CN208350032U - 共轴收发探测装置 - Google Patents

共轴收发探测装置 Download PDF

Info

Publication number
CN208350032U
CN208350032U CN201820997442.1U CN201820997442U CN208350032U CN 208350032 U CN208350032 U CN 208350032U CN 201820997442 U CN201820997442 U CN 201820997442U CN 208350032 U CN208350032 U CN 208350032U
Authority
CN
China
Prior art keywords
laser
optical fiber
transmitting
receiving
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201820997442.1U
Other languages
English (en)
Inventor
杜晨光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lorenz (beijing) Technology Co Ltd
Original Assignee
Lorenz (beijing) Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lorenz (beijing) Technology Co Ltd filed Critical Lorenz (beijing) Technology Co Ltd
Priority to CN201820997442.1U priority Critical patent/CN208350032U/zh
Application granted granted Critical
Publication of CN208350032U publication Critical patent/CN208350032U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本实用新型公开了共轴收发探测装置,以简化的结构,实现发射视场与接收视场高度匹配,能接收到更多的回返光,提高了信噪比和探测距离,同时装置中的各个部分均通过光纤连接,方便进行柔性安装。

Description

共轴收发探测装置
技术领域
本实用新型涉及探测领域,特别涉及共轴收发探测装置。
背景技术
在航空航天、仿形加工、机器视觉、自动驾驶汽车、无人机等众多应用领域,都需要物体和环境的三维轮廓信息。随着技术的发展,对环境感知提出了越来越高的要求。
光电检测作为三维轮廓感知的重要实现手段,近几年获得了越来越广泛的重视,也取得了长足的发展。常用的光电检测技术途径主要包括莫尔条纹法、三角测量法、脉冲时间飞行法、间接时间飞行法、激光照明距离选通成像法等。上述技术途径各有优缺点,在不同的平台和领域都得到了实际应用。
目前的光电检测中,大部分的光源发射孔径与接收孔径是分开的,即大部分为非共轴收发,不仅增加了光束扫描的难度,也导致生产时的光轴标校效率低下。为解决这一问题,也出现了一些共轴收发的解决方案,例如采用偏振棱镜、光纤环形器等。
以如图1所示的偏振棱镜解决方案为例,该方案通过一个半透半反镜115实现。其缺点在于:系统结构较复杂,需要半透半反镜115和接收器140两组镜头;光源110发出的光束经过半透半反镜115时,既有透射,也有反射,会损失一部分能量,接收返回光束时,经过半透半反镜115时,既有透射,也有反射,还会损失一部分能量,因此只有部分能量到达接收系统,信噪比较低,探测距离受限。
实用新型内容
本实用新型实施例提供了共轴收发探测装置。为了对披露的实施例的一些方面有一个基本的理解,下面给出了简单的概括。该概括部分不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围。其唯一目的是用简单的形式呈现一些概念,以此作为后面的详细说明的序言。
本实用新型实施例提供了一种共轴收发探测装置,所述装置包括:处理器、激光器、共轴收发器、接收器和收发扫描器;
所述处理器,用于控制所述激光器发射激光;处理所述接收器得到的信号;
所述收发扫描器,用于以扫描方式将所述激光发射到所述待测对象;接收所述激光经待测对象的回返光;
所述共轴收发器,用于经发射光纤接收所述激光,经收发光纤将所述激光传输至所述收发扫描器;经所述收发光纤接收所述收发扫描器传输的所述回返光、并经接收光纤将所述回返光传输至所述接收器;
所述接收器,用于接收所述回返光并转换成电信号。
基于所述装置,作为可选的第一实施例,所述装置还包括:光纤分束器;
所述光纤分束器,用于将所述激光分成至少两个光束,每一光束对应一个探测通路;
每个所述探测通路包括:至少一个所述共轴收发器、至少一个所述接收器和至少一个所述收发扫描器。
基于所述装置和所述第一实施例,作为可选的第二实施例,所述收发扫描器包括:准直部件、反射式光束偏转器件阵列和透射式光束偏转器件阵列;
所述反射式光束偏转器件阵列包括至少一个反射式光束偏转器件,用于将所述激光反射至所述透射式光束偏转器件阵列;接收来自所述透射式光束偏转器件阵列的所述回返光;
所述透射式光束偏转器件阵列包括至少一个透射式光束偏转器件,用于将所述激光透射至所述待测对象;接收所述回返光;
所述准直部件设置在所述收发光纤和所述反射式光束偏转器件之间、及所述反射式光束偏转器件与所述透射式光束偏转器件之间的至少一处。
基于所述装置和所述第一实施例,作为可选的第三实施例,所述收发扫描器包括:准直部件和反射式光束偏转器件阵列;
所述反射式光束偏转器件阵列包括至少一个反射式光束偏转器件,用于将所述激光反射至所述待测对象;接收所述回返光;
所述准直部件设置在所述收发光纤和所述反射式光束偏转器件阵列之间、及所述反射式光束偏转器件阵列与所述待测对象之间的至少一处。
基于所述装置和所述第一实施例,作为可选的第四实施例,所述收发扫描器包括:准直部件和透射式光束偏转器件阵列;
所述透射式光束偏转器件阵列包括至少一个透射式光束偏转器件,用于将所述激光透射至所述待测对象;接收所述回返光;
所述准直部件设置在所述收发光纤和所述透射式光束偏转器件阵列之间。
基于所述装置和所述第一实施例,作为可选的第四实施例,所述共轴收发器包括:第一光纤和第二光纤;
所述第一光纤连接所述发射光纤和所述收发光纤;
所述第二光纤连接所述接收光纤,所述第二光纤与所述第一光纤紧邻设置;
所述第一光纤,用于经所述发射光纤接收激光并传输至所述收发光纤;经所述收发光纤接收所述回返光、并耦合至所述第二光纤;
所述第二光纤,用于将所述回返光传输至所述接收光纤。
基于所述第四实施例,作为可选的第五实施例,所述第一光纤具有包层和纤芯,所述回返光在所述包层中传输设定距离后耦合至所述第二光纤。
基于所述第四实施例,作为可选的第六实施例,所述第二光纤为至少两根,围绕所述第一光纤、且与所述第一光纤紧邻设置。
基于所述第六实施例,作为可选的第七实施例,每根所述接收光纤连接一根所述第二光纤。
基于所述第六实施例,作为可选的第八实施例,一个所述接收器与至少两根所述接收光纤相连;
一个所述共轴收发器与至少两根所述接收光纤相连。
基于所述第四实施例,作为可选的第九实施例,所述第一光纤、所述发射光纤和所述收发光纤的参数匹配;
或者,所述第一光纤、所述发射光纤和所述收发光纤为一根光纤。
基于所述第四实施例,作为可选的第十实施例,所述第二光纤和所述接收光纤的参数匹配;
或者,所述第二光纤和所述接收光纤为一根光纤。
基于所述装置和所述第一实施例,作为可选的第十一实施例,所述激光器包括:半导体激光器和隔离器;
半导体激光器,用于产生泵浦光;所述泵浦光用于激发光纤激光;
所述隔离器,用于隔离所述泵浦光。
基于所述装置和所述第一实施例,作为可选的第十二实施例,所述装置还包括:窄带滤波器;
所述窄带滤波器设置于所述收发扫描器和所述接收器中的至少一个上,具有与所述激光波长相近的滤波参数。
基于所述装置和所述第一实施例,作为可选的第十三实施例,所述激光器被配置为:
生成脉冲激光;
通过所述脉冲激光对同一待测对象多次测量生成携带所述装置的识别信息的编码激光信号;
发射所述编码激光信号。
基于所述第十三实施例,作为可选的第十四实施例,所述接收器被配置为:
将接收到的所有所述回返光转换成电信号,通过对转换出的电信号进行解码,确定出对应本装置发射的所述编码激光信号的电信号。
基于所述装置和所述第一实施例,作为可选的第十五实施例,所述装置还包括:温度传感器和温度控制部件;
所述温度传感器,用于获取所述激光器和所述接收器的温度;
所述温度控制部件,用于在所述温度传感器获取的温度超过温度阈值时,进行温度控制。
本实用新型实施例中的共轴收发探测装置,取得了如下有益效果:
第一,简化了探测装置的结构;
第二,发射视场与接收视场高度匹配,能接收到更多的回返光,提高了信噪比和探测距离;
