CN208296916U - 一种基于超声波时差法的多声道流量测量装置 - Google Patents

一种基于超声波时差法的多声道流量测量装置 Download PDF

Info

Publication number
CN208296916U
CN208296916U CN201820833231.4U CN201820833231U CN208296916U CN 208296916 U CN208296916 U CN 208296916U CN 201820833231 U CN201820833231 U CN 201820833231U CN 208296916 U CN208296916 U CN 208296916U
Authority
CN
China
Prior art keywords
ultrasonic
section
ultrasonic transducer
installation
time difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201820833231.4U
Other languages
English (en)
Inventor
弋舒昱
周晓湘
汪永威
徐华伟
魏新达
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Datang Corp Science and Technology Research Institute Co Ltd Huazhong Branch
Original Assignee
China Datang Corp Science and Technology Research Institute Co Ltd Huazhong Branch
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Datang Corp Science and Technology Research Institute Co Ltd Huazhong Branch filed Critical China Datang Corp Science and Technology Research Institute Co Ltd Huazhong Branch
Priority to CN201820833231.4U priority Critical patent/CN208296916U/zh
Application granted granted Critical
Publication of CN208296916U publication Critical patent/CN208296916U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本实用新形涉及一种基于超声波时差法的多声道流量测量装置,基于圆柱筒形的流体流动管道,圆筒形管道上设置两个不同的超声波换能器安装截面,两个安装截面之间的距离为一倍的管径,安装截面甲上安装2个超声波换能器,这2个超声波换能器分别安装在安装截面甲沿管道管径水平方向上的两端,安装截面乙上均匀分布地安装12个超声波换能器,通过在控制器上设置超声波换能器角度调整单元,能够调整超声波换能器的角度,从而能够形成22条超声波脉冲信号声道,然后通过滤波放大以及数模转换后输出为数字信号在显示器上显示出来,最后由测得的时间点数据计算出超声波脉冲信号沿各个声道的逆流和顺流传播时间差,求解出管道内流体的实际平均流速。

Description

一种基于超声波时差法的多声道流量测量装置
技术领域
本实用新型涉及一种流体的流量测量装置,特别涉及一种基于超声波时差法的多声道流量测量装置。
背景技术
流量是工业生产过程检测控制中的一个很重要的参数,在石油、化工、水电等部门,对流体流量的检测已成为生产中不可缺少的组成部分,它与国民经济、国防建设、科学研究有着密切的关系。做好这一工作,对保障生产安全、提高生产效率、保证产品质量以及提高经济效益都具有重要的作用,特别是在能源危机、工业生产自动化程度愈来愈高的当今时代,流量测量在国民经济中的地位与作用更加明显。
在实际的工程应用中,由于经济性以及现场布置等原因,现场相对直管段长度不足,导致管道内流态分布复杂,无法保证管道内流体的流动处于充分发展段,为管道内流量的测量带来了巨大的麻烦。超声波流量计与传统流量计相比,具有非接触测流、不扰乱流场、无可动部件、无压力损失、测量精度高、性能稳定可靠、测量范围宽等优点,其中最为重要的是可用于大口径管道流量的测量,并能够保持较高的精度。
然而,由于超声波流量计的测量模型在推导之初假设被测流场是均匀的,忽略流体粘性的理想流动,但在实际测量过程中,流场是复杂的非理想流动,这就导致了超声波流量计测得流速与实际面平均流速存在差异,这就造成了超声波流量计的测量精度易受流场流速分布的影响。因此,亟需发明一种在非稳态流场中测量精度高且测量性能稳定性好的的超声波流量测量装置以测量方法。
一直以来,超声波流量测量技术领域的测量装置和测量方法大多被国外科研机构和企业的专利所垄断。针对国家重大需求,发展具有自主知识产权的超声波流量测量装置和测量方法具有重要的现实意义。
本实用新型的内容:
为了解决上述问题,本实用新型提出一种安装使用更少数量的超声波换能器,能够获得更多的超声波脉冲信号传播通道的多声道流量测量装置。
本实用新型的具体方案如下:一种基于超声波时差法的多声道流量测量装置,其特征是:该装置包括超声波换能器、现地单元、控制器、现场总线、防水信号电缆和计算机;待测流速的流体流动的圆柱筒形管道,在圆柱筒形管道的直径方向上设置两个不同且相平行的安装截面甲和安装截面乙,两个安装截面在圆柱形管道的轴向方向上的距离为两倍的圆柱筒形管道直径,安装截面甲上安装有超声波换能器 A1和超声波换能器A2,超声波换能器A1和超声波换能器A2的安装位置位于安装截面甲水平直径的两端,安装截面乙上安装12个超声波换能器,12个超声波换能器的安装位置以安装截面乙水平直径的一端为起点均匀地分布在安装截面乙上。
优选的,所述的超声波换能器A1和A2分别通过防水信号电缆与 1号现地单元相连接,安装截面乙上的12个超声波换能器分别通过防水信号电缆与2号现地单元相连接,1号现地单元和2号现地单元通过现场总线与控制器连接,控制器与计算机相连接。
优选的,所述的超声波换能器A1、超声波换能器A2和安装截面乙上的12个超声波换能器相同。
优选的,所述的控制器上安装有超声波换能器角度调整单元。
本实用新型的有益效果
本实用新型通过超声波换能器角度调整单元控制超声波换能器接收和发射信号的角度,由两个不同的安装截面上的14个超声波换能器一共形成了22条超声波脉冲信号传播通道,与现有技术中的超声波流量测量方法相比较,安装使用更少数量的超声波换能器,能够获得更多的超声波脉冲信号传播通道,流量测量的成本更低,在同样多的超声波换能器的前提下,能够形成更多的超声波脉冲信号传播通道,从而获取的超声波脉冲信号传播通道内流体流速分布情况更加详细,并且使用计算机控制整个流量测量过程,并且自动完成后期数据处理,提高了流量测量过程中的自动化程度,提高了测量效率和准确性。
附图说明
图1为一种基于超声波时差法的多声道流量测量装置的结构示意图;
图2为超声波声道布置示意图;
图3为一条声道流量测量方法示意图。
图中:1、圆柱筒形管道,2、防水信号电缆,3、1号现地单元,4、现场总线,5、控制器,6、计算机,7、2号现地单元,8、安装截面甲,9、安装截面乙,101、超声波换能器A1,102、超声波换能器A2,103、超声波换能器,11、超声波声道,12、圆柱筒形管道的轴线;
d表示圆柱筒形管道的直径,L表示超声波声道长度,θ表示超声波声道与圆柱筒形管道的轴线的夹角。
具体实施方式
实施案例一:
参见图1-3,一种基于超声波时差法的多声道流量测量装置,其特征是:该装置包括超声波换能器、现地单元、控制器、现场总线、防水信号电缆和计算机;待测流速的流体流动的圆柱筒形管道,在圆柱筒形管道的直径方向上设置两个不同且相平行的安装截面甲和安装截面乙,两个安装截面在圆柱形管道的轴向方向上的距离为两倍的圆柱筒形管道直径,安装截面甲上安装两个超声波换能器A1和超声波换能器A2,超声波换能器A1和超声波换能器A2的安装位置位于安装截面甲水平直径的两端,安装截面乙上安装12个超声波换能器, 12个超声波换能器的安装位置以安装截面乙水平直径的一端为起点均匀地分布在安装截面乙上;安装截面甲上的每个超声波换能器都能与安装截面乙上的超声波换能器一一对应形成11条超声波脉冲信号通道,总共22条超声波脉冲信号通道(安装截面甲上与安装截面乙上在同一管道轴线方向上的两个超声波换能器形成的超声波脉冲信号通道没有测速效果),在有限的超声波换能器的情况下能够获得更多的超声波脉冲信号通道,并且能够简单地计算出超声波脉冲信号通道的长度,以及更精确的计算出超声波脉冲信号通道与圆柱筒形管道轴线的夹角,从而能够计算出一条声道上线平均流速,超声波换能器 A1和A2分别通过防水信号电缆与1号现地单元相连接,安装截面乙上的12个超声波换能器分别通过防水信号电缆与2号现地单元相连接,1号现地单元和2号现地单元通过现场总线与控制器连接,控制器与计算机相连接。控制器上安装有超声波换能器角度调整单元,能够调整超声波换能器发射或接收超声波脉冲信号的角度。
实施案例二:
参见图1-3,应用实施案例一所述的一种基于超声波时差法的多声道流量测量装置的测量方法,具体测量方法是:
流量测速过程中,安装截面甲上安装的超声波换能器在任意时间点只有一个超声波换能器是处于激化状态的;
①在时间点t1上,由超声波换能器角度调整单元调整超声波换能器A1发射超声波脉冲信号的角度,同时调整安装截面乙上超声波换能器接收超声波脉冲信号的角度,超声波换能器A1依次向安装截面乙上安装的12个超声波换能器发射超声波脉冲信号(与超声波换能器 A1安装在同一管轴方向的换能器除外),发射完毕后,超声波换能器 A1调整回起始状态;
②在时间点t2上,由超声波换能器角度调整单元调整换能器A1 接收信号的角度,依次接收由安装截面乙上超声波换能器发射出的超声波脉冲信号,接收完毕后,通过计算机控制将超声波换能器A1通过程序调整为未激活状态,转而将超声波换能器A2激活;
③在时间点t3上,由超声波换能器角度调整单元调整超声波换能器A2发射超声波脉冲信号的角度,同时调整安装截面乙上超声波换能器接收超声波脉冲信号的角度,超声波换能器A2依次向安装截面乙上安装的12个超声波换能器发射出超声波脉冲信号(与换能器A2 安装在同一管轴方向的换能器除外),发射完毕后,超声波换能器A2 调整回起始状态;
④在时间点t4上,由超声波换能器角度调整单元继续调整超声波换能器A2接收信号的角度,依次接收由安装截面乙上的超声波换能器发射的超声波脉冲信号,接收完毕后,一个测速周期结束;
⑤将测得的信号通过压电转换效应输出为相应的电信号,然后通过滤波放大以及数模转换后输出为数字信号在显示器上显示出来,就可以获得超声波脉冲信号沿22条超声波脉冲声道逆流和顺流得传播时间,最后由测得的时间数据计算出超声波脉冲信号沿各个超声波脉冲声道的逆流和顺流传播的时间差;
⑥根据圆柱筒形管道的直径d、每个脉冲信号声道的长度Li、以及每个脉冲信号声道与圆柱筒形管道轴线之间的夹角θ,根据所测得沿各个声道的逆流和顺流传播时间差,从而求解出沿各个声道上的线平均流速。
如图3所示,图中为一条声道上流体线平均流速的测量示意图。设流体静止时,超声波传播速度为C,一条声道上线平均流速V;
超声波脉冲信号正向传播时间为:
超声波脉冲信号逆向传播时间为:
由上述式可得:
由此计算得出一条声道上线平均流速V;
本方案中一共含有22条声道,因此实际面平均流速可以表示为:
式中声道数n=22,V为实际面平均流速,Vi为各条声道线平均流速。

Claims (4)

1.一种基于超声波时差法的多声道流量测量装置,其特征是:该装置包括超声波换能器、现地单元、控制器、现场总线、防水信号电缆和计算机;待测流速的流体流动的圆柱筒形管道,在圆柱筒形管道的直径方向上设置两个不同且相平行的安装截面甲和安装截面乙,两个安装截面在圆柱形管道的轴向方向上的距离为两倍的圆柱筒形管道直径,安装截面甲上安装有超声波换能器A1和超声波换能器A2,超声波换能器A1和超声波换能器A2的安装位置位于安装截面甲水平直径的两端,安装截面乙上安装12个超声波换能器,12个超声波换能器的安装位置以安装截面乙水平直径的一端为起点均匀地分布在安装截面乙上。
2.根据权利要求1所述的一种基于超声波时差法的多声道流量测量装置,其特征是:所述的超声波换能器A1和A2分别通过防水信号电缆与1号现地单元相连接,安装截面乙上的12个超声波换能器分别通过防水信号电缆与2号现地单元相连接,1号现地单元和2号现地单元通过现场总线与控制器连接,控制器与计算机相连接。
3.根据权利要求1或权利要求2所述的一种基于超声波时差法的多声道流量测量装置,其特征是:所述的超声波换能器A1、超声波换能器A2和安装截面乙上的12个超声波换能器相同。
4.根据权利要求1或权利要求2所述的一种基于超声波时差法的多声道流量测量装置,其特征是:所述的控制器上安装有超声波换能器角度调整单元。
CN201820833231.4U 2018-05-31 2018-05-31 一种基于超声波时差法的多声道流量测量装置 Expired - Fee Related CN208296916U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201820833231.4U CN208296916U (zh) 2018-05-31 2018-05-31 一种基于超声波时差法的多声道流量测量装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201820833231.4U CN208296916U (zh) 2018-05-31 2018-05-31 一种基于超声波时差法的多声道流量测量装置

Publications (1)

Publication Number Publication Date
CN208296916U true CN208296916U (zh) 2018-12-28

Family

ID=64722370

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201820833231.4U Expired - Fee Related CN208296916U (zh) 2018-05-31 2018-05-31 一种基于超声波时差法的多声道流量测量装置

Country Status (1)

Country Link
CN (1) CN208296916U (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110617858A (zh) * 2019-09-24 2019-12-27 汇中仪表股份有限公司 一种用于测流的超声传感器布置方法
CN111896062A (zh) * 2020-07-24 2020-11-06 北京瑞德联数据科技有限公司 一种超声波流量测量、装置、设备及存储介质
CN113702662A (zh) * 2021-08-30 2021-11-26 河北大学 一种多声道同步发射流速测量装置及方法
CN117368518A (zh) * 2023-12-04 2024-01-09 湖北工业大学 一种管道内超声波飞行时间的测量系统及方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110617858A (zh) * 2019-09-24 2019-12-27 汇中仪表股份有限公司 一种用于测流的超声传感器布置方法
CN111896062A (zh) * 2020-07-24 2020-11-06 北京瑞德联数据科技有限公司 一种超声波流量测量、装置、设备及存储介质
CN113702662A (zh) * 2021-08-30 2021-11-26 河北大学 一种多声道同步发射流速测量装置及方法
CN113702662B (zh) * 2021-08-30 2024-01-12 河北大学 一种多声道同步发射流速测量装置及方法
CN117368518A (zh) * 2023-12-04 2024-01-09 湖北工业大学 一种管道内超声波飞行时间的测量系统及方法
CN117368518B (zh) * 2023-12-04 2024-02-23 湖北工业大学 一种管道内超声波飞行时间的测量系统及方法

Similar Documents

Publication Publication Date Title
CN208296916U (zh) 一种基于超声波时差法的多声道流量测量装置
CN203785713U (zh) 具有层流向湍流的过渡流动控制的超声流量计量系统
CN106768103B (zh) 一种超声波流量计自动校准时间偏差的方法
CN105157771A (zh) 一种时差式超声波流量测量方法及装置
CN105698884A (zh) 一种时差式超声波流量计改进的测量方法
CN103940495B (zh) 基于流线的小流量超声流量计误差估算方法
CN103090916A (zh) 一种超声波流量测量装置及其测量方法
CN101614569A (zh) 基于超声导波技术的管道液体流量测量方法
CN103162752A (zh) 用于超声波流量计的相位编码同步时差检测装置及方法
US20200149940A1 (en) Insertion type ultrasonic flow meter, flow measuring system and method
CN203287060U (zh) 双声道超声波流量检测系统
CN203811492U (zh) 一种封闭式管道循环冲蚀试验装置
CN104457871A (zh) 一种流量计及流体测量方法
CN104729582A (zh) 用于超声波流量检测的温度检测方法以及超声波流量计量装置
CN206291930U (zh) 一种超声波质量流量计
CN104596601A (zh) 八声道超声波流量计传感器
CN203069223U (zh) 用于超声波流量计的相位编码同步时差检测装置
CN102095889B (zh) 三通道超声时差流速测量方法
CN209014066U (zh) 一种基于tdc-gp30双通道气体超声波流量计
CN102023038B (zh) 一种管道流量的超声波测量方法
CN206146473U (zh) 一种大口径超声波流量计
CN104236647A (zh) 基于单片机解决方案的超声波流量计
CN113702662B (zh) 一种多声道同步发射流速测量装置及方法
CN114993395A (zh) 一种可拆卸式超声波流量计管道及换能器安装结构
CN204359371U (zh) 八声道超声波流量计传感器

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181228