CN208275420U - 一种基于感光干膜的微流控芯片 - Google Patents

一种基于感光干膜的微流控芯片 Download PDF

Info

Publication number
CN208275420U
CN208275420U CN201820074924.XU CN201820074924U CN208275420U CN 208275420 U CN208275420 U CN 208275420U CN 201820074924 U CN201820074924 U CN 201820074924U CN 208275420 U CN208275420 U CN 208275420U
Authority
CN
China
Prior art keywords
dry film
micro
photosensitive dry
fluidic chip
polymeric substrates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201820074924.XU
Other languages
English (en)
Inventor
李华伟
孔德键
朱佳伟
严圣勇
汤晖
高健
张凯
崔成强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201820074924.XU priority Critical patent/CN208275420U/zh
Application granted granted Critical
Publication of CN208275420U publication Critical patent/CN208275420U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micromachines (AREA)

Abstract

本申请提供了一种基于感光干膜的微流控芯片,微流控芯片包括依次接触的聚合物基板、曝光的感光干膜和玻璃盖板;所述聚合物基板和曝光的感光干膜上设置有微流道。该微流控芯片通过感光干膜将聚合物基板和玻璃盖板键合在一起,芯片加工过程无需使用掩模版、光刻机和热压键合机,且键合强度较高;微流控芯片通过感光干膜将聚合物基板和玻璃盖板键合在一起,无需热压过程,不会产生微流道的形变。实验结果表明:键合面积为30毫米×30毫米的微流控芯片键合强度达到3000~3500毫焦/平方厘米。

Description

一种基于感光干膜的微流控芯片
技术领域
本申请涉及微流控芯片技术领域,尤其涉及一种基于感光干膜的微流控芯片。
背景技术
微流控芯片是把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度的芯片上,自动完成分析全过程。由于它在生物、化学、医学等领域的巨大潜力,已经发展成为一个生物、化学、医学、流体、电子、材料、机械等学科交叉的崭新研究领域。
微流控器件通常需要键合工艺对微流道进行键合,形成封闭的微流道和相应的产品。目前,主要是聚合物基板之间的热压键合,以及聚合物基板和玻璃基板直接的键合。
以聚甲基丙烯酸甲酯PMMA的热压键合工艺举例:
将盖板和带有微流控通道的基板放置于上压板和下压板之间,将上压板和下压板夹紧,使两聚合物板的表面能够充分接触;调整温度,使盖板和基板同时达到其玻璃软化温度,保持压力和温度约一小时,使上下基板表面之间充分融合;缓慢降低温度至室温,软化的聚合物板硬化,两聚合物板之间形成粘力,完成键合。
而聚合物板和玻璃板的直接键合比较困难,目前常见的是聚二甲基硅氧烷PDMS与玻璃基板在氧等离子体的作用下的键合。其操作步骤如下:
对PDMS基板和玻璃基板进行清洁;将PDMS基板和玻璃基板放入氧等离子体刻蚀机进行表面改性;在常温下,迅速地将表面改性后的PDMS基板与玻璃基板贴合,在交界面处形成化学键,完成键合。
现有技术通常要利用热压键合来键合两片材料相同或相近的聚合物基板,热压过程需要热压仪器精确控制温度和压强,且热压过程可能使微流道产生变形。如果上下两片基板的热膨胀系数或者玻璃转化温度相差太大,热压键合可能会失败。另外,聚合物和玻璃的直接键合很难用热压法实现。
实用新型内容
有鉴于此,本申请的目的在于提供一种基于感光干膜的微流控芯片,该微流控芯片通过感光干膜键合,无需掩模版、光刻机和热压键合机,且键合强度较高。
本申请提供了一种微流控芯片,包括依次接触的聚合物基板、曝光的感光干膜和玻璃盖板;
所述聚合物基板和曝光的感光干膜上设置有微流道。
优选地,所述微流道的宽度为25~1000微米;微流道的深度为10~1000微米。
优选地,所述聚合物基板选自热塑型聚合物基板。
优选地,所述聚合物基板选自聚苯乙烯基板、聚甲基丙烯酸甲酯基板、聚碳酸酯基板或聚二甲基硅氧烷基板。
优选地,所述聚合物基板的厚度为1~3mm;
所述玻璃盖板的厚度为1~3mm。
优选地,所述微流道的形状为T形。
本申请提供了一种微流控芯片,包括依次接触的聚合物基板、曝光的感光干膜和玻璃盖板;所述聚合物基板和曝光的感光干膜上设置有微流道。该微流控芯片通过感光干膜将聚合物基板和玻璃盖板键合在一起,避免了使用掩模版、光刻机和热压键合机,且键合强度较高;微流控芯片通过感光干膜将聚合物基板和玻璃盖板键合在一起,无需热压过程,不会产生微流道的形变。实验结果表明:键合面积为30毫米×30毫米的微流控芯片键合强度达到3000~3500毫焦/平方厘米。
附图说明
图1为本申请制备微流控芯片的工艺流程图;
图2为感光干膜示意图;
图3为感光干膜撕去保护层后贴合在基板上示意图;
图4为二氧化碳激光加工T形通道示意图;
图5为盖上已经钻孔的盖板及紫外光照射下完成键合示意图;
图6为插入红色导管示意图。
具体实施方式
本申请提供了一种微流控芯片,包括依次接触的聚合物基板、曝光的感光干膜和玻璃盖板;
所述聚合物基板和曝光的感光干膜上设置有微流道。
本申请提供的微流控芯片包括聚合物基板。所述聚合物基板的厚度优选为1~3mm。在本申请中,所述聚合物基板优选选自聚苯乙烯基板、聚甲基丙烯酸甲酯基板、聚碳酸酯基板或聚二甲基硅氧烷基板,更优选选自聚苯乙烯基板。
本申请提供的微流控芯片包括与所述聚合物基板接触的曝光的感光干膜。所述感光干膜优选选自负性感光干膜。所述感光干膜的型号优选选自OrdylSY550、OrdylSY300或HitachiH-6230。
在本申请中,所述微流道的宽度优选为25~1000微米,更优选为100~300微米;微流道的深度优选为10~1000微米,更优选为100~300微米。在本申请的具体实施例中,所述微流道的宽度为100微米;所述微流道的深度为90微米或100微米。
在本申请中,所述聚合物基板和曝光的感光干膜上设置有微流道。所述微流道的横截面是抛物线形状,聚合物基板上的部分微流道的形貌与干膜上的部分微流道的形貌上下连接组成一个抛物线。所述微流道的俯视图可以是各种二维图形;优选地,所述微流道的形状优选为T形。
本申请提供的微流控芯片包括与所述曝光的感光干膜接触的玻璃盖板。在本申请中,所述玻璃盖板的厚度优选为1~3mm。
在本申请中,上述技术方案所述微流控芯片的制备方法,优选包括以下步骤:
将感光干膜贴合在聚合物基板上,采用二氧化碳激光光束烧蚀感光干膜和聚合物基板,在聚合物基板和曝光的感光干膜上得到微流道;然后在感光干膜的另一面贴合上玻璃盖板,在紫外光下曝光,利用感光干膜曝光后产生的粘附力实现基板和盖板的键合,得到微流控芯片。
与常见的微流控器件加工工艺相比,本申请提供的方法无需制作掩模版,不需要光刻机,不需要超净实验室,无需各种化学试剂进行微流道的刻蚀,安全无毒;利用感光干膜做粘合剂实现各种聚合物之间以及各种聚合物与玻璃的直接键合,无需热压过程,不会产生微流道的形变,并且操作简单,成本低廉。
本申请利用二氧化碳激光光束将感光干膜打穿,同时直接在基板上进行烧蚀,在基板上和感光干膜上形成微流道。本申请通过调整二氧化碳激光的功率和速度,来控制微流道的深度和宽度。在本申请中,所述二氧化碳激光光束的功率优选为0~80瓦,更优选为5~40瓦,最优选为10~15瓦;所述二氧化碳激光光束的扫描速度优选为0~300毫米/秒,更优选为30~200毫米/秒,最优选为40~100毫米/秒。在本申请具体实施例中,所述光束的扫描速度为50毫米/秒。
所述感光干膜上下表面各有一层保护层,将其贴合在聚合物基板上之前需要撕去帖合面的保护层,在与玻璃贴合前再撕去另一层保护膜。在本申请中,所述感光干膜的型号优选选自OrdylSY550、OrdylSY300或Hitachi H-6230。
本申请优选在紫外灯照射下进行曝光;所述曝光的辐照剂量优选为300~500毫焦/平方厘米。感光干膜在紫外线照射后产生交联反应,形成一种稳定的粘性物质附着于基板和盖板的表面,使两基板被吸附在一起,完成键合。
参见图1,图1为本申请制备微流控芯片的工艺流程图;由图1可知:将感光干膜贴合在聚合物基板上,采用二氧化碳激光进行激光烧蚀,添加盖板后,进行紫外光照射,键合完成,得到微流控芯片。
本申请提供了一种微流控芯片,包括依次接触的聚合物基板、曝光的感光干膜和玻璃盖板;所述聚合物基板和曝光的感光干膜上设置有微流道。该微流控芯片通过感光干膜将聚合物基板和玻璃盖板键合在一起,避免了使用掩模版、光刻机、超净间和各种刻蚀微流道的化学试剂,且键合强度较高;微流控芯片通过感光干膜将聚合物基板和玻璃盖板键合在一起,无需热压过程,不会产生微流道的形变。实验结果表明:键合面积为30毫米×30毫米的微流控芯片键合强度达到3000~3500毫焦/平方厘米。
为了进一步说明本申请,下面结合实施例对本申请提供的微流控芯片及其制备方法进行详细地描述,但不能将它们理解为对本申请保护范围的限定。
实施例1
参见图2~图6,图2为感光干膜示意图;图3为感光干膜撕去保护层后贴合在基板上示意图;图4为二氧化碳激光加工T形通道示意图;图5为盖上已经钻孔的盖板及紫外光照射下完成键合示意图;图6为插入红色导管示意图。图6中输入是指将输入导管连接到精密注射器上,利用注射器来控制注入液体的流速和压强,输出是指将输出管连接到样品收集装置,比如某种容器。
撕去型号为OrdylSY550的感光干膜的一个保护层,在2mm厚度的聚苯乙烯聚合物基板上贴合感光干膜;
利用二氧化碳激光光束烧蚀感光干膜和基板,光束的功率为15瓦;光束的速度为50毫米/秒,形成深度为100微米和宽度为100微米的微流道;
撕去感光干膜的另一层保护膜,盖上2mm厚度的玻璃盖板,压紧,接着在波长为254nm的紫外灯下进行全曝光,辐射剂量设定为500毫焦/平方厘米,实现基板和盖板的键合,形成封闭微流道,得到微流控芯片。
本申请实施例1制备的微流控芯片通过感光干膜将聚合物基板和玻璃盖板键合在一起,避免了使用掩模版、光刻机和热压键合机,且键合强度较高,键合强度为:30毫米×30毫米的微流控芯片键合强度为3200毫焦/平方厘米。
实施例2
撕去型号为OrdylSY300的感光干膜保护层,在2mm厚度的聚苯乙烯聚合物基板上贴合感光干膜;
利用二氧化碳激光光束烧蚀感光干膜和基板,光束的功率为10瓦;光束的速度为50毫米/秒,形成深度为90微米和宽度为100微米的微流道;
撕去感光干膜的另一层保护膜,盖上2mm厚度的玻璃盖板,压紧,接着在波长为254nm的紫外灯下进行全曝光,辐射剂量设定为300毫焦/平方厘米,实现基板和盖板的键合,形成封闭微流道,得到微流控芯片。
本申请实施例2制备的微流控芯片通过感光干膜将聚合物基板和玻璃盖板键合在一起,避免了使用掩模版、光刻机和热压键合机,且键合强度较高,键合面积为30毫米×30毫米的微流控芯片键合强度达到3000~3500毫焦/平方厘米。
由以上实施例可知,本申请提供了一种微流控芯片,包括依次接触的聚合物基板、曝光的感光干膜和玻璃盖板;所述聚合物基板和曝光的感光干膜上设置有微流道。该微流控芯片通过感光干膜将聚合物基板和玻璃盖板键合在一起,避免了使用掩模版、光刻机和热压键合机,且键合强度较高;微流控芯片通过感光干膜将聚合物基板和玻璃盖板键合在一起,无需热压过程,不会产生微流道的形变。实验结果表明:键合面积为30毫米×30毫米的微流控芯片键合强度达到3000~3500毫焦/平方厘米。
以上所述仅是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (6)

1.一种基于感光干膜的微流控芯片,其特征在于,包括依次接触的聚合物基板、曝光的感光干膜和玻璃盖板;
所述聚合物基板和曝光的感光干膜上设置有微流道。
2.根据权利要求1所述的基于感光干膜的微流控芯片,其特征在于,所述微流道的宽度为25~1000微米;微流道的深度为10~1000微米。
3.根据权利要求1所述的微流控芯片,其特征在于,所述聚合物基板选自热塑型聚合物基板。
4.根据权利要求3所述的基于感光干膜的微流控芯片,其特征在于,所述热塑型聚合物基板选自聚苯乙烯基板、聚甲基丙烯酸甲酯基板、聚碳酸酯基板或聚二甲基硅氧烷基板。
5.根据权利要求1所述的基于感光干膜的微流控芯片,其特征在于,所述聚合物基板的厚度为1~3mm;
所述玻璃盖板的厚度为1~3mm。
6.根据权利要求1所述的基于感光干膜的微流控芯片,其特征在于,所述微流道的形状为T形。
CN201820074924.XU 2018-01-16 2018-01-16 一种基于感光干膜的微流控芯片 Expired - Fee Related CN208275420U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201820074924.XU CN208275420U (zh) 2018-01-16 2018-01-16 一种基于感光干膜的微流控芯片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201820074924.XU CN208275420U (zh) 2018-01-16 2018-01-16 一种基于感光干膜的微流控芯片

Publications (1)

Publication Number Publication Date
CN208275420U true CN208275420U (zh) 2018-12-25

Family

ID=64746991

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201820074924.XU Expired - Fee Related CN208275420U (zh) 2018-01-16 2018-01-16 一种基于感光干膜的微流控芯片

Country Status (1)

Country Link
CN (1) CN208275420U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107971052A (zh) * 2018-01-16 2018-05-01 广东工业大学 一种基于感光干膜的微流控芯片及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107971052A (zh) * 2018-01-16 2018-05-01 广东工业大学 一种基于感光干膜的微流控芯片及其制备方法

Similar Documents

Publication Publication Date Title
CN106391151B (zh) 适合于批量化生产的多层微流体芯片制作方法
CN107971052A (zh) 一种基于感光干膜的微流控芯片及其制备方法
McCarley et al. Resist-free patterning of surface architectures in polymer-based microanalytical devices
CN107305214B (zh) 一种硬质微流体芯片的制作方法
WO2001026812A1 (en) Microfluidic structures and methods of fabrication
JP2008008880A (ja) プラスチック製マイクロチップ、及びその製造方法、並びにそれを利用したバイオチップ又はマイクロ分析チップ
CN103055981A (zh) 一种聚二甲基硅氧烷微流控芯片及其制备方法
CN102060262B (zh) 低压键合制作微纳米流控系统的方法
KR20120120241A (ko) 경질 실리콘 수지의 접착 방법, 미세 구조를 갖는 기판의 접합 방법 및 해당 접합 방법을 이용한 마이크로 유체 디바이스의 제조 방법
CN104907113B (zh) 一种远红外线辅助热压制备聚合物微流控芯片的方法
CN102721820A (zh) 一种制备具有集成化气动微阀的组装式高聚物微流控芯片的方法
CN208275420U (zh) 一种基于感光干膜的微流控芯片
Cai et al. Rapid prototyping of cyclic olefin copolymer based microfluidic system with CO 2 laser ablation
Liang et al. Fabrication of a microfluidic chip based on the pure polypropylene material
CN109317228A (zh) 一种基于激光内雕微加工的微流控芯片制备方法
JP7053587B2 (ja) インプリント基板
JP2008175795A (ja) プラスチック製マイクロチップ、及びその製造方法、並びにそれを利用したバイオチップ又はマイクロ分析チップ
CN106475161A (zh) 一种微流控芯片的简易快捷键合方法
CN106890684A (zh) 玻璃基芯片及其制作方法
JP5570616B2 (ja) マイクロチップの製造方法
CN102510278B (zh) 一种以声表面波为能量源的纸基微流开关
US10124332B2 (en) Reversible bonding of microfluidic channels using dry adhesives
JP2005199394A (ja) Pdms基板と他の合成樹脂基板との接着方法及びマイクロチップの製造方法
Salvo et al. Adhesive bonding by SU-8 transfer for assembling microfluidic devices
JP2005111567A (ja) 接合基板とその接合方法

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181225

Termination date: 20200116