第三,装置中的各个部分均通过光纤连接,方便进行柔性安装。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本实用新型。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本实用新型的实施例,并与说明书一起用于解释本实用新型的原理。
图1是现有技术中一种共轴收发探测装置的示意图;
图2是一示例性实施例中的共轴收发探测装置的示意图;
图3是一示例性实施例中的共轴收发探测装置的示意图;
图4是一示例性实施例中多路探测在汽车上的实现示意图;
图5是一示例性实施例中的收发扫描器的结构示意图;
图6是一示例性实施例中的收发扫描器的结构示意图;
图7是一示例性实施例中的收发扫描器的结构示意图;
图8是一示例性实施例中的收发扫描器的结构示意图;
图9a是一示例性实施例中在一个方向进行一维扫描的示意图;
图9b是一示例性实施例中在两个方向进行二维扫描的示意图;
图10是一示例性实施例中的共轴收发器的结构示意图;
图11是一示例性实施例中的激光器的结构示意图;
图12是一示例性实施例中不同脉冲宽度的脉冲激光的示意图;
图13是一示例性实施例中回返光的强度的示意图。
具体实施方式
以下描述和附图充分地示出本实用新型的具体实施方案,以使本领域的技术人员能够实践它们。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施方案的部分和特征可以被包括在或替换其他实施方案的部分和特征。本实用新型的实施方案的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。在本文中,各实施方案可以被单独地或总地用术语“实用新型”来表示,这仅仅是为了方便,并且如果事实上公开了超过一个的实用新型,不是要自动地限制该应用的范围为任何单个实用新型或实用新型构思。本文中,诸如第一和第二等之类的关系术语仅仅用于将一个实体或者操作与另一个实体或操作区分开来,而不要求或者暗示这些实体或操作之间存在任何实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素。本文中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
在一示例性实施例中,如图2所示,共轴收发探测装置包括:处理器11、激光器12、共轴收发器13、接收器14和收发扫描器15。
处理器11,用于控制激光器12发射激光;处理接收器14得到的信号。
收发扫描器15,用于以扫描方式将所述激光发射到待测对象;接收所述激光经待测对象的回返光。
共轴收发器13,用于经发射光纤6接收所述激光,经收发光纤8将所述激光传输至收发扫描器15;经收发光纤8接收收发扫描器15传输的所述回返光、并经接收光纤7将所述回返光传输至接收器14。
接收器14,用于接收所述回返光并转换成电信号。
考虑实际应用环境,探测装置可以分为内部安装部分100和外部安装部分200,上述各部件可以分别包含在这两部分中。
本示例性实施例中的共轴收发探测装置,取得了如下有益效果:
第一,简化了探测装置的结构;
第二,发射视场与接收视场高度匹配,能接收到更多的回返光,提高了信噪比和探测距离;
第三,装置中的各个部分均通过光纤连接,方便进行柔性安装。
在一示例性实施例中,如图3所示,共轴收发探测装置包括:处理器11、激光器12、共轴收发器13、接收器14、收发扫描器15和光纤分束器16。
光纤分束器16,用于将激光器12发射的激光分成至少两个光束,每一光束对应一个探测通路。
所述探测通路包括:至少一个共轴收发器13、至少一个接收器14和至少一个收发扫描器15。可见,探测通路包含的器件有多种组合方式,例如一个探测通路可以包括一个共轴收发器13、一个接收器14和一个收发扫描器15,又例如一个探测通路可以包括一个共轴收发器13、多个接收器14和一个收发扫描器15。可选的,一个收发扫描器15可以属于多个探测通路,在这种情况下,一个收发扫描器15可以通过多个收发光纤8与多个共轴收发器13相连。
处理器11包括控制器和至少一个信号处理器。所述控制器用于控制激光器12发射激光,所述信号处理器用于处理接收器14得到的信号。可选的,每个所述信号处理器,可以处理一个或多个接收器14得到的信号。
收发扫描器15,用于以扫描方式将所述激光发射到待测对象;接收所述激光经待测对象的回返光。
共轴收发器13,用于经发射光纤6接收所述激光,经收发光纤8将所述激光传输至收发扫描器15;经收发光纤8接收收发扫描器15传输的所述回返光、并经接收光纤7将所述回返光传输至接收器14。
接收器14,用于接收所述回返光并转换成电信号。
采用光纤分束器16之后,能够将激光器12发射的一路激光分成多路,实现多路探测,有效降低成本,减小探测装置的尺寸。每一个探测通路,可以柔性安装在应用环境的不同位置,实现对不同区域的探测。
如图4所示,以应用环境为汽车300为例,上述每一个探测通路,可以安装在汽车的不同位置。车头位置并列设置两个收发扫描器15,一个用作远距离小视场,一个用作近距离大视场。汽车侧向和后向也可以设置几个收发扫描器15。
在一示例性实施例中,收发扫描器15的内部结构包括准直部件,还可以包括反射式光束偏转器件阵列和透射式光束偏转器件阵列中的至少一个。
所述反射式光束偏转器件,指的是通过器件的反射镜面姿态角变化,在光束照射在其上发生反射的时候,改变光束传播方向的器件。
所述反射式光束偏转器件阵列可以包括至少一个反射式光束偏转器件,反射式光束偏转器件可以是MEMS振镜、转镜、振镜或其他反射镜等,当包括多个反射式光束偏转器件时,多个反射式光束偏转器件串联。
所述透射式光束偏转器件,指的是通过调整加在器件上的电信号,在光束透过该器件的时候,实现改变光束传播方向的器件。
所述透射式光束偏转器件阵列可以包括至少一个透射式光束偏转器件,透射式光束偏转器件可以是电光器件、声光器件、液晶器件或相控阵器件等,当包括多个透射式光束偏转器件时,多个透射式光束偏转器件串联。
下面给出收发扫描器15内部结构的几种举例。
如图5所示,收发扫描器15包括:准直部件41、反射式光束偏转器件阵列和透射式光束偏转器件阵列。
透射式光束偏转器件阵列包括多个串联设置的透射式光束偏转器件43。
反射式光束偏转器件阵列包括一个反射式光束偏转器件42,用于将激光器12发射的激光反射至透射式光束偏转器件43;接收来自透射式光束偏转器件43的回返光。
准直部件41设置在收发光纤8和反射式光束偏转器件42之间、以及反射式光束偏转器件42与透射式光束偏转器件43之间。在有的应用场景下,准直部件41也可以设置在收发光纤8和反射式光束偏转器件42之间、或反射式光束偏转器件42与透射式光束偏转器件43之间的其中一处。
作为可选的实施方式,准直部件41可以是透镜组,起到准直和聚光的作用。
作为可选的实施方式,透射阵列中也可以只包括一个透射式光束偏转器件43。
收发扫描器15通过反射式光束偏转器件42和透射式光束偏转器件43中的至少一个,实现以扫描方式将激光器12发射的激光发射到待测对象。
如图6所示,收发扫描器15包括:准直部件51、反射式光束偏转器件阵列和透射式光束偏转器件阵列。
透射式光束偏转器件阵列包括多个串联设置的透射式光束偏转器件53。
反射式光束偏转器件阵列包括第一反射式光束偏转器件521、第二反射式光束偏转器件522。第一反射式光束偏转器件521,用于将激光器12发射的激光反射至第二反射式光束偏转器件522;接收来自第二反射式光束偏转器件522的回返光。
第二反射式光束偏转器件522,用于将激光器12发射的激光反射至透射式光束偏转器件53;接收来自透射式光束偏转器件53的回返光。
准直部件51,设置在收发光纤8和第一反射式光束偏转器件521之间、及第二反射式光束偏转器件522和透射式光束偏转器件53之间。在有的应用场景下,准直部件51也可以设置在收发光纤8和第一反射式光束偏转器件521之间、或第二反射式光束偏转器件522和透射式光束偏转器件53之间的其中一处。
作为可选的实施方式,图7所示的结构也可以不包括透射阵列,而由反射阵列直接将激光发射至待测对象,然后直接接收激光经待测对象的回返光。
作为可选的实施方式,图7所示的结构中,透射式光束偏转器件阵列也可以只包括一个透射式光束偏转器件53。
如图7所示,收发扫描器15包括:准直部件61和反射式光束偏转器件阵列。
反射式光束偏转器件阵列包括一个反射式光束偏转器件62,用于将激光器12发射的激光反射至待测对象;接收所述激光经待测对象的回返光、并反射至收发光纤8。
准直部件61设置在收发光纤8和反射式光束偏转器件62之间、及反射式光束偏转器件62和待测对象之间。
如图8所示,收发扫描器15包括:准直部件71和透射式光束偏转器件阵列。
透射式光束偏转器件阵列包括多个串联设置的透射式光束偏转器件72。
准直部件71设置在收发光纤8和透射式光束偏转器件72之间。
作为可选的实施方式,透射式光束偏转器件阵列也可以只包括一个透射式光束偏转器件72。
基于图5至图8所示的收发扫描器15的任一种结构,一个收发扫描器15可以连接至少两根收发光纤8。当收发扫描器15连接多根收发光纤8时,能够提高发射能量,且接收回返光的光斑较大,从而收集更多的能量,提高探测装置的灵敏度。
基于图5至图8所示的收发扫描器15的任一种结构,收发扫描器15可以如图9a所示在一个方向上进行一维扫描,如水平方向或竖直方向上的扫描,也可以如图9b所示在两个方向上进行二维扫描,如蛇形扫描。
基于图5至图8所示的收发扫描器15的任一种结构,收发扫描器15具有不同的角度范围、扫描间隔和扫描速度,实现探测角度范围、角分辨率和探测速度的动态变化。下面给出两个举例。
在高速公路上,车辆行驶较快,前向探测需要对较远距离进行探测,探测可以集中在车辆正前方的设定角度范围内,此时收发扫描器15可以按照设定参数,进行非等角度间隔的非匀速扫描,将扫描主要集中在车辆正前方的设定角度范围内。在闹市区,车辆行驶较慢,交通状况复杂,前向探测需要覆盖较大的角度范围,此时收发扫描器15可以进行等角度间隔的匀速扫描。
在其他应用场景下,还可以将上述等角度间隔扫描、非等角度间隔扫描、匀速扫描和非匀速扫描以其他组合方式使用。
在一示例性实施例中,如图10所示,图2或图3中所示的共轴收发器13包括:第一光纤91和第二光纤92。
第一光纤91连接发射光纤6和收发光纤8。可选的,第一光纤91、发射光纤6和收发光纤8具有包层和纤芯。
第二光纤92连接接收光纤7,第二光纤92与第一光纤91紧邻设置。紧邻设置可以是紧密贴合。
经待测对象的回返光由收发光纤8到达第一光纤91,并在第一光纤91的包层中传输设定距离后耦合至第二光纤92。耦合至第二光纤92的回返光,根据耦合效率不同,会有不同。
作为可选的实施方式,第一光纤91、发射光纤6和收发光纤8的参数匹配,或者第一光纤91、发射光纤6和收发光纤8可以是一根光纤,该光纤可以是单模光纤或双包层光纤。第二光纤92和接收光纤7的参数匹配,或者第二光纤92和接收光纤7可以是一根光纤,该光纤可以是无包层石英丝。
基于图10所示的结构,共轴收发器13可以实现收发高效分离。从发射光纤6传输来的激光到达共轴收发器13之后,会大量或全部进入收发光纤8,从收发光纤8传输来的回返光达到共轴收发器13后,会大量或全部耦合进接收光纤7中。
作为可选的实施方式,第二光纤92可以是至少两根,围绕第一光纤91、且与第一光纤91紧邻设置。
作为可选的实施方式,第二光纤92和接收光纤7的数量相同。进一步,一个接收器14可以和至少两根接收光纤7相连,一个共轴收发器13与至少两根接收光纤7相连。
在一示例性实施例中,激光器12可以是光纤激光器,也可以是光纤耦合输出的其他激光器。如图11所示,当激光器12包括半导体激光器101时,激光器12还可以包括隔离器102。
半导体激光器101,用于发射泵浦光。泵浦光用于激发光纤激光。
隔离器102,用于隔离泵浦光。隔离器102实现了对泵浦光的隔离,只留下对后续探测有用的光纤激光。
在一示例性实施例中,图2或图3中所示的装置还可以包括窄带滤波器,设置于收发扫描器15和接收器14中的至少一个上。上述窄带滤波器具有与激光器12所发射激光波长相近的滤波参数,从而只允许发射激光波长附近的回返光通过,其他波长的环境背景光被滤除,可以提高探测装置的信噪比。可选的,窄带滤波器可以是OD3~5的滤光片。
在一示例性实施例中,对待测对象的完整探测,是通过脉冲激光扫描待测对象表面的不同位置实现,将针对每个扫描位置的扫描称为一次探测,使用多脉冲激光完成每一次探测。在这种情况下,激光器12生成脉冲激光,通过脉冲激光对同一目标多次测量生成携带探测装置的识别信息的编码激光信号,然后发射编码激光信号。
接收器14接收到经待测对象表面的回返光后,将其转换成电信号,然后可以按照相同的预设定编码方式进行解码,获取其中的识别信息,从而确定出对应本装置发射的编码激光信号的电信号,再执行后续操作。可见,通过多脉冲进行每次探测,可以区分本探测装置和其他探测装置,提高抗干扰能力。
在一示例性实施例中,接收器14可以是单点、线阵、面阵等类型。接收器14可以采用电荷耦合原件(Charge-coupled Device,英文缩写CCD)、互补性金属氧化物半导体(Complementary Metal Oxide Semiconductor,英文缩写CMOS)、位置灵敏检测器(Position Sensitive Detector,英文缩写PSD)、雪崩光电二极管(Avalanche PhotoDiode,英文缩写APD)、光电二极管(Positive Intrinsic-Negative,英文缩写PIN)、硅光电倍增管(silicon photomultiplier,英文缩写SiPM)、多像素光子计数器(Multi-PixelPhoton Counter,英文缩写MPPC)或其他光接收器件。充分利用接收器14的光电转换能力、响应频率、分辨率、灰度等级等参数,实现高帧频、高分辨率的测量。结合应用场景,接收器14可以采用单点APD探测器,也可以采用SiPM或MPPC探测器。
在一示例性实施例中,激光器12发射脉冲激光,探测装置中还可以包括:电子快门和同步控制器。
同步控制器,用于控制脉冲激光与电子快门同步。
电子快门,用于控制接收器14的曝光时间。
同步控制器控制电子快门与脉冲激光同步、且电子快门控制接收器14的曝光时间,可以降低噪声影响,提升探测的信号噪声比,有利于实现较远的探测距离。
可选的,同步控制器控制电子快门与脉冲激光同步,可以不是绝对同步,具体的,同步控制器可以根据光束的飞行时间,确定同步的时间窗口。
在一示例性实施例中,对待测对象的完整探测,是通过脉冲激光扫描待测对象表面的不同位置实现,将针对每个扫描位置的扫描称为一次探测,使用多脉冲激光完成每一次探测。
进一步,通过脉冲激光对同一目标多次测量,激光器12可以生成编码发射信号。上述编码发射信号携带探测装置的识别信息。上述编码发射信号为光束,上述设备的识别信息用于指示探测装置。
接收器14接收到经待测对象表面的回返光后,可以按照相同的预设定编码方式进行解码,获取其中的设备识别信息,如果确定该回返光对应本装置,再执行后续操作。可见,通过多脉冲进行每次探测,可以使得接收器区分本装置和其他装置,提高抗干扰能力。
在一示例性实施例中,接收器14的附近可以设置遮光装置,该遮光装置可以是额外设置的遮光罩,也可以是接收器14安装的狭长空间。遮光装置可以防止杂散光进入接收器14,提高信噪比。
在一示例性实施例中,针对不同的应用场景需求,通过调整光源的功率,即通过调整激光器12的功率,实现探测距离、及覆盖的待测对象的反射率范围的动态调整。
例如,对于相同反射率的待测对象,需要探测较远距离时,激光器12的功率就要较大,需要探测较近距离时,激光器12的功率就要较小。又例如,对于相同距离处的待测对象,当激光器12的功率大时,可以探测到反射率较低的待测对象,而当激光器12的功率小时,只能探测到反射率较高的待测对象。此时,处理器11可以按照设定条件,确定不同的应用需求,然后调整激光器12的功率。上述设定条件,可以是预设定的判定条件,例如车辆速度、待测对象探测结果等,也可以是操作人员的手动输入指令。
又例如,当环境背景光太强时,会导致接收器14接收的信噪比下降,使得有效探测距离减小,当环境背景光太弱时,又会导致激光器12的光能量浪费,功耗偏高。
探测装置中可以进一步包括环境光传感器,处理器11可以根据环境光传感器对环境光的检测结果,调整激光器12的功率。
如果探测装置中不包括环境光的检测装置,处理器11还可以根据接收器14接收的回返光的强度,来间接获得环境光的情况,然后调整激光器12的功率。
可选的,探测装置中还可以进一步包括温度传感器和温度控制部件。
温度传感器,用于获取激光器12和接收器14的温度。
温度控制部件,用于当温度传感器获取的温度超过温度阈值时,进行温度控制。可选的,温度阈值可以包括温度上限阈值和温度下限阈值,具体的,当温度高于温度上限阈值时,温度控制装置用于制冷并降低温度,当温度低于温度下限阈值时,温度控制装置用于加热并提高温度。
处理器11可以通过控制电子快门来调整接收器14的曝光时间、以及激光器12发射的脉冲宽度,来实现激光器12的功率变化。如图12所示,在每个恒定的脉冲周期内使得激光器12发射不同脉冲宽度的脉冲激光,即每个脉冲周期可以有不同的占空比。
在一示例性实施例中,处理器11可以根据接收器14接收的回返光的强度,确定待测对象的材料,例如对于车辆行驶来说,可以区分障碍物与路面、区分行人与树木、识别路肩和识别车道线等。
在一示例性实施例中,激光器12发射的光束可以照射在某些可以穿透的对象上,如树叶、玻璃墙或其他部分透明的待测对象,产生多次回波信号,并由接收器14接收到多次回返光,并产生多个成像结果,回返光的强度如图13所示,这种情况下,接收器14,还可以用于接收多个脉冲激光经待测对象表面的回返光并成像。处理器11还可以用于处理多个图像,获得待测对象的信息。
具体的,接收器14接收到第一次回返光并成像后,处理器11可以获得第一次测量结果;接收器14接收到第二次回返光并成像后,处理器11可以获得第二次测量结果;直至完成最后一次测量。
应当理解的是,本实用新型并不局限于上面已经描述并在附图中示出的流程及结构,并且可以在不脱离其范围进行各种修改和改变。本实用新型的范围仅由所附的权利要求来限制。

Claims (11)

1.一种共轴收发探测装置,其特征在于,所述装置包括:处理器、激光器、共轴收发器、接收器和收发扫描器;
所述处理器,用于控制所述激光器发射激光;处理所述接收器得到的信号;
所述收发扫描器,用于以扫描方式将所述激光发射到待测对象;接收所述激光经待测对象的回返光;
所述共轴收发器,用于经发射光纤接收所述激光,经收发光纤将所述激光传输至所述收发扫描器;经所述收发光纤接收所述收发扫描器传输的所述回返光、并经接收光纤将所述回返光传输至所述接收器;
所述接收器,用于接收所述回返光并转换成电信号。
2.如权利要求1所述的装置,其特征在于,所述装置还包括:光纤分束器;
所述光纤分束器,用于将所述激光分成至少两个光束,每一光束对应一个探测通路;
每个所述探测通路包括:至少一个所述共轴收发器、至少一个所述接收器和至少一个所述收发扫描器。
3.如权利要求1或2所述的装置,其特征在于,所述收发扫描器包括:准直部件、反射式光束偏转器件阵列和透射式光束偏转器件阵列;
所述反射式光束偏转器件阵列包括至少一个反射式光束偏转器件,用于将所述激光反射至所述透射式光束偏转器件阵列;接收来自所述透射式光束偏转器件阵列的所述回返光;
所述透射式光束偏转器件阵列包括至少一个透射式光束偏转器件,用于将所述激光透射至所述待测对象;接收所述回返光;
所述准直部件设置在所述收发光纤和所述反射式光束偏转器件之间、及所述反射式光束偏转器件与所述透射式光束偏转器件之间的至少一处。
4.如权利要求1或2所述的装置,其特征在于,所述收发扫描器包括:准直部件和反射式光束偏转器件阵列;
所述反射式光束偏转器件阵列包括至少一个反射式光束偏转器件,用于将所述激光反射至所述待测对象;接收所述回返光;
所述准直部件设置在所述收发光纤和所述反射式光束偏转器件阵列之间、及所述反射式光束偏转器件阵列与所述待测对象之间的至少一处。
5.如权利要求1或2所述的装置,其特征在于,所述收发扫描器包括:准直部件和透射式光束偏转器件阵列;
所述透射式光束偏转器件阵列包括至少一个透射式光束偏转器件,用于将所述激光透射至所述待测对象;接收所述回返光;
所述准直部件设置在所述收发光纤和所述透射式光束偏转器件阵列之间。
6.如权利要求1或2所述的装置,其特征在于,所述共轴收发器包括:第一光纤和第二光纤;
所述第一光纤连接所述发射光纤和所述收发光纤;
所述第二光纤连接所述接收光纤,所述第二光纤与所述第一光纤紧邻设置;
所述第一光纤,用于经所述发射光纤接收激光并传输至所述收发光纤;
经所述收发光纤接收所述回返光、并耦合至所述第二光纤;
所述第二光纤,用于将所述回返光传输至所述接收光纤。
7.如权利要求1或2所述的装置,其特征在于,所述激光器包括:半导体激光器和隔离器;
半导体激光器,用于产生泵浦光;所述泵浦光用于激发光纤激光;
所述隔离器,用于隔离所述泵浦光。
8.如权利要求1或2所述的装置,其特征在于,所述装置还包括:窄带滤波器;
所述窄带滤波器设置于所述收发扫描器和所述接收器中的至少一个上,具有与所述激光波长相近的滤波参数。
9.如权利要求1或2所述的装置,其特征在于,所述激光器被配置为:
生成脉冲激光;
通过所述脉冲激光对同一待测对象多次测量生成携带所述装置的识别信息的编码激光信号;
发射所述编码激光信号。
10.如权利要求9所述的装置,其特征在于,所述接收器被配置为:
将接收到的所有所述回返光转换成电信号,通过对转换出的电信号进行解码,确定出对应本装置发射的所述编码激光信号的电信号。
11.如权利要求1或2所述的装置,其特征在于,所述装置还包括:温度传感器和温度控制部件;
所述温度传感器,用于获取所述激光器和所述接收器的温度;
所述温度控制部件,用于在所述温度传感器获取的温度超过温度阈值时,进行温度控制。
CN201820997442.1U 2018-06-26 2018-06-26 共轴收发探测装置 Active CN208350032U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201820997442.1U CN208350032U (zh) 2018-06-26 2018-06-26 共轴收发探测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201820997442.1U CN208350032U (zh) 2018-06-26 2018-06-26 共轴收发探测装置

Publications (1)

Publication Number Publication Date
CN208350032U true CN208350032U (zh) 2019-01-08

Family

ID=64882243

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201820997442.1U Active CN208350032U (zh) 2018-06-26 2018-06-26 共轴收发探测装置

Country Status (1)

Country Link
CN (1) CN208350032U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109000584A (zh) * 2018-06-26 2018-12-14 洛伦兹(北京)科技有限公司 共轴收发探测装置
CN113625289A (zh) * 2020-05-06 2021-11-09 圣邦微电子(北京)股份有限公司 基于结构光的深度测量装置、测量方法及拍摄设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109000584A (zh) * 2018-06-26 2018-12-14 洛伦兹(北京)科技有限公司 共轴收发探测装置
WO2020001372A1 (zh) * 2018-06-26 2020-01-02 洛伦兹(北京)科技有限公司 共轴收发探测装置
CN113625289A (zh) * 2020-05-06 2021-11-09 圣邦微电子(北京)股份有限公司 基于结构光的深度测量装置、测量方法及拍摄设备

Similar Documents

Publication Publication Date Title
CN111722237B (zh) 基于透镜和集成光束收发器的激光雷达探测装置
RU2538418C2 (ru) Оптический дальномер
CN101405613B (zh) 用于光学测距的装置
EP2378310B1 (en) Time of flight camera unit and optical surveillance system
US8946637B2 (en) Compact fiber-based scanning laser detection and ranging system
CN110187357B (zh) 三维图像重构的激光主动成像系统
CN107272014A (zh) 一种固态的二维扫描激光雷达及其扫描方法
US10955531B2 (en) Focal region optical elements for high-performance optical scanners
CN103038664A (zh) 主动照明扫描成像器
CN104160240A (zh) 扫描深度引擎
US8068215B2 (en) Laser distance meter
JP7074881B2 (ja) 波長変換を備えたlidar測定システム
CN108988951A (zh) 光纤收发器及共轴收发装置
CN110832347B (zh) 用于高性能光学扫描仪的聚焦区光学元件
CN110007312A (zh) 激光雷达系统及其控制方法
CN109738880A (zh) 一种激光雷达系统及激光测距装置
CN208350032U (zh) 共轴收发探测装置
CN108710135A (zh) 一种用于异轴配置大视场激光三维探测的视场拼接系统
CN109444850A (zh) 相控阵激光雷达
CN110133677A (zh) 一种一体化导航敏感器
CN208353348U (zh) 光纤收发器及共轴收发装置
CN109000584A (zh) 共轴收发探测装置
CN209590262U (zh) 相控阵激光雷达
CN110333500A (zh) 一种多波束激光雷达
CN1391085A (zh) 测量机的光轴自动调节

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant