的曲率半径R6满足-2.5≤f3/R6≤-1.5。
22.根据权利要求15所述的光学成像镜头,其特征在于,所述第五透镜的有效焦距f5与所述第五透镜的像侧面的曲率半径R10满足-2<f5/R10<-1。
23.根据权利要求15至22中任一项所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第一透镜和所述第二透镜的组合焦距f12满足2<f/f12<3。
24.根据权利要求23所述的光学成像镜头,其特征在于,所述第五透镜和所述第六透镜的组合焦距f56与所述光学成像镜头的总有效焦距f满足-2<f56/f<-1。
25.根据权利要求15至22中任一项所述的光学成像镜头,其特征在于,所述第一透镜的物侧面至所述光学成像镜头的成像面在光轴上的距离TTL与所述光学成像镜头的总有效焦距f满足TTL/f<1。
26.根据权利要求15所述的光学成像镜头,其特征在于,所述第四透镜和所述第五透镜在所述光轴上的间隔距离T45与所述第六透镜于所述光轴上的中心厚度CT6满足1<T45/CT6<2。
27.根据权利要求15所述的光学成像镜头,其特征在于,所述第二透镜于所述光轴上的中心厚度CT2与所述第四透镜于所述光轴上的中心厚度CT4满足2<CT2/CT4<3。
28.根据权利要求15所述的光学成像镜头,其特征在于,所述第一透镜于所述光轴上的中心厚度CT1与所述第一透镜和所述第二透镜在所述光轴上的间隔距离T12满足2.3<CT1/T12<3.8。
29.光学成像镜头,沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,其特征在于,
所述第一透镜具有光焦度,其物侧面为凸面,像侧面为凹面;
所述第二透镜具有正光焦度;
所述第三透镜具有负光焦度;
所述第四透镜具有光焦度;
所述第五透镜具有负光焦度,其像侧面为凹面;
所述第六透镜具有光焦度;以及
所述光学成像镜头的总有效焦距f与所述第二透镜的有效焦距f2满足2<f/f2<3。
30.根据权利要求29所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第一透镜的有效焦距f1满足|f/f1|<0.2。
31.根据权利要求30所述的光学成像镜头,其特征在于,所述第一透镜的物侧面和像侧面均为球面。
32.根据权利要求31所述的光学成像镜头,其特征在于,所述第一透镜的物侧面的曲率半径R1与所述第一透镜的像侧面的曲率半径R2满足0.5<R1/R2<1.5。
33.根据权利要求29所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第二透镜的物侧面的曲率半径R3 满足4<f/R3<5。
34.根据权利要求29所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第一透镜和所述第二透镜的组合焦距f12满足2<f/f12<3。
35.根据权利要求29所述的光学成像镜头,其特征在于,所述第三透镜的有效焦距f3与所述第三透镜的像侧面的曲率半径R6满足-2.5≤f3/R6≤-1.5。
36.根据权利要求29所述的光学成像镜头,其特征在于,所述第五透镜的有效焦距f5与所述第五透镜的像侧面的曲率半径R10满足-2<f5/R10<-1。
37.根据权利要求29所述的光学成像镜头,其特征在于,所述第五透镜和所述第六透镜的组合焦距f56与所述光学成像镜头的总有效焦距f满足-2<f56/f<-1。
38.根据权利要求29至37中任一项所述的光学成像镜头,其特征在于,所述第四透镜和所述第五透镜在所述光轴上的间隔距离T45与所述第六透镜于所述光轴上的中心厚度CT6满足1<T45/CT6<2。
39.根据权利要求29至37中任一项所述的光学成像镜头,其特征在于,所述第二透镜于所述光轴上的中心厚度CT2与所述第四透镜于所述光轴上的中心厚度CT4满足2<CT2/CT4<3。
40.根据权利要求29至37中任一项所述的光学成像镜头,其特征在于,所述第一透镜于所述光轴上的中心厚度CT1与所述第一透镜和所述第二透镜在所述光轴上的间隔距离T12满足2.3<CT1/T12<3.8。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201820868390.8U CN208477189U (zh) | 2018-06-06 | 2018-06-06 | 光学成像镜头 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201820868390.8U CN208477189U (zh) | 2018-06-06 | 2018-06-06 | 光学成像镜头 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN208477189U true CN208477189U (zh) | 2019-02-05 |
Family
ID=65216268
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201820868390.8U Active CN208477189U (zh) | 2018-06-06 | 2018-06-06 | 光学成像镜头 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN208477189U (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108490588A (zh) * | 2018-06-06 | 2018-09-04 | 浙江舜宇光学有限公司 | 光学成像镜头 |
-
2018
- 2018-06-06 CN CN201820868390.8U patent/CN208477189U/zh active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108490588A (zh) * | 2018-06-06 | 2018-09-04 | 浙江舜宇光学有限公司 | 光学成像镜头 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108181701B (zh) | 光学成像镜片组 | |
CN108873253A (zh) | 摄像镜头 | |
CN109085693A (zh) | 光学成像镜头 | |
CN108445610A (zh) | 光学成像镜片组 | |
CN109031629A (zh) | 摄像光学系统 | |
CN109725408A (zh) | 成像镜头 | |
CN109782418A (zh) | 光学成像镜头 | |
CN208506350U (zh) | 摄像镜头 | |
CN108490588A (zh) | 光学成像镜头 | |
CN108287403A (zh) | 光学成像镜头 | |
CN209044159U (zh) | 摄像光学系统 | |
CN209102995U (zh) | 光学成像透镜组 | |
CN109239891A (zh) | 光学成像透镜组 | |
CN208488592U (zh) | 光学成像镜片组 | |
CN109116520A (zh) | 光学成像镜头 | |
CN108761737A (zh) | 光学成像系统 | |
CN208506348U (zh) | 摄像镜头 | |
CN108873254A (zh) | 光学成像系统 | |
CN109752825A (zh) | 光学成像镜片组 | |
CN209148942U (zh) | 光学成像镜头 | |
CN208110147U (zh) | 光学成像镜头 | |
CN207516629U (zh) | 光学成像镜头 | |
CN109975956A (zh) | 光学成像透镜组 | |
CN209640581U (zh) | 光学成像镜头 | |
CN110208925A (zh) | 光学成像镜头 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |