CN208199440U - 储油罐泄漏的监测系统 - Google Patents

储油罐泄漏的监测系统 Download PDF

Info

Publication number
CN208199440U
CN208199440U CN201820359960.0U CN201820359960U CN208199440U CN 208199440 U CN208199440 U CN 208199440U CN 201820359960 U CN201820359960 U CN 201820359960U CN 208199440 U CN208199440 U CN 208199440U
Authority
CN
China
Prior art keywords
optical cable
cable
heating
storage tank
tank bottom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201820359960.0U
Other languages
English (en)
Inventor
欧元超
张平松
刘大卫
刘畅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University of Science and Technology
Original Assignee
Anhui University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University of Science and Technology filed Critical Anhui University of Science and Technology
Priority to CN201820359960.0U priority Critical patent/CN208199440U/zh
Application granted granted Critical
Publication of CN208199440U publication Critical patent/CN208199440U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

本实用新型提供一种储油罐泄漏的监测系统。该系统包括:高密度电法子系统、分布式光纤测温子系统、分布式光纤应变感测子系统和数据处理设备;电法子系统包括:电缆线和并行电法仪;并行电法仪分别与电缆线的电极和数据处理设备连接;电缆线布设在储油罐罐底的外部;光纤测温子系统包括加热光缆、加热电源和DTS解调设备;加热光缆的一端与加热电源连接,另一端与DTS解调设备连接;加热光缆布设在储油罐罐底的外部以及储油罐的内壁上;光纤应变感测子系统包括:应变感测光缆和光纤解调设备;应变感测光缆与光纤解调设备连接;DTS解调设备和光纤解调设备还与数据处理设备连接。本实用新型的监测系统对于罐底泄漏监测的实时性及准确性较高。

