CN208423062U - 一种一体化质子交换膜燃料电池车温控系统 - Google Patents

一种一体化质子交换膜燃料电池车温控系统 Download PDF

Info

Publication number
CN208423062U
CN208423062U CN201821062237.2U CN201821062237U CN208423062U CN 208423062 U CN208423062 U CN 208423062U CN 201821062237 U CN201821062237 U CN 201821062237U CN 208423062 U CN208423062 U CN 208423062U
Authority
CN
China
Prior art keywords
solenoid valve
heat exchanger
heat
valve
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201821062237.2U
Other languages
English (en)
Inventor
华青松
马永志
周琼琼
魏建新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Wenli-Tech Co Ltd
Original Assignee
Beijing Wenli-Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Wenli-Tech Co Ltd filed Critical Beijing Wenli-Tech Co Ltd
Priority to CN201821062237.2U priority Critical patent/CN208423062U/zh
Application granted granted Critical
Publication of CN208423062U publication Critical patent/CN208423062U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

一种一体化质子交换膜燃料电池车温控系统,包括:燃料电池堆,包括质子交换膜;空气供给系统,包括第一空压机、压缩空气换热器、加湿器和排气阀,压缩空气换热器连接在第一空压机与加湿器之间并与一第一电磁阀连接,排气阀与加湿器连接,加湿器与燃料电池堆连接的管路上设有第一流量计、第一温度计和第一压力计;以及冷却系统,包括四通阀、第二电磁阀、第三电磁阀、第四电磁阀、第五电磁阀、冷凝器、第二空压机、汽水分离器、相变蓄热器、第一过滤器、第二过滤器、止回阀、第一热力膨胀阀、第二热力膨胀阀、蒸发器、第二流量计、第一循环泵、第二循环泵、第二温度计、第二压力计、第三温度计、第三压力计、第一换热器和第二换热器。

Description

一种一体化质子交换膜燃料电池车温控系统
技术领域
本实用新型涉及燃料电池车温度控制领域,具体而言,涉及一种一体化质子交换膜燃料电池车温控系统,
背景技术
火力发电和核电的效率大约在30%~40%,而质子膜燃料电池能将燃料的化学能直接转化为电能,具有发电效率高(电化学效率在40-60%)、环境污染少且工作温度为100℃以内等优点而在燃料电池车领域受到广泛广注。
然而燃料电池工作温度对其性能有着显著的影响。低温时,电池内各种极化增强,欧姆阻抗也较大,因此使电池性能恶化。温度升高时,会降低欧姆阻抗,同时减少极化,并有利于提高电化学反应速度和质子在膜内的传递速度,电池性能变好。但由于膜的含水量强烈影响其导电性能,温度高的同时会导致膜脱水,电导率下降,电池性能变差。同时,电池的温度分布对电池性能也有显著的影响,它决定了水的蒸发和凝结,影响了水的分布,通过热表面张力和热浮力作用影响了多组分气体扩散传输。不充分或无效的电池冷却会导致整个或局部电池温度过高,这样会使得膜脱水、收缩、褶皱甚至破裂。同时,目前车用燃料电池的典型催化剂为Pt/C,燃料电池在车用工况下操作条件下的变化会引起其温度与湿度的变化,会加速催化剂的老化。
通常,功率在200W以下的燃料电池利用供应给阴极的空气来冷却,250W以上的燃料电池则在双极板上做出专门的冷却通道。现有中国专利(CN203800126U、CN106229530A、CN101447580A、CN102386430A等)及美国专利(US 6777115、WO 04025752等)只是从燃料电池系统出发,针对燃料电池系统低温启动存在的液态、气态水走等主要问题,采用保温、加热等措施以避免因气、液态水低温凝固导致的管路堵塞和阀体冻结,缩短燃料电池低温启动时间;采用注液方式抑制结冰以消除后续低温冷启动对电磁阀加热所带来的能量损失,提高燃料电池系统的效率。目前电催化剂抗衰减研究则主要集中在催化剂载体抗衰减的研究上。
以上研究均未基于质子交换膜燃料电池车整车,也未见有采用一体化温控技术,实现燃料电池车中燃料电池堆、压缩空气的主动温控,并有效利用热泵及燃料电池堆放出热量的燃料电池车温控系统的相关专利、文献和实用化产品。
实用新型内容
本实用新型提供一种一体化质子交换膜燃料电池车温控系统,用以对质子交换膜燃料电池车进行一体化温度控制。
为达到上述目的,本实用新型提供了一种一体化质子交换膜燃料电池车温控系统,其具有供热-蓄热模式和供热-放热模式两种工作模式,包括:
燃料电池堆,包括质子交换膜;
空气供给系统,包括第一空压机、压缩空气换热器、加湿器和排气阀,压缩空气换热器连接在第一空压机与加湿器之间并与一第一电磁阀连接,排气阀与加湿器连接,加湿器与燃料电池堆连接的管路上设有第一流量计、第一温度计和第一压力计,第一空压机根据车辆行驶工况和负载电流要求调节自身转速,以为燃料电池堆供应所需流量的高温压缩空气,压缩空气换热器利用从第一电磁阀输送来的制冷剂冷却第一空压机排出的高温压缩空气,使其降温至燃料电池堆的工作温度,加湿器用于对由压缩空气换热器排出的空气进行加湿;以及
冷却系统,包括四通阀、第二电磁阀、第三电磁阀、第四电磁阀、第五电磁阀、冷凝器、第二空压机、气液分离器、汽水分离器、相变蓄热器、第一过滤器、第二过滤器、止回阀、第一热力膨胀阀、第二热力膨胀阀、蒸发器、第二流量计、第一循环泵、第二循环泵、第二温度计、第二压力计、第三温度计、第三压力计、第一换热器和第二换热器,冷凝器和第二换热器设置于车体内部,四通阀与第二电磁阀、第二空压气机、汽水分离器和蒸发器连接,相变蓄热器与第四电磁阀和止回阀连接,气液分离器连接在第二空压机与相变蓄热器之间,冷凝器与相变蓄热器之间依序连接有第三电磁阀、第一过滤器和第一热力膨胀阀,止回阀依序连接第二过滤器、第二热力膨胀阀后连接至压缩空气换热器,第二流量计和第五电磁阀依序连接在蒸发器与第一换热器之间,第一循环泵连接在第一换热器和第二换热器之间,蒸发器与燃料电池堆之间依序连接有第二循环泵、第二压力计和第二温度计,第三温度计和第三压力计连接在第一换热器和燃料电池堆之间,
于供热-蓄热模式工作模式下,第二电磁阀和第四电磁阀开启,第三电磁阀关闭;于供热-放热工作模式下,第二电磁阀、第三电磁阀和第四电磁阀均开启。
本实用新型提供的一体化质子交换膜燃料电池车温控系统采用一体化温控技术,利用蒸发器的吸热功能,实现了燃料电池车中燃料电池堆、压缩空气的主动温控,有效满足了燃料电池对于温度范围、温度分布均匀及温度极限等温控需求,延缓了质子交换膜燃料电池催化剂因温度变化而导致的老化,同时实现了有效利用空压机及燃料电池堆散发出的热量,大大提高了燃料电池车的能源利用率。
附图说明
为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本实用新型一实施例的一体化质子交换膜燃料电池车温控系统结构示意图。
具体实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
本实用新型提供的一体化质子交换膜燃料电池车温控系统具有供热-蓄热模式和供热-放热模式两种工作模式,图1为本实用新型一实施例的一体化质子交换膜燃料电池车温控系统结构示意图,如图1所示,本实用新型提供的一体化质子交换膜燃料电池车温控系统包括:
燃料电池堆R1,包括质子交换膜Z1;
空气供给系统,包括第一空压机Y2、压缩空气换热器H4、加湿器J1和排气阀F7,压缩空气换热器H4连接在第一空压机Y2与加湿器J1之间并与一第一电磁阀F8连接,排气阀F7与加湿器J1连接,加湿器J1与燃料电池堆R1连接的管路上设有第一流量计Q1、第一温度计T3和第一压力计P3,其中,第一流量计Q1、第一温度计T3和第一压力计P3设置在加湿器J1输入空气至燃料电池堆R1的通路上,燃料电池堆R1工作时,需要视实际情况经由排气阀F7排出多余气体,如图1所示,在燃料电池堆R1的排气管路上可进一步安装温度计T2和压力计P2,以对燃料电池堆R1的排气状况进行监测,第一空压机Y2根据车辆行驶工况和负载电流要求调节自身转速,以为燃料电池堆R1供应所需流量的高温压缩空气,压缩空气换热器H4利用从第一电磁阀F8输送来的制冷剂冷却第一空压机Y2排出的高温压缩空气,使其降温至燃料电池堆R1的工作温度,加湿器J1用于对由压缩空气换热器H4排出的空气进行加湿;以及
冷却系统,包括四通阀F9、第二电磁阀F10、第三电磁阀F13、第四电磁阀F12、第五电磁阀F6、气液分离器S1、冷凝器N1、第二空压机Y1、汽水分离器S2、相变蓄热器H1、第一过滤器G1、第二过滤器G2、止回阀F2、第一热力膨胀阀F1、第二热力膨胀阀F3、蒸发器H5、第二流量计Q2、第一循环泵B1、第二循环泵B2、第二温度计T4、第二压力计P4、第三温度计T1、第三压力计P1、第一换热器H2和第二换热器H3,冷凝器N1和第二换热器H3设置于车体内部,四通阀F9与第二电磁阀F10、第二空压气机Y1、汽水分离器S2和蒸发器H5连接,相变蓄热器H1与第四电磁阀F12和止回阀F2连接,气液分离器S1连接在第二空压机Y1与相变蓄热器H1之间,冷凝器N1与相变蓄热器H1之间依序连接有第三电磁阀F13、第一过滤器G1和第一热力膨胀阀F1,止回阀F2依序连接第二过滤器G2、第二热力膨胀阀F3后连接至压缩空气换热器H4,第二流量计Q2和第五电磁阀F6依序连接在蒸发器H5与第一换热器H2之间,第一循环泵B1连接在第一换热器H2和第二换热器H3之间,蒸发器H5与燃料电池堆R1之间依序连接有第二循环泵B2、第二压力计P4和第二温度计T4,第三温度计T1和第三压力计P1连接在第一换热器H2和燃料电池堆R1之间,
于供热-蓄热模式工作模式下,第二电磁阀F10和第四电磁阀F12开启,第三电磁阀F13关闭;于供热-放热工作模式下,第二电磁阀F10、第三电磁阀F13和第四电磁阀F12均开启。
以下介绍两种工作模式下冷却系统部分的工作过程:
于供热-蓄热工作模式下,第二电磁阀F10和第四电磁阀F12开启,第三电磁阀F13关闭,第二空压机Y1排出的高温高压气态制冷剂经过四通阀F9、第二电磁阀F10进入冷凝器N1,以与冷凝器N1进行热交换,冷凝器N1再将热量散发至车体内或外部大气,冷凝器N1中未被充分冷却的气态制冷剂通过第四电磁阀F12进入相变蓄热器H1中的蓄热管路进一步冷却,将热量蓄存起来,从相变蓄热器H1输出的的液态制冷剂经过止回阀F2、第二过滤器G2、第二热力膨胀阀F3节流为汽液混合态,之后进入蒸发器H5,蒸发器H5对制冷剂进行吸热以降低进入第二循环泵B2的制冷剂的温度,制冷剂进入燃料电池堆R1吸收废热后再流出至第一换热器H2,第一循环泵B1将第一换热器H2中的热量循环输出至第二换热器H3,第二换热器H3再将热量散发至车体内或外部大气,蒸发器H5输出的制冷剂通过四通阀F9流入气液分离器S2进行气液分离,分离出的气态制冷剂进入第二空压机Y1,第二空压机Y1将气态制冷剂压缩为高温高压气态制冷剂,以完成制冷剂循环过程;
于供热-放热工作模式下,第二电磁阀F10、第三电磁阀F13和第四电磁阀F12均开启,与“供热-蓄热工作模式”不同之处在于,从冷凝器N1中输出的液态制冷剂流经第三电磁阀F13、过滤器G1、第一热力膨胀阀F1后进入相变蓄热器H1的蒸发管路,以吸收相变蓄热器H1中蓄存的热量,相变蓄热器H1输出的气态制冷剂进入气液分离器S1完成气液分离,分离出的气态制冷剂通过第二空压机Y1的补气口进入其内部,经第二空压机Y1压缩排出高温高压的气态制冷剂,其余之处与“供热-蓄热工作模式”相同,在此不予赘述。
本实用新型提供的一体化质子交换膜燃料电池车温控系统采用一体化温控技术,利用蒸发器的吸热功能,实现了燃料电池车中燃料电池堆、压缩空气的主动温控,有效满足了燃料电池对于温度范围、温度分布均匀及温度极限等温控需求,延缓了质子交换膜燃料电池催化剂因温度变化而导致的老化,同时实现了有效利用空压机及燃料电池堆散发出的热量,大大提高了燃料电池车的能源利用率。
本领域普通技术人员可以理解:附图只是一个实施例的示意图,附图中的模块或流程并不一定是实施本实用新型所必须的。
本领域普通技术人员可以理解:实施例中的装置中的模块可以按照实施例描述分布于实施例的装置中,也可以进行相应变化位于不同于本实施例的一个或多个装置中。上述实施例的模块可以合并为一个模块,也可以进一步拆分成多个子模块。
最后应说明的是:以上实施例仅用以说明本实用新型的技术方案,而非对其限制;尽管参照前述实施例对本实用新型进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本实用新型实施例技术方案的精神和范围。

Claims (1)

1.一种一体化质子交换膜燃料电池车温控系统,其特征在于,具有供热-蓄热模式和供热-放热模式两种工作模式,包括:
燃料电池堆,包括质子交换膜;
空气供给系统,包括第一空压机、压缩空气换热器、加湿器和排气阀,压缩空气换热器连接在第一空压机与加湿器之间并与一第一电磁阀连接,排气阀与加湿器连接,加湿器与燃料电池堆连接的管路上设有第一流量计、第一温度计和第一压力计,第一空压机根据车辆行驶工况和负载电流要求调节自身转速,以为燃料电池堆供应所需流量的高温压缩空气,压缩空气换热器利用从第一电磁阀输送来的制冷剂冷却第一空压机排出的高温压缩空气,使其降温至燃料电池堆的工作温度,加湿器用于对由压缩空气换热器排出的空气进行加湿;以及
冷却系统,包括四通阀、第二电磁阀、第三电磁阀、第四电磁阀、第五电磁阀、冷凝器、第二空压机、气液分离器、汽水分离器、相变蓄热器、第一过滤器、第二过滤器、止回阀、第一热力膨胀阀、第二热力膨胀阀、蒸发器、第二流量计、第一循环泵、第二循环泵、第二温度计、第二压力计、第三温度计、第三压力计、第一换热器和第二换热器,冷凝器和第二换热器设置于车体内部,四通阀与第二电磁阀、第二空压气机、汽水分离器和蒸发器连接,相变蓄热器与第四电磁阀和止回阀连接,气液分离器连接在第二空压机与相变蓄热器之间,冷凝器与相变蓄热器之间依序连接有第三电磁阀、第一过滤器和第一热力膨胀阀,止回阀依序连接第二过滤器、第二热力膨胀阀后连接至压缩空气换热器,第二流量计和第五电磁阀依序连接在蒸发器与第一换热器之间,第一循环泵连接在第一换热器和第二换热器之间,蒸发器与燃料电池堆之间依序连接有第二循环泵、第二压力计和第二温度计,第三温度计和第三压力计连接在第一换热器和燃料电池堆之间,
于供热-蓄热模式工作模式下,第二电磁阀和第四电磁阀开启,第三电磁阀关闭;于供热-放热工作模式下,第二电磁阀、第三电磁阀和第四电磁阀均开启。
CN201821062237.2U 2018-07-05 2018-07-05 一种一体化质子交换膜燃料电池车温控系统 Active CN208423062U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201821062237.2U CN208423062U (zh) 2018-07-05 2018-07-05 一种一体化质子交换膜燃料电池车温控系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201821062237.2U CN208423062U (zh) 2018-07-05 2018-07-05 一种一体化质子交换膜燃料电池车温控系统

Publications (1)

Publication Number Publication Date
CN208423062U true CN208423062U (zh) 2019-01-22

Family

ID=65124907

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201821062237.2U Active CN208423062U (zh) 2018-07-05 2018-07-05 一种一体化质子交换膜燃料电池车温控系统

Country Status (1)

Country Link
CN (1) CN208423062U (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950586A (zh) * 2019-04-01 2019-06-28 浙江晨阳新材料有限公司 一种防止过热的氢燃料电池
CN110350218A (zh) * 2019-06-13 2019-10-18 东南大学 一种具有能量优化设计的车载深冷高压氢供氢系统
US20220404105A1 (en) * 2021-06-22 2022-12-22 Booz Allen Hamilton Inc. Thermal management systems for extended operation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950586A (zh) * 2019-04-01 2019-06-28 浙江晨阳新材料有限公司 一种防止过热的氢燃料电池
CN110350218A (zh) * 2019-06-13 2019-10-18 东南大学 一种具有能量优化设计的车载深冷高压氢供氢系统
US20220404105A1 (en) * 2021-06-22 2022-12-22 Booz Allen Hamilton Inc. Thermal management systems for extended operation
US11781817B2 (en) * 2021-06-22 2023-10-10 Booz Allen Hamilton Inc. Thermal management systems for extended operation

Similar Documents

Publication Publication Date Title
CN208423062U (zh) 一种一体化质子交换膜燃料电池车温控系统
CN107014110B (zh) 分布式水汽冷热电联供装置及方法
CN108317767B (zh) 一种质子交换膜燃料电池余热利用系统及方法
CN108583348B (zh) 能为新能源汽车充电电池提供预热和冷却的充电站
CN105576269A (zh) 一种固定式的微型燃料电池热电联产装置的热控制系统
CN110635150B (zh) 一种多燃料电池模块联用的热管理系统和方法
CN113851670B (zh) 一种基于质子交换膜燃料电池的冷热电联供方法
CN213425026U (zh) 氢燃料电池发动机低温冷启动测试平台
CN114046572A (zh) 基于质子交换膜燃料电池的建筑冷热电联供系统及方法
CN112339614A (zh) 一种适用于燃料电池汽车热系统的协同管理方法
CN109638312A (zh) 一种燃料电池系统循环冷却水装置
CN110120535B (zh) 一种燃料电池电堆低温快速启动系统和启动方法
CN208522032U (zh) 一种分区分级质子交换膜燃料电池客车温控系统
CN114068985A (zh) 一种质子交换膜燃料电池冷热电联供系统
CN117393797A (zh) 一种燃料电池电堆冷却系统及控制方法
CN209461582U (zh) 一种氢燃料电池低温储存装置
CN218385290U (zh) 一种燃料电池相变强化散热系统
CN106887616A (zh) 一种基于液态有机储氢的燃料电池冷启动系统及方法
CN108808035B (zh) 能-40℃以下超低温冷启动的燃料电池汽车的动力系统
CN114023999B (zh) 一种具有快速冷启动功能的燃料电池系统及其启动方法
CN215933652U (zh) 一种燃料电池水电联供系统
CN216054820U (zh) 一种燃料电池系统
CN116264297A (zh) 一种低气压氢空燃料电池系统的低温启动方法
CN208124667U (zh) 一种质子交换膜燃料电池余热利用系统
CN207942935U (zh) 车辆及燃料电池系统

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant