CN208208152U - 一种集成式双光路激光电离效应模拟系统 - Google Patents

一种集成式双光路激光电离效应模拟系统 Download PDF

Info

Publication number
CN208208152U
CN208208152U CN201721525027.8U CN201721525027U CN208208152U CN 208208152 U CN208208152 U CN 208208152U CN 201721525027 U CN201721525027 U CN 201721525027U CN 208208152 U CN208208152 U CN 208208152U
Authority
CN
China
Prior art keywords
laser
prism
light
optical path
simulation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201721525027.8U
Other languages
English (en)
Inventor
李沫
孙鹏
黄锋
王小凤
汤戈
代刚
张健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Electronic Engineering of CAEP
Original Assignee
Institute of Electronic Engineering of CAEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Electronic Engineering of CAEP filed Critical Institute of Electronic Engineering of CAEP
Priority to CN201721525027.8U priority Critical patent/CN208208152U/zh
Application granted granted Critical
Publication of CN208208152U publication Critical patent/CN208208152U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lasers (AREA)

Abstract

本实用新型公开了一种集成式双光路激光电离效应模拟系统,该系统主要包括双波长脉冲激光器、双光路衰减模块、显微观察模块、测试与存储模块四个部分,该系统可实现532nm和1064nm双波长同时输出,既能自由灵活地切换两种波长的激光,又能利用二者的合束光对半导体器件的电离效应进行研究和验证,特别是针对伽马射线等辐射源作用于半导体器件剂量率效应的模拟,相比单波长模拟系统调节更加方便、受激光器波动影响更小、适用范围更加广泛。

Description

一种集成式双光路激光电离效应模拟系统
技术领域
本实用新型属于半导体器件辐射效应研究领域,特别是一种集成式双光路激光电离效应模拟系统。
背景技术
现在很多社会应用场景中,都存在着各种各样的辐射因素。当辐射因素与半导体器件之间相互作用时,会引发电离效应、位移效应等物理过程,严重影响器件乃至整个系统的工作性能,甚至可能使之永久失效。因此对辐射效应影响的研究以及对相应抗辐射加固技术是必要的研究课题。
早期,研究人员主要依靠电子直线加速器、各种放射源等大型地面装置开展辐射效应研究。但这些大型地面辐射模拟装置存在如辐射测量范围有限、参数调节非常困难、改变辐射种类和能量需要的时间长、对被测器件有损伤、难于精确提供器件在辐射下的精确时间和空间信息、需要严格的辐射屏蔽和保护措施等局限性,难以满足科研人员在设计初期,在实验室中灵活、快捷、安全地对半导体器件辐射效应和工作性能进行研究和验证的需求。
由于激光可以在半导体器件内产生同某些辐射效应相近的电学特征,因此,激光模拟辐射电离效应方法应运而生,并且得到了国外科研界的推广和认可,在半导体器件辐射效应敏感性测试、抗辐射加固器件的批量筛选以及防护措施验证等方面中证实了其独特优势,可以在很大程度上弥补地面装置模拟方法的不足,具有非常广阔的应用前景。
目前国内现有的激光模拟系统大多为单粒子效应激光模拟系统,且多为单波长试验系统,波长切换成本昂贵,不能满足辐射剂量率效应激光模拟要求。
实用新型内容
针对目前国内尚无针对剂量率效应激光模拟系统的现状,以及其它地面模拟装置的固有限制,本实用新型提供了一种集成式双光路激光电离效应模拟系统,该系统可同时实现532nm和1064nm双波长输出,可灵活快捷地在实验室条件下对半导体器件辐射剂量率效应进行研究和验证,对光路设计和系统结构进行了一定优化,使整个模拟系统更加紧凑,并兼具更优的集成性。
本实用新型的技术方案如下:
一种集成式双光路激光电离效应模拟系统,其特征在于:包括调整底座、光源、双光路衰减模块、显微观察模块、测试与存储模块;其中:
所述调整底座,用于稳定支撑整个模拟系统;
所述双光路衰减模块,安装于调整底座上部,用于对双通道脉冲激光的能量进行衰减;
所述光源,安装于双光路衰减模块上部,用于产生波长为532nm和1064nm的脉冲激光,并通过光路转折器使两路激光沿水平方向进入到双光路衰减模块;
所述显微观察模块,用于对反射出的激光照射到测试样品上形成的光斑进行观察;
所述测试与存储模块,用于采集并记录半导体器件测试样品辐射电离效应的响应电信号。
所述光源包括双波长脉冲激光器和光路转折器,所述双波长脉冲激光器和光路转折器安装于一个遮光罩中。所述双波长脉冲激光器用于产生波长分别为532nm和1064nm的两路脉冲激光,所述光路转折器用于进行光路折叠,两路脉冲激光通过调节光路转折器使其进入双光路衰减模块。
所述光路转折器是由两个位置对称的反射镜所组成,两个反射镜设置于同一纵向方向,位于上部的反射镜用于将双波长脉冲激光器的激光反射到下部的反射镜,下部的反射镜再将激光水平反射至双光路衰减模块。
所述双光路衰减模块包括安装于另一个遮光罩内的直角棱镜、衰减镜片模组、反射镜及合束棱镜。
所述脉冲激光器产生的双路脉冲激光在空间位置上依次经过光路转折器、直角棱镜、衰减镜片模组、反射镜及合束棱镜。
所述双光路衰减模块整体设置于光源下方,具体结构可以是:沿两路激光进入方向依次包括有直角棱镜、光路一、光路二和反射镜二、合束棱镜。所述直角棱镜的两个直角面分别镀膜,一个直角面镀532nm高反射率膜,另一个直角面镀1064nm高反射率膜。经过直角棱镜反射后,1064nm的激光进入光路一,532nm的激光进入光路二,两路激光最后经合束棱镜合束后反射出。所述光路一、光路二分别对称位于沿直角棱镜的两个反射角度方向上,光路一和光路二的结构相同,两个光路均包括位于直角棱镜的反射方向上的反射镜一、位于反射镜一反射方向的第一级1/2λ波片、位于第一级1/2λ波片透射光方向的第一级偏振分光棱镜、位于第一级偏振分光棱镜的透射光方向的第二级1/2λ波片、位于第二级1/2λ波片透射光方向上的第二级偏振分光棱镜、位于第二级偏振分光棱镜反射光方向上的光束收集器一、位于第一级偏振分光棱镜的反射光方向的分光棱镜一、位于分光棱镜一透射光方向的激光能量计探头一、位于分光棱镜一反射光方向的光束收集器二;所述反射镜二位于光路一的第二级偏振分光棱镜透射光方向上,合束棱镜位于光路二的第二级偏振分光棱镜透射光方向上;一路激光经过反射镜二并反射到合束棱镜,另一路激光经过光路二直接照射到合束棱镜,两路激光在合束棱镜合成后射出到后续光路。激光能量计探头一用于采集第一级衰减后的激光能量。光束收集器一、光束收集器二的作用是避免激光泄露,使整个光路更加安全可靠。光路一中的1064nm激光经过反射镜二到达合束棱镜,在合束棱镜处与光路二中的532nm激光进行合束,两波长激光共用后续的光路。
优选对遮光罩的要求,都是其内部表面粗糙,不发生镜面反射,且易拆卸。
所述显微观察模块包括CCD摄像头、指引光源、激光能量计探头二、分光棱镜二、调焦机构、物镜转盘、物镜、支架;支架包括底板、竖直支撑杆和顶部的水平杆,所述CCD摄像头、指引光源、激光能量计探头二、分光棱镜二安装于支架顶部的水平杆上,调焦机构安装于水平杆末端,物镜转盘安装于调焦机构的下面,物镜安装于物镜转盘的下面。在空间位置上,从双光路衰减模块出射的激光到达分光棱镜二,经分光棱镜二分成两束,一束为水平方向,另一束为竖直方向,水平方向的脉冲激光经过分光棱镜二分别到达CCD摄像头和激光能量计探头二,分光棱镜二对应的位置上设置指引光源,竖直方向的脉冲激光依次经过调焦机构、物镜转盘、物镜后到达半导体器件测试样品表面。
所述指引光源在空间位置上依次经过分光棱镜、调焦机构、物镜转盘、物镜后到达半导体器件测试样品表面;指引光源在分光镜上与脉冲激光合束后,到达半导体器件测试样品表面上时,指引光源与脉冲激光的光斑中心重合。
优选的,指引光源为波长为532nm的连续激光,功率不大于1mW。
所述测试与控制系统包括精密位移平台和示波器,半导体器件测试样品放置于精密位移平台上,通过控制精密位移平台来精确控制光斑作用于半导体器件测试样品上的位置。
优选的,精密位移平台为六轴位移平台。
本实用新型的有益效果如下:
相比于传统激光模拟系统,本实用新型提出的模拟系统可同时实现双波长输出,并集成了双光路衰减模块来对双通道的激光进行衰减。不仅实现了532nm和1064nm双通道激光模拟辐射电离效应的系统设计,在系统集成以及光路设计方面亦有所改进。此外,该模拟系统作为大型地面辐射装置的有力补充,可灵活快捷地在实验室条件下对半导体器件辐射剂量率效应进行研究和验证,对于有效降低试验成本,提高试验效率,缩短抗辐射加固设计的设计周期具有重要意义。
附图说明
图1为本实用新型的结构示意图。
图2为本实用新型的调整底座的俯视结构示意图。
图3为本实用新型的光源的俯视结构示意图。
图4为本实用新型的双光路衰减模块的俯视结构示意图。
其中,附图标记为:Ⅰ为调整底座,Ⅱ为光源,Ⅲ为双光路衰减模块,Ⅳ为显微观察模块,Ⅴ为测试与存储模块,1为双波长脉冲激光器,2为光路转折器,3为直角棱镜,4为反射镜一,5为第一级1/2λ波片,6为第一级偏振分光棱镜,7为第二级1/2λ波片,8为第二级偏振分光棱镜,9为光束收集器一,10为分光棱镜一,11为激光能量计探头一,12为光束收集器二,13为反射镜二,14为合束棱镜,15为CCD摄像头,16为指引光源,17为分光棱镜二,18为激光能量计探头二,19为物镜转盘,20为半导体器件测试样品,21为六自由度位移平台,22为示波器,23为数据采集与控制卡,24为计算机,25为调平螺丝,26为导轨。
具体实施方式
参见图1,一种集成式双光路激光电离效应模拟系统,包括调整底座Ⅰ,光源Ⅱ,双光路衰减模块Ⅲ,显微观察模块Ⅳ,测试与存储模块Ⅴ。
参见图2,所述调整底座Ⅰ,用于稳定支撑整个模拟系统,包含调平螺丝25和纵向安装于调整底座Ⅰ上的导轨26,调平螺丝25用于调节调整底座Ⅰ的水平位置,导轨26用于调整系统的高度。
参见图3,所述光源Ⅱ,安装于调整底座Ⅰ和双光路衰减模块Ⅲ的上部,包含双波长脉冲激光器1和光路转折器2;所述双波长脉冲激光器1用于产生波长为532nm和1064nm的激光,因532nm的激光是由1064nm倍频得到的,因此两个波长激光分别从两个通道水平出射,可通过双波长脉冲激光器1独立控制每个通道的开关;所述光路转折器2用于进行光路折叠,两路激光通过调节光路转折器2使其进入双光路衰减模块Ⅲ,光路转折器2保证进入到双光路衰减模块Ⅲ的两路激光保持水平。所述光路转折器2是由两个位置对称的反射镜所组成,两个反射镜设置于同一纵向方向,位于上部的反射镜用于将双波长脉冲激光器1的激光反射到下部的反射镜,下部的反射镜再将激光水平反射至双光路衰减模块Ⅲ。
参见图4,所述双光路衰减模块Ⅲ,整体设置于光源Ⅱ下方,沿两路激光进入方向依次包括有直角棱镜3、光路一、光路二和反射镜二13、合束棱镜14。所述直角棱镜3的两个直角面分别镀膜,一个直角面镀532nm高反射率膜,另一个直角面镀1064nm高反射率膜。经过直角棱镜3反射后,1064nm的激光进入光路一,532nm的激光进入光路二,两路激光最后经合束棱镜14合束后反射出。所述光路一、光路二分别对称位于沿直角棱镜3的两个反射角度方向上,光路一和光路二的结构相同,两个光路均包括位于直角棱镜3的反射方向上的反射镜一4、位于反射镜一4反射方向的第一级1/2λ波片5、位于第一级1/2λ波片5透射光方向的第一级偏振分光棱镜6、位于第一级偏振分光棱镜6的透射光方向的第二级1/2λ波片7、位于第二级1/2λ波片7透射光方向上的第二级偏振分光棱镜8、位于第二级偏振分光棱镜8反射光方向上的光束收集器一9、位于第一级偏振分光棱镜6的反射光方向的分光棱镜一10、位于分光棱镜一10透射光方向的激光能量计探头一11、位于分光棱镜一10反射光方向的光束收集器二12;所述反射镜二13位于光路一的第二级偏振分光棱镜8透射光方向上,合束棱镜14位于光路二的第二级偏振分光棱镜8透射光方向上;一路激光经过反射镜二13并反射到合束棱镜14,另一路激光经过光路二直接照射到合束棱镜14,两路激光在合束棱镜14合成后射出到后续光路。激光能量计探头一11用于采集第一级衰减后的激光能量。光束收集器一9、光束收集器二12的作用是避免激光泄露,使整个光路更加安全可靠。光路一中的1064nm激光经过反射镜二13到达合束棱镜14,在合束棱镜14处与光路二中的532nm激光进行合束,两波长激光共用后续的光路。
参见图1,所述显微观察模块Ⅳ,用于对合束后反射出的激光照射到半导体器件测试样品20上形成的光斑进行观察;所述显微观察模块Ⅳ包括CCD摄像头15、指引光源16、激光能量计探头二18、分光棱镜二17、调焦机构、物镜转盘19、物镜、支架;支架包括底板、竖直支撑杆和顶部的水平杆,所述CCD摄像头15、指引光源16、激光能量计探头二18、分光棱镜二17、安装于支架顶部的水平杆上,调焦机构安装于水平杆末端,物镜转盘19安装于调焦机构的下面,物镜安装于物镜转盘19的下面;沿合束棱镜14出来的激光方向上,所述显微观察模块Ⅳ具体设置有分光棱镜二17,分光棱镜二17上端设置有显微镜筒与指引光源16、CCD摄像头15,分光棱镜二17的透射光方向上设置有激光能量计探头二18,分光棱镜二17的反射光方向设置有物镜与物镜转盘19;激光经过分光棱镜二17后,透射光到达激光能量计探头二18,反射光经过物镜以及物镜转盘19对光斑进行扩束或者聚焦,光斑大小可根据物镜倍数以及扩束镜倍数不同进行调节。
参见图1,所述测试与存储模块Ⅴ,用于放置半导体器件测试样品20,并设置有用于进行对焦和光斑大小调节的装置,同时可采集并测量激光照射到半导体器件测试样品20上后的电学响应信号。所述测试与存储模块Ⅴ包括:六自由度位移平台21,用于测试半导体器件测试样品20信号的示波器22,与六自由度位移平台21、示波器22信号连接的数据采集与控制卡23,用于控制系统与数据采集与控制卡23连接的计算机24,半导体器件测试样品20放置于六自由度位移平台21上。所述测试与存储模块Ⅴ通过调整六自由度位移平台21可进行对焦和光斑大小调节,激光照射到半导体器件测试样品20上后的电学响应信号由示波器22触发采集,数据采集与控制卡23用于采集CCD摄像头15的图像数据以及示波器22的波形数据,并控制六自由度位移平台21的位置,由计算机24存储和显示。

Claims (8)

1.一种集成式双光路激光电离效应模拟系统,其特征在于:包括用于稳定支撑整个模拟系统的调整底座(Ⅰ),用于产生双通道波长激光的光源(Ⅱ),用于对两个通道的脉冲激光能量进行衰减的双光路衰减模块(Ⅲ),用于对半导体器件测试样品(20)进行成像的显微观察模块(Ⅳ),用于采集并记录半导体器件测试样品(20)辐射电离效应的响应电信号并控制光斑作用于半导体器件测试样品(20)上位置的测试与存储模块(Ⅴ);所述光源(Ⅱ)可同时产生波长为532nm和1064nm的脉冲激光,两个不同波长的脉冲激光分别从两通道水平出射,且每个通道都有独立控制的开关。
2.根据权利要求1所述的一种集成式双光路激光电离效应模拟系统,其特征在于,所述光源(Ⅱ)包括用于产生波长分别为532nm和1064nm的两路脉冲激光的双波长脉冲激光器(1)和用于进行光路折叠的光路转折器(2),所述双波长脉冲激光器(1)产生的两路脉冲激光通过光路转折器(2)进入双光路衰减模块(Ⅲ)。
3.根据权利要求1或2所述的一种集成式双光路激光电离效应模拟系统,其特征在于,所述双光路衰减模块(Ⅲ)具体结构是:沿两路激光进入方向依次包括有安装于另一个遮光罩内的直角棱镜(3)、光路一、光路二和反射镜二(13)、合束棱镜(14);两路脉冲激光经过直角棱镜(3)反射后,1064nm的激光进入光路一后经反射镜二(13)射出,532nm的激光进入光路二再射出,射出的两路激光最后经合束棱镜(14)合束后反射出。
4.根据权利要求3所述的一种集成式双光路激光电离效应模拟系统,其特征在于,所述光路一、光路二分别对称位于沿直角棱镜(3)的两个反射角度方向上,光路一和光路二的结构相同,每个光路均包括位于直角棱镜(3)的反射方向上的反射镜一、位于反射镜一反射方向的第一级1/2λ波片、位于第一级1/2λ波片透射光方向的第一级偏振分光棱镜(6)、位于第一级偏振分光棱镜(6)的透射光方向的第二级1/2λ波片(7)、位于第二级1/2λ波片(7)透射光方向上的第二级偏振分光棱镜(8)、位于第二级偏振分光棱镜(8)反射光方向上的光束收集器一(9)、位于第一级偏振分光棱镜(6)的反射光方向的分光棱镜一(10)、位于分光棱镜一(10)透射光方向的激光能量计探头一(11)、位于分光棱镜一(10)反射光方向的光束收集器二(12);所述反射镜二(13)位于光路一的第二级偏振分光棱镜(8)透射光方向上,合束棱镜(14)位于光路二的第二级偏振分光棱镜(8)透射光方向上;一路激光经过反射镜二(13)并反射到合束棱镜(14),另一路激光经过光路二直接照射到合束棱镜(14),两路激光在合束棱镜(14)合成后射出到后续光路。
5.根据权利要求1所述的一种集成式双光路激光电离效应模拟系统,其特征在于,所述显微观察模块(Ⅳ)包括CCD摄像头(15)、指引光源(16)、激光能量计探头二(18)、分光棱镜二(17)、调焦机构、物镜转盘(19)、物镜;沿合束棱镜(14)出来的激光方向上,所述显微观察模块(Ⅳ)具体设置为:分光棱镜二(17)上端设置有显微镜筒与指引光源(16)、CCD摄像头(15),分光棱镜二(17)的透射光方向上设置有激光能量计探头二(18),分光棱镜二(17)的反射光方向设置有物镜与物镜转盘(19);激光经过分光棱镜二(17)后,透射光到达激光能量计探头二(18),反射光经过物镜以及物镜转盘(19)对光斑进行扩束或者聚焦。
6.根据权利要求5所述的一种集成式双光路激光电离效应模拟系统,其特征在于,所述指引光源(16)在空间位置上依次经过分光棱镜二(17)、调焦机构、物镜转盘(19)、物镜后到达半导体器件测试样品(20)表面;指引光源(16)在分光棱镜二(17)上与脉冲激光合束后,到达半导体器件测试样品(20)表面上时,指引光源(16)与脉冲激光的光斑中心重合。
7.根据权利要求1所述的一种集成式双光路激光电离效应模拟系统,其特征在于,测试与存储模块(Ⅴ)包括用于放置半导体器件测试样品(20)的精密位移平台,用于测试半导体器件测试样品(20)信号的示波器(22),与精密位移平台、示波器(22)信号连接的数据采集与控制卡(23),用于控制系统与数据采集与控制卡(23)连接的计算机(24)。
8.根据权利要求7所述的一种集成式双光路激光电离效应模拟系统,其特征在于:所述精密位移平台采用可调节的六自由度位移平台(21)。
CN201721525027.8U 2017-11-15 2017-11-15 一种集成式双光路激光电离效应模拟系统 Expired - Fee Related CN208208152U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201721525027.8U CN208208152U (zh) 2017-11-15 2017-11-15 一种集成式双光路激光电离效应模拟系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201721525027.8U CN208208152U (zh) 2017-11-15 2017-11-15 一种集成式双光路激光电离效应模拟系统

Publications (1)

Publication Number Publication Date
CN208208152U true CN208208152U (zh) 2018-12-07

Family

ID=64489742

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201721525027.8U Expired - Fee Related CN208208152U (zh) 2017-11-15 2017-11-15 一种集成式双光路激光电离效应模拟系统

Country Status (1)

Country Link
CN (1) CN208208152U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107886820A (zh) * 2017-11-15 2018-04-06 中国工程物理研究院电子工程研究所 一种集成式双光路激光电离效应模拟系统
CN113030688A (zh) * 2021-03-09 2021-06-25 中国科学院国家空间科学中心 半导体器件瞬态剂量率效应激光模拟装置及评估系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107886820A (zh) * 2017-11-15 2018-04-06 中国工程物理研究院电子工程研究所 一种集成式双光路激光电离效应模拟系统
CN107886820B (zh) * 2017-11-15 2023-11-24 中国工程物理研究院电子工程研究所 一种集成式双光路激光电离效应模拟系统
CN113030688A (zh) * 2021-03-09 2021-06-25 中国科学院国家空间科学中心 半导体器件瞬态剂量率效应激光模拟装置及评估系统
CN113030688B (zh) * 2021-03-09 2021-10-08 中国科学院国家空间科学中心 半导体器件瞬态剂量率效应激光模拟装置及评估系统

Similar Documents

Publication Publication Date Title
CN105807305B (zh) 一种双波长脉冲激光辐射剂量率效应模拟系统
CN102109571B (zh) 一种半导体激光器特性测试系统
CN102175594B (zh) 三波长脉冲激光共同作用下损伤阈值测量装置和装调方法
CN105158269B (zh) 大口径平面光学元件疵病三维快速暗场检测装置和方法
CN208208152U (zh) 一种集成式双光路激光电离效应模拟系统
CN109186945A (zh) 大口径光栅衍射效率光谱及其均匀性的测量装置和方法
Ren et al. A review of available methods for the alignment of mirror facets of solar concentrator in solar thermal power system
CN102564343B (zh) 太阳能槽式曲面反光镜面形误差检测装置
CN105259565A (zh) 一种半导体器件辐射剂量率效应激光模拟系统
CN105181298A (zh) 多次反射式激光共焦长焦距测量方法与装置
CN105444878A (zh) 一种高精度氧碘化学激光远场光束质量测量装置和方法
CN104316506A (zh) 拉曼探头和可自动对焦的拉曼信号探测系统以及方法
CN102023083A (zh) 太阳能抛物面聚光焦斑测试装置
CN103454070A (zh) 一种基于ccd探测的x射线组合折射透镜聚焦性能测试方法
Burrell et al. Improved charge coupled device detectors for the edge charge exchange spectroscopy system on the DIII-D tokamak
CN106771952B (zh) 一种宽禁带半导体器件辐射效应激光模拟系统
CN207557412U (zh) 一种集成式激光电离效应模拟系统
CN107886820A (zh) 一种集成式双光路激光电离效应模拟系统
CN107152908B (zh) 塔式太阳能热发电定日镜整体型面拼接在线检测装置及检测方法
CN108132026A (zh) 半导体中红外可见光双波长透射式干涉测试装置
CN103454069A (zh) X射线组合折射透镜聚焦性能测试装置
CN208208151U (zh) 一种优化集成式双光路激光电离效应模拟系统
CN102841097B (zh) 基于高精度复位技术的损伤阈值测量方法及测量装置
CN103792070A (zh) 半导体激光阵列光学特性检测装置
CN107907813A (zh) 一种集成式激光电离效应模拟系统

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181207

Termination date: 20191115

CF01 Termination of patent right due to non-payment of annual fee