Description

储油罐泄漏的监测系统
技术领域
本实用新型涉及罐体泄漏监测技术领域,尤其涉及一种储油罐泄漏的监测系统。
背景技术
目前,为了保障我国能源与化工原料的需求,正在积极的建立大型储罐区,建设国家战略石油储备体系。由于储油罐长年在自然环境和液位变化条件下运行,其不可避免的会出现老化、破裂、腐蚀等问题,尤其埋在地下隐蔽性强的储油罐底板是最容易产生隐患的部位,但通常无法直接观察到储油罐罐底的安全状态,这就导致即使罐底出现泄漏也很难及时发现、更无法准确判断泄漏点的位置。因此会产生直接经济损失、资源浪费,以及造成土壤环境和地下水系统的重大污染,甚至引发火灾和爆炸事故。故进行实时或定期监测、及时发现泄漏位置以及消除安全隐患,对储油罐的安全运行有着极为重要的现实意义。
现有技术中,可以通过布置于储油罐罐底或者双层罐壁之间的传感器监测罐底是否发生泄漏,或者,通过金属无损泄漏隐患监测、罐外泄漏油气监测及罐内储油量损失泄漏监测等方法进行监测。
上述方式只能进行定性的判断有无泄漏,因此无法满足对于罐底泄漏及时准确监测的需求。
实用新型内容
本实用新型提供一种储油罐泄漏的监测系统,以实现对罐底泄漏及时准确的监测。
第一方面,本实用新型提供一种储油罐泄漏的监测系统,包括:
高密度电法子系统、分布式光纤测温子系统、分布式光纤应变感测子系统和数据处理设备;
其中,所述高密度电法子系统包括:电缆线和并行电法仪;所述并行电法仪分别与所述电缆线的电极和所述数据处理设备连接;所述电缆线布设在所述储油罐罐底的外部;
所述分布式光纤测温子系统包括:加热光缆、加热电源和DTS解调设备;所述加热光缆的一端与所述加热电源连接,所述加热光缆的另一端与所述DTS解调设备连接;所述DTS解调设备还与所述数据处理设备连接;所述加热光缆布设在所述储油罐罐底的外部以及所述储油罐的内壁上;
所述分布式光纤应变感测子系统包括:应变感测光缆和光纤解调设备;所述应变感测光缆与所述光纤解调设备连接;所述光纤解调设备还与所述数据处理设备连接。
可选的,所述电缆线的电极包括:供电正极、供电负极、公共电极和至少一个采样电极。
可选的,所述电缆线布设在所述储油罐罐底的外部的砂垫层内;所述砂垫层位于与所述储油罐罐底相邻的沥青砂绝缘层下部。
可选的,所述加热光缆的另一端通过信号传输光纤与所述DTS解调设备连接;所述应变感测光缆通过信号传输光纤与所述光纤解调设备连接。
可选的,所述加热光缆从内到外依次包括:温度感测光纤、松套碳纤维丝和高分子护套。
可选的,所述温度感测光纤和所述信号传输光纤通过热缩套管熔接;所述温度感测光纤和所述信号传输光纤在熔接处套设有续接保护管。
可选的,所述加热光缆通过环氧树脂布设在所述储油罐的内壁上,或者,通过夹具布设在所述储油罐的内壁上;所述夹具为不锈钢材质制成的。
可选的,所述加热光缆呈迂回型或螺旋型布设在所述储油罐罐底的外部的沥青砂绝缘层内。
可选的,所述应变感测光缆通过环氧树脂呈迂回型或螺旋型布设在所述储油罐罐底的外壁上。
可选的,还包括:
设置在所述储油罐的外部,位于所述储油罐的顶端的储物盒,用于放置所述加热光缆。
本实用新型提供的储油罐泄漏的监测系统,高密度电法子系统、分布式光纤测温子系统、分布式光纤应变感测子系统和数据处理设备;其中,所述高密度电法子系统包括:电缆线和并行电法仪;所述并行电法仪分别与所述电缆线的电极和所述数据处理设备连接;所述电缆线布设在所述储油罐罐底的外部;所述分布式光纤测温子系统包括:加热光缆、加热电源和DTS解调设备;所述加热光缆的一端与所述加热电源连接,所述加热光缆的另一端与所述DTS解调设备连接;所述DTS解调设备还与所述数据处理设备连接;所述加热光缆布设在所述储油罐罐底的外部以及所述储油罐的内壁上;所述分布式光纤应变感测子系统包括:应变感测光缆和光纤解调设备;所述应变感测光缆与所述光纤解调设备连接;所述光纤解调设备还与所述数据处理设备连接,通过高密度电法子系统、分布式光纤测温子系统、分布式光纤应变感测子系统,分别从电场、温度场、应力场的角度对整个储油罐进行了多角度、多参量的监测,监测结果较为准确。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1为本实用新型实施例提供的储油罐泄漏的监测系统一实施例的结构图;
图2为本实用新型实施例中高密度电法子系统的电缆线布设示意图;
图3为本实用新型实施例中“迂回”型布设俯视图;
图4为本实用新型实施例中“螺旋”型布设俯视图;
图5为本实用新型实施例中夹具结构图;
图6为本实用新型实施例中保护套管结构图;
图7为本实用新型实施例中加热光缆在储油罐内壁布设示意图;
图8为本实用新型实施例中储藏盒结构图;
图9为本发明实施例提供的储油罐泄漏的监测方法一实施例的流程图。
通过上述附图,已示出本公开明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本公开构思的范围,而是通过参考特定实施例为本领域技术人员说明本公开的概念。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
需要说明的是,在本实用新型实施例中,“上”、“下”、“侧面”、“顶部”、“底部”用于表示部件的相对位置,便于结合附图描述实施例,并不是将描述部件水平或者垂直定向。
相关技术中,对于罐底是否泄漏有如下几种监测方法:
1、预设传感器监测方法一般为将温度传感器、气体浓度检测传感器或压力传感器等布置于储油罐罐底或者双层罐壁之间用于监测罐底是否发生泄漏,但相关的传感器结构较为精密、存活年限不长,一旦出现问题就很难再次修复使用且后期维护成本较高;同时,传感器布置数量有限、多为点式分布且现场安装较为困难,无法对罐底进行全分布式的系统检测,泄漏点的精准定位也有待提升,更无法对罐底布置的监测系统所采集到的数据进行处理,例如实现二维或三维可视化精细成图。
2、金属无损泄漏隐患监测方法包括声发射储油罐底板检测、超声储油罐壁检测、漏磁储油罐底板检测、导波储油罐边缘底板检测及机器人检测等。其中,超声、漏磁、导波等检测需要进行停产、倒空、清洗等工序后对储油罐检测,这些方法费时费力、造成的经济损失巨大且不能够实时进行检测,不适用于现场的连续在线监测。机器人监测方法对设备的安全性、可控性、密封性等要求较高,并且监测成本高,可靠性较低,目前仍然处于探索阶段。
3、罐外泄漏油气监测方法主要是通过监测罐外环境油气浓度是否超限来检测泄漏。目前有在罐底下方进行钻孔,定期抽取钻孔中的气体进行含量检测;也有在罐底事先布设油气检测传感器等传感设备,对下部土壤内的油气含量进行检测。但这些方法存在检测盲区,尤其是气体传感器敏感区域有限,较难及时发现初期及隐蔽区域的泄漏且定位准确度低。
4、罐内储油量损失泄漏检测方法一般是在储油罐内安装液位监测系统或是温度、电阻传感器等系统元件。其中液位监测系统结构复杂、安装困难、容易受到外界因素影响,在精确度上面很难得到保证,这就使得该方法很难对罐底泄漏与否提供可靠信息;温度、电阻传感器等多为点式布设,其对液位精确定位的能力有限,无法敏感察觉出液位的变化量,所以就无法精确计算出储油罐泄漏的液体体积。
上述方法已无法满足现今对于罐底泄漏及时准确监测的需求,全方位、多角度、多场多参量的精准泄漏点定位及精确定量的获取泄漏体的三维空间扩散情况已是必然趋势。近年来分布式光纤感测技术发展迅速,其分布式、长距离、高精度、防腐蚀、抗干扰、结构简单和易于布设等突出优点,使这类技术在实际工程监测中不断得到推广和应用;另外,电阻率成像技术具有成本低、寿命长、信息丰富、解释方便等优点,并且能进行二维或三维可视化成图,这一技术已广泛应用于环境、水文、地质工程等领域。本实用新型实施例中,基于先进的拉曼散射光时域反射测量技术(ROTDR)的分布式光纤温度测量系统(DTS)通过温度场的差异可对罐底泄漏点及罐内液位进行监测;借助准分布式光纤布拉格光栅(FBG)、全分布式布里渊光时域反射(BOTDR)和布里渊光时域分析 (BOTDA)等监测技术,可以自动获取沿整根光纤长度方向上应变、温度等信息的分布情况,可对储罐底板应力场发生变化的破损、裂缝等泄漏点进行精准定位;在储罐底部布设准分布式三维电阻率测试系统,可对底板下方一定深度内的电场信息进行监测,进一步还可以通过三维成图处理能直观可视化获得泄漏体的空间分布情况。
图1为本实用新型实施例提供的储油罐泄漏的监测系统一实施例的结构图。如图1所示,本实施例的储油罐泄漏的监测系统包括:
高密度电法子系统、分布式光纤测温子系统、分布式光纤应变感测子系统和数据处理设备;
其中,所述高密度电法子系统包括:电缆线和并行电法仪;所述并行电法仪分别与所述电缆线的电极和所述数据处理设备连接;所述电缆线布设在所述储油罐罐底的外部;
所述分布式光纤测温子系统包括:加热光缆、加热电源和DTS解调设备;所述加热光缆的一端与所述加热电源连接,所述加热光缆的另一端与所述DTS解调设备连接;所述DTS解调设备还与所述数据处理设备连接;所述加热光缆布设在所述储油罐罐底的外部以及所述储油罐的内壁上;
所述分布式光纤应变感测子系统包括:应变感测光缆和光纤解调设备;所述应变感测光缆与所述光纤解调设备连接;所述光纤解调设备还与所述数据处理设备连接。
具体的,高密度电法子系统包括:电缆线和并行电法仪;其中,并行电法仪分别与电缆线和数据处理设备连接。
其中,在实际应用中,如图2所示,电缆线2可以为带有64个电极1(图中电极个数仅为示例)的电缆线,其中电极间距可让生产厂家根据实际需要进行定制,所述电缆线为物探专用电缆,例如为34芯、桔黄色,电极为压模圆环抽头(如为铜环),各转接头3均为正向焊接,将电极(1~32)的转接头,电极(33~64)的转接头作好标记,如电极(1~32)的转接头为1、2号,电极(33~64)的转接头为3、4号,电极抽头点要求密封防水;并行电法仪与电缆线的转接头连接。
该电法子系统的监测原理如下:
在储油罐底部将电缆线按照一定的规则进行布设形成三维电法监测网,利用并行电法仪对布设好的三维电法观测网进行供电形成电场,其会探测到电法观测网下方预设的空间深度介质内的电场情况,进而可得到电阻率异常的泄漏区域。所述并行电法仪为将64个电极中任何一电极的工作状态设定为一供电正极(A)、一供电负极(B)、一公共电极(N),其余设定为采样电极(M),故可在短时间内采集到海量数据。所述电法观测网能够探测电缆线下方三维空间内电阻率动态变化情况。
可选的,所述电缆线布设在所述储油罐罐底的外部的砂垫层内;所述砂垫层位于与所述储油罐罐底相邻的沥青砂绝缘层下部。
具体的,储罐区建设时,会提前在储油罐安装前进行罐基础的铺设,根据油库设计规范,油罐底部依次铺有沥青砂绝缘层(例如不小于 100mm)和砂垫层(例如为300~600mm),在储油罐罐底沥青砂绝缘层的下部即砂垫层内的上部布设电缆线,从电场的角度对储油罐泄漏点的位置及泄漏体在空间上的扩散情况进行三维可视化监测。布设在沥青砂绝缘层的下部即砂垫层内的上部是因为该电缆线中的电极需要布设在接地阻值较小及耦合性较好的区域,然而沥青砂绝缘层导电性很差,若布设在其中会严重影响电法子系统的数据采集质量,故布设在砂垫层内的上部是较好的选择,并且距离罐底较近。
在一些实施方式中,电缆线的具体布设方式为从罐底的一边开始呈“迂回”型布设至另一边为止。
在砂垫层内采用开槽器在罐底区域内开出“迂回”型槽,将电缆线沿槽铺设,使其均匀覆盖于整个罐底的砂垫层中,待敷设完成后进行回填并做适当的压实处理,以保证电极与砂垫层有良好的接触,其中电极间距、电缆延长线长度及“迂回”布设等依据实际的情况可进行适当调整及选择。电缆线推荐进行“迂回”型布设,因为电极是点式分布,该布设方式使得各电极的位置坐标容易确定。待三维高密度电法子系统布设完成后将电缆延长线及电缆转接头延伸至地面并将延长线部分做好适当的保护。
具体的布设面积、布设间距等需依据实际罐底面积、电极间距等进行调整,但各电极准确的坐标位置需提前做好记录,以便后期建立电极坐标及数据成图使用。
分布式光纤测温子系统包括:加热光缆、加热电源和DTS解调设备;其中,DTS解调设备分别与加热光缆和数据处理设备连接。
可选的,加热光缆通过信号传输光纤与所述DTS解调设备连接。
可选的,加热光缆从内到外依次包括:温度感测光纤、松套碳纤维丝和高分子护套。
其中,温度感测光纤可以为0.9mm直径的单模单芯温度感测光纤;所述DTS解调设备基于拉曼散射光时域反射测量技术进行分布式温度测量,感温元件为加热光缆。
所述加热光缆的外层为高分子护套,可以提高加热光缆外包层的强度和耐腐蚀性。
其中,温度感测光纤和信号传输光纤之间通过热缩套管相互熔接,并在熔接处套设有续接保护管,用于保护熔接点。
该分布式光纤测温子系统的监测原理如下:
由于加热光缆加热后在不同介质中能量传播的程度不同,使得在不同介质界面形成的温度梯度不同,进而测量出不同的温度梯度或不同介质界面形成的温度差值,以此判断储油罐内的液位以及罐底泄漏区域。进一步解释为:将具有内加热功能的加热光缆通电发热后,温度升高,在油和空气或者油和土壤两种不同介质中,其能量传递的快慢程度及大小不同,温度变化也不一致,通过测量加热一定时间的光缆周围形成的稳定温度场,根据温度差值梯度进而判断储罐内的液位或者储罐底部泄漏点。
进一步,可以分别在储油罐内壁和罐底各布置一套加热光缆,从温度场的角度对储油罐泄漏进行监测。
可选的,加热光缆通过环氧树脂布设在所述储油罐的内壁上,或者,通过夹具布设在所述储油罐的内壁上;所述夹具为不锈钢材质制成的。
储油罐内壁的加热光缆具体布设方式如下:待储油罐安装固定好后,在过储油罐中轴线的剖面与内壁相交的线上将加热光缆沿全长用环氧树脂紧紧黏贴在储油罐内壁上呈“U”型敷设,亦可将加热光缆由特制夹具固定在储油罐内壁上。如图5所示,包括夹具母片6和夹具公片7,夹具母片6上具有锚固孔4和螺丝固定孔5,夹具公片7上具有螺丝固定孔8。其中,夹具间的布设距离需合理选择。所述夹具及固定夹具所用的平头螺丝、螺帽等锚固件均为不锈钢材质,可长期使用并不影响加热光缆的导热性能。其中,加热光缆与夹具之间需要用保护套管保护,即加热光缆外套设有保护套管9,如图6所示。使加热光缆不受金属夹具的损害。所述的加热光缆外套设的保护套管可以为PVC材质。无论采用何种敷设方式均需将加热光缆沿线拉直。待加热光缆敷设完成后可以将多余的部分从罐顶盖或者孔洞中延伸至储油罐外部,并将其盘绕至储物盒内。其中,罐顶盖部位需预留一小口或者在罐顶侧壁附近开一小孔,其孔口大小仅需将加热光缆10穿过并且不影响后期储油罐的正常工作即可。所述的储物盒11为不锈钢材质,其用于存放延伸至储罐外的加热光缆,如图7所示,储物盒盖可以留有一缺口,并且在储物盒的底部预留有一漏水孔,便于及时的排除储物盒内残留的雨水等,保持其内部的干燥。
可选的,所述加热光缆呈迂回型或螺旋型布设在所述储油罐罐底的外部的沥青砂绝缘层内。
具体的,在储油罐罐底的加热光缆具体布设方式如下:针对实际监测需求及条件的不同,本实用新型实施例可以提供两种布设形式,⑴如图3所示,在沥青砂绝缘层内采用开槽器在罐底区域内开出“迂回”型槽,将加热光缆沿槽铺设,使其均匀覆盖于整个罐底的沥青绝缘层中,待敷设完成后进行回填并压实。⑵如图4所示,在沥青砂绝缘层内采用开槽器在罐底区域内开出“螺旋”型槽,将加热光缆沿槽铺设,使其均匀覆盖于整个罐底的沥青绝缘层中,待敷设完成后进行回填并压实。无论采用何种布设形式均需要根据实际情况合理选择,同时还要测量记录好加热光缆布设的长度及具体的布设位置等参数,以备后期数据成图及分析解释时使用。
在一些实施方式中,在三维高密度电法子系统布设完成后,即可在其上部铺设沥青砂绝缘层,在沥青砂绝缘层内采用开槽器在罐底区域内开出“迂回”或“螺旋”型槽,将加热光缆沿槽铺设,使其均匀覆盖于整个罐底的沥青砂绝缘层中,待敷设完成后进行回填并压实。
其中,加热光缆弯曲部位不可折,可有弧度的调整,以防内部受损。其中,将其铺设至沥青砂绝缘层中是因为加热光缆并不需要其周围有良好的导电性介质,并且该层距离罐底最近,只需将其按照一定规则均匀布设于沥青砂绝缘层某一水平面内后进行回填并压实后,即可在后期的监测中对罐底泄漏位置及范围进行精准判定。最后,将多余的加热光缆延伸至地面和信号传输光纤之间相互熔接,并用续接保护管保护熔接点,其中,加热光缆延伸段需作适当保护。
分布式光纤应变感测子系统包括应变感测光缆和光纤解调设备;光纤解调设备分别与应变感测光缆和数据处理设备连接。
可选的,所述应变感测光缆通过信号传输光纤与所述光纤解调设备连接。
其中,应变感测光缆和信号传输光纤之间通过热缩套管相互熔接,并在熔接处套设有续接保护管,用于保护熔接点。
其中,应变感测光缆可以为内部纤芯直径0.9mm的单模单芯紧包光纤的紧套光缆,其对微小应变的感知能力强;所述的光纤解调设备可以是 BOTDA解调仪或BOTDR解调仪;所述BOTDA解调仪需要同时连接应变感测光缆的两端,数据采集空间分辨率高,但对外界的要求更加苛刻;所述 BOTDR解调仪只需要连接应变感测光缆一端即可对数据进行采集,其空间分辨率较高,更适用于复杂的外界条件。
该分布式光纤应变感测子系统监测原理如下:由于分布式应变感测光缆均匀黏贴布设在罐底的外壁上(应变感测光缆需事先黏贴固定在储罐底板上,即固定于罐底的外壁上),一旦罐底出现破裂或受腐蚀等泄漏事故时,相应位置的应变感测光缆会受力变化从而使光的传播路径发生改变,得到后向布里渊散射光频率的漂移量,根据布里渊频移与应变感测光缆应变之间的线性关系,得到罐底板泄漏点位置处应变量值,进而确定泄漏准确位置、范围和受力状况,实现储油罐罐底泄漏点的精准监测。
可选的,所述应变感测光缆通过环氧树脂呈迂回型或螺旋型布设在所述储油罐罐底。
针对实际监测需求及条件的不同,本实用新型实施例提供两种布设形式,⑴应变感测光缆沿全长用环氧树脂紧紧黏贴在储油罐罐底呈“迂回”型敷设。这种布设形式让应变感测光缆的首尾段均能延伸至储油罐罐底外,可将延伸至储油罐外的应变感测光缆首尾两端通过信号传输光纤连接至BOTDA解调仪上进行数据采集,亦可只将一端通过信号传输光纤连接至BOTDR解调仪上进行数据采集;⑵应变感测光缆沿全长用环氧树脂紧紧黏贴在储油罐罐底呈“螺旋”型敷设,这种布设形式更适用于将光纤的尾端延伸至储罐外,通过信号传输光纤与BOTDR解调仪连接进行数据采集。针对分布式应变感测光缆,可将延伸至罐底外的部分应变感测光缆盘绕在特制的开孔储藏盒内,并埋设在罐底附近,例如可以设置5m长的光缆冗余段,以起到应变感测光缆精确定位和温度自补偿的双重作用。无论采用何种布设形式均需要根据实际情况合理选择,同时将应变感测光缆黏贴在罐底时一定要施加一定大小的预应力,使应变感测光缆有一定的初始应变,并且同时还要测量记录好应变感测光缆敷设的长度及具体的位置等参数,以备后期数据成图及分析解释时使用。
可选的,如图8所示,开孔储藏盒的盒盖上具有缺口12,盒盖通过盒盖转轴14与盒体连接,并通过锁扣13固定。盒盖底部具有漏水网15,开孔储藏盒可以是塑料盒。
上述多个子系统分别从电场、温度场、应力场对储油罐底板泄漏情况进行了全方位、多角度、多层次的可视化监测。本实用新型实施例所提出的监测系统在罐内壁及罐底均进行了布设,其是一种内外结合的监测系统。
进一步的,对已整体布设安装完成的各子系统的具体现场操作、数据采集及处理等问题进行叙述。
将电缆线的大线头按照标号与对应的并行电法仪的接头进行连接,同时连接好并行电法仪中的电源线与通讯线,打开并行电法仪中的采集软件进行视电阻率数据的采集。其中,并行电法仪的电压例如有24V、 48V、72V、96V四档可调;并行电法仪根据供电点的不同,数据采集方式分为AM法和ABM法两种,采集参数依据现场测试条件而定,一般的,AM 法设置参数为:恒流时间0.5s、采样时间间隔0.05s,ABM法设置参数为:恒流时间0.2s、采样时间间隔0.1s。其中AM法采集到的数据体包括了多种装置类型的数据,如二极、三极等装置数据、ABM法采集到的数据体包括多种装置类型的数据,如温纳四极、温纳偶极、温纳微分装置的数据。因此,网络并行电法仪可以在短时间内采集到海量的数据,并且,我们可以根据需要任意提取出相应装置类型的视电阻率数据,同时,可以通过AGI等反演软件对视电阻率数据进行反演处理。最后,使用 Surfer等成图软件进行成图处理。
将加热光缆分别与加热电源、信号传输光纤连接,DTS解调设备与信号传输光纤、数据处理设备(例如为具有数据分析软件的计算机)连接,接通加热电源使加热光缆在电流作用下开始升温,用DTS解调设备解调、记录加热光缆通电加热过程中的温度信息,使用数据处理设备进行处理成图。本实用新型实施例中温度梯度区间的选取取决于加热光缆的发热功率、测量对象的热力学性质和测量精度,可通过率定试验加以调试确定。试验结果表明:通电加热电压220V/30m,功率65-105W/30m(指每30 米加热光缆的热功率在65-105W范围),即可形成明显的温度梯度。所述的数据处理设备为全自动处理,加热光缆的数据采集时间和长度间隔可根据测量精度要求人为或自动设定。一般测量时间间隔1分钟,长度间隔0.1-0.5米为宜,并通过专用数据处理软件实时或周期性的将解调设备解调的温度信息转化成油水液位分布信息,并将结果绘制成图。
将应变感测光缆通过信号传输光纤连接至BOTDA或BOTDR解调仪,其中解调仪的空间分辨率与采样间隔分别设置为5cm与1cm。当储油罐底板上某位置发生破裂或者变形后,黏贴在底板上的分布式应变感测光缆会发生应变,该应变将使分布式应变感测光缆上的布里渊散射光频率发生漂移,解调仪可以实时测得该应变量,从而获得储罐底板应变分布情况。为了消除数据测量中存在的误差或跳点,采用移动平均法对所测得的应变数据进行平滑处理,接着使用MATLAB对监测得到的应变数据进行插值,并成出储油罐底板的应变云图。通过对比分析每一次得到的底板应变云图变化情况或者对前后的数据进行相应的差值处理后,能够对储罐底板的安全情况进行精准的监控。
本实施例的储油罐泄漏的监测系统,高密度电法子系统、分布式光纤测温子系统、分布式光纤应变感测子系统和数据处理设备;其中,所述高密度电法子系统包括:电缆线和并行电法仪;所述并行电法仪分别与所述电缆线的电极和所述数据处理设备连接;所述电缆线布设在所述储油罐罐底的外部;所述分布式光纤测温子系统包括:加热光缆、加热电源和DTS解调设备;所述加热光缆的一端与所述加热电源连接,所述加热光缆的另一端与所述DTS解调设备连接;所述DTS解调设备还与所述数据处理设备连接;所述加热光缆布设在所述储油罐罐底的外部以及所述储油罐的内壁上;所述分布式光纤应变感测子系统包括:应变感测光缆和光纤解调设备;所述应变感测光缆与所述光纤解调设备连接;所述光纤解调设备还与所述数据处理设备连接,通过高密度电法子系统、分布式光纤测温子系统、分布式光纤应变感测子系统,分别从应力场、温度场、电场的角度对整个储油罐进行了多角度、多参量的监测,监测结果较为准确。
图9为本实用新型实施例提供的储油罐泄漏的监测方法一实施例的流程图。如图9所示,本实用新型实施例方法,应用于前述实施例的监测系统,所述方法包括:
步骤901、利用所述并行电法仪采集所述电缆线的电极的视电阻率数据;
步骤902、利用所述DTS解调设备获取所述加热光缆的温度信息;
步骤903、利用所述光纤解调设备获取所述应变感测光缆的应变数据;
步骤904、利用所述数据处理设备根据所述视电阻率数据、所述温度信息和所述应变数据,监测所述储油罐的液位分布情况以及泄漏情况。
本实施例的方法,其实现原理及技术效果与前述实施例的监测系统类似,此处不再赘述。
本实用新型实施例的监测方法的优点:首先,本实用新型实施例所提出的多场多参量监测系统在罐内壁及罐底均进行了布设,其是一种内外结合的监测系统。罐内壁布设的监测系统能够从温度场的角度精准感知液位的变化,罐底布设的监测系统从应力场、温度场、电场的角度对罐底泄漏点、泄漏范围及泄漏体在空间上的扩散路径进行精准感知,形成二维和三维可视化结果图。对整个储油罐进行了全方位、多角度、多层次、多参量、立体化和实时可视化的精准监测。
其次,该监测安装简便、结构简单、耐腐蚀、安全经济,在储罐区建设的同时可以将该系统一次布设完成即可进行长达几十年的长期、稳定、重复监测,数据采集方面具有分布式、高精度、多参量、短时间内即可采集海量数据,数据成图方面能进行二维和三维可视化自动成图,并可对异常体空间分布进行提取,同时能实时、动态监控泄漏事故的时空变化情况。
最后,该监测系统应用领域广,其不仅适用于石化、石油行业的大型单层或双层储油罐罐底的泄漏监测,而且还可以应用于其他所有具有流动性介质的罐底泄漏监测中,适用性强。同时,一套监测设备可用于对布设了该多场多参量的监测系统的某一区域或多个区域内的储罐底板进行监测,进一步的提高监测设备的利用率及使用价值。
本领域技术人员在考虑说明书及实践这里公开的实用新型后,将容易想到本公开的其它实施方案。本实用新型旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求书指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求书来限制。

Claims (10)

1.一种储油罐泄漏的监测系统,其特征在于,包括:
高密度电法子系统、分布式光纤测温子系统、分布式光纤应变感测子系统和数据处理设备;
其中,所述高密度电法子系统包括:电缆线和并行电法仪;所述并行电法仪分别与所述电缆线的电极和所述数据处理设备连接;所述电缆线布设在所述储油罐罐底的外部;
所述分布式光纤测温子系统包括:加热光缆、加热电源和DTS解调设备;所述加热光缆的一端与所述加热电源连接,所述加热光缆的另一端与所述DTS解调设备连接;所述DTS解调设备还与所述数据处理设备连接;所述加热光缆布设在所述储油罐罐底的外部以及所述储油罐的内壁上;
所述分布式光纤应变感测子系统包括:应变感测光缆和光纤解调设备;所述应变感测光缆与所述光纤解调设备连接;所述光纤解调设备还与所述数据处理设备连接。
2.根据权利要求1所述的系统,其特征在于,所述电缆线的电极包括:供电正极、供电负极、公共电极和至少一个采样电极。
3.根据权利要求1或2所述的系统,其特征在于,所述电缆线布设在所述储油罐罐底的外部的砂垫层内;所述砂垫层位于与所述储油罐罐底相邻的沥青砂绝缘层下部。
4.根据权利要求1或2所述的系统,其特征在于,所述加热光缆的另一端通过信号传输光纤与所述DTS解调设备连接;所述应变感测光缆通过信号传输光纤与所述光纤解调设备连接。
5.根据权利要求4所述的系统,其特征在于,所述加热光缆从内到外依次包括:温度感测光纤、松套碳纤维丝和高分子护套。
6.根据权利要求5所述的系统,其特征在于,
所述温度感测光纤和所述信号传输光纤通过热缩套管熔接;所述温度感测光纤和所述信号传输光纤在熔接处套设有续接保护管。
7.根据权利要求1或2所述的系统,其特征在于,
所述加热光缆通过环氧树脂布设在所述储油罐的内壁上,或者,通过夹具布设在所述储油罐的内壁上;所述夹具为不锈钢材质制成的。
8.根据权利要求1或2所述的系统,其特征在于,所述加热光缆呈迂回型或螺旋型布设在所述储油罐罐底的外部的沥青砂绝缘层内。
9.根据权利要求1或2所述的系统,其特征在于,
所述应变感测光缆通过环氧树脂呈迂回型或螺旋型布设在所述储油罐罐底的外壁上。
10.根据权利要求7所述的系统,其特征在于,还包括:
设置在所述储油罐的外部,位于所述储油罐的顶端的储物盒,用于放置所述加热光缆。
CN201820359960.0U 2018-03-16 2018-03-16 储油罐泄漏的监测系统 Expired - Fee Related CN208199440U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201820359960.0U CN208199440U (zh) 2018-03-16 2018-03-16 储油罐泄漏的监测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201820359960.0U CN208199440U (zh) 2018-03-16 2018-03-16 储油罐泄漏的监测系统

Publications (1)

Publication Number Publication Date
CN208199440U true CN208199440U (zh) 2018-12-07

Family

ID=64528138

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201820359960.0U Expired - Fee Related CN208199440U (zh) 2018-03-16 2018-03-16 储油罐泄漏的监测系统

Country Status (1)

Country Link
CN (1) CN208199440U (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108298216A (zh) * 2018-03-16 2018-07-20 安徽理工大学 储油罐泄露的监测系统及方法
CN114235312A (zh) * 2021-11-12 2022-03-25 陕西济达消防科技有限公司 一种具备密封性能监测功能的油罐的施工方法
CN114320472A (zh) * 2021-12-31 2022-04-12 北京景通科信科技有限公司 一种矿井水灾水位感知与探测装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108298216A (zh) * 2018-03-16 2018-07-20 安徽理工大学 储油罐泄露的监测系统及方法
CN114235312A (zh) * 2021-11-12 2022-03-25 陕西济达消防科技有限公司 一种具备密封性能监测功能的油罐的施工方法
CN114320472A (zh) * 2021-12-31 2022-04-12 北京景通科信科技有限公司 一种矿井水灾水位感知与探测装置
CN114320472B (zh) * 2021-12-31 2024-02-09 北京景通科信科技有限公司 一种矿井水灾水位感知与探测装置

Similar Documents

Publication Publication Date Title
CN108298216A (zh) 储油罐泄露的监测系统及方法
CN208199440U (zh) 储油罐泄漏的监测系统
CN106324687B (zh) 一种埋地铁质管线探测与精确定位方法
CN111624227B (zh) 一种分布式土体导热系数测试系统及其测试方法
CN103454309B (zh) 一种土壤含水率分布式测量方法及系统
CN103353322B (zh) 一种基于分布式光纤测温系统的土石堤坝浸润线监测方法
CN205175574U (zh) 电缆中间接头导体温度测量结构
CN108267394A (zh) 一种土石坝渗流场监控系统及其预警方法
CN203868702U (zh) 基于光纤光栅传感器的地下管道泄漏预警系统
CA2925544A1 (en) Method and device for monitoring a submarine cable
CN102539964A (zh) Xlpe电力电缆在线绝缘特性判断方法
CN104183334A (zh) 一种新型复合传感光缆
CN208476736U (zh) 一种土石坝渗流场监控系统
CN204881661U (zh) 一种提高分布式光纤传感系统空间分辨率和定位精度的光纤传感器
CN105136176B (zh) 一种光纤传感器及其制作方法
CN202339249U (zh) 光纤泄漏监测装置
CN111504581A (zh) 一种填埋区域渗漏检测系统及方法
CN102650606A (zh) 一种流体介质界面的光纤传感检测装置及方法
IT9022395A1 (it) Dispositivo e procedimento per il monitoraggio in tempo reale dei danneggiamenti accidentali del rivestimento protettivo di condotte o strutture metalliche interrate o immerse
Inaudi et al. Long-range pipeline monitoring by distributed fiber optic sensing
CN209459732U (zh) 水位监测系统
CN109459467B (zh) 一种远程原位监测土壤环境及腐蚀性的物联网系统
CN102854214A (zh) 土壤热物性参数测量装置及测量方法
CN110596182A (zh) 基于分布式光纤的土工膜破损渗漏量监测系统及监测方法
CN112393766A (zh) 一种土体状态监测系统以及分布式光纤探杆

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181207

Termination date: 20190316

CF01 Termination of patent right due to non-payment of annual fee