CN208155323U - 一种多光轴自动校准系统 - Google Patents

一种多光轴自动校准系统 Download PDF

Info

Publication number
CN208155323U
CN208155323U CN201820543631.1U CN201820543631U CN208155323U CN 208155323 U CN208155323 U CN 208155323U CN 201820543631 U CN201820543631 U CN 201820543631U CN 208155323 U CN208155323 U CN 208155323U
Authority
CN
China
Prior art keywords
infrared
laser
reflecting mirror
target
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201820543631.1U
Other languages
English (en)
Inventor
范哲源
刘西站
韩飞
何飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Micro Bo Photoelectric Technology Co Ltd
Original Assignee
Xi'an Micro Bo Photoelectric Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xi'an Micro Bo Photoelectric Technology Co Ltd filed Critical Xi'an Micro Bo Photoelectric Technology Co Ltd
Priority to CN201820543631.1U priority Critical patent/CN208155323U/zh
Application granted granted Critical
Publication of CN208155323U publication Critical patent/CN208155323U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

本实用新型实施例涉及一种多光轴自动校准系统,包括:近红外激光测距系统(1),其安装于多维度调整系统(11)上;红外系统(2),通过转台(3)与所述近红外激光测距系统连接;成像系统(4),与所述红外系统固定连接;第二光学校准系统(5),用于校准所述近红外激光测距系统(1)与红外系统(2)的同轴性,包括:第一激光反射镜(51)、第二激光反射镜(52)、耦合反射镜(53)、离轴抛物镜(54)以及靶标(55),所述第一激光反射镜(51)、第二激光反射镜(52)、耦合反射镜(53)、离轴抛物镜(54)均镀有相应波长的全反射膜;计算机系统(6),对所述靶标图像进行分析,并根据分析结果自动调整多维度调整系统的角度。

Description

一种多光轴自动校准系统
技术领域
本实用新型涉及光学校准领域,具体涉及一种多光轴自动校准系统。
背景技术
随着应用环境的复杂化,单一系统往往无法满足复杂的使用环境,覆盖宽光谱范围的复合系统的出现,越来越受到各应用层面的重视,对于近距离小型化目标的跟踪和测距,目前常用的系统是长波红外加近红外激光器,红外系统用来发现目标,激光系统对目标进行测距。在此过程中,一个重要的因素就是红外系统和激光系统的共轴问题,由于测距激光的束散角很小,当目标距离较远时,只有红外系统和激光系统两者的共轴性好,才能在监测的同时对目标进行测距,否则激光系统发出的激光无法投射到目标上,造成目标丢失,无法完成测距功能。本实用新型主要致力于红外系统和激光系统的光轴校准测试,实现测试过程简洁化,测试结果准确化,提高系统后期的测距和跟踪精度。
当一个设备有两个系统以上波段范围相差较大的光学系统时,如果还需要两个系统有一定的同轴度要求,那么对于不同光学系统的光轴校准就是系统应用过程中的重要环节。通常不同波段的光学系统进行光轴同轴度测试或校准时,应用的是宽谱段大口径平行光管,但此类设备造价高,制造工艺复杂,且体积尺寸大,也不适合外场搬运测试。
因此,开发一种简易的能够实现多光轴自动校准的系统及方法,就变得十分紧迫。
实用新型内容
本实用新型实施例提供了一种简易的能够实现多光轴自动校准的系统,本实用新型的主要目的是解决上述问题,研制一种小型的、适合外场光轴一致性测试的设备。
本实用新型实施例提供的一种多光轴自动校准系统,包括:近红外激光测距系统1,其安装于多维度调整系统11上;红外系统2,通过转台3与所述近红外激光测距系统1连接,用于确定目标位置;CCD相机4,与所述红外系统2固定连接,且与所述红外系统2具有同轴性;光学校准系统5,用于校准所述近红外激光测距系统1与红外系统2的同轴性,沿光路方向依次包括:第一激光反射镜51、第二激光反射镜52、耦合反射镜53、离轴抛物镜54以及靶标55,所述第一激光反射镜51、第二激光反射镜52、耦合反射镜53、离轴抛物镜54均镀有相应波长的全反射膜;其中,近红外激光测距系统1发射近红外激光束,该光束经过第一激光反射镜51、第二激光反射镜52、耦合反射镜53、离轴抛物镜54反射后照亮靶标55;所述照亮的靶标55发射的光束经过所述离轴抛物镜54、耦合反射镜53后进入所述CCD相机4,形成靶标图像;计算机系统6,所述计算机系统6与所述CCD相机4电连接,并对所述靶标图像进行分析。
进一步的,所述计算机系统6与所述多维度调整系统11电连接,并根据对所述靶标图像进行分析的结果自动调整所述多维度调整系统11的角度。
进一步的,所述多维度调整系统11包括至少一个步进电机12,可以实现上、下、左、右、俯、仰六个维度调节。
进一步的,所述CCD相机4与所述红外系统2位于所述转台3同侧,直接固定连接。
本实用新型的有益技术效果如下:
本实用新型提供一种多光轴自动校准系统,利用激光反射镜1和激光反射镜2拉近了红外系统和激光测距系统的横向距离,减小横向跨度,从而减小光学零件的尺寸,降低成本;另外,加装可见光相机,将红外相机和激光测距系统的光轴一致性调整为激光测距系统和可见光相机的光轴一致性,方便测试;整个系统重量轻,方便搬运及外场进行调试。且通过计算机自动分析、控制激光系统光轴方向,方法简单易操作。
附图说明
为了更清楚地说明本实用新型实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本实用新型实施例所述多光轴自动校准系统结构示意图;
图2是本实用新型实施例所述多光轴自动校准方法流程示意图。
具体实施方式
为了使本实用新型的目的、技术方案和优点更加清楚,下面将结合附图对本实用新型作进一步地详细描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本实用新型保护的范围。
在本实用新型实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义,“多种”一般包含至少两种。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应当理解,尽管在本申请实施例中可能采用术语第一、第二、第三等来描述XXX,但这些XXX不应限于这些术语。这些术语仅用来将XXX区分开。例如,在不脱离本申请实施例范围的情况下,第一XXX也可以被称为第二 XXX,类似地,第二XXX也可以被称为第一XXX。
取决于语境,如在此所使用的词语“如果”、“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
下面结合附图详细说明本实用新型的优选实施例。
实施例1
如图1-2所示,本实用新型实施例提供的一种多光轴自动校准系统,包括:近红外激光测距系统1,其安装于多维度调整系统11上;红外系统2,通过转台3与所述近红外激光测距系统1连接,用于确定目标位置。在实际的应用当中,所述红外激光测距系统1、红外系统2以及转台3可以360度不停止旋转,从而使得红外系统2发现周围一定范围内目标,当锁定某一目标后,所述近红外激光测距系统1发射测距激光束,用于测量该目标的实际距离,这就要求近红外激光测距系统1、红外系统2具有良好的同轴性,否则难以获得准确的测量效果。
成像系统4,通常采用可见光CCD相机,与所述红外系统2固定连接,为了保证测量装置的紧凑性,所述成像系统4与所述红外系统2位于所述转台3同侧,直接固定连接在一起。且已通过第一光学校准系统实现所述成像系统4与所述红外系统2的同轴性,此第一光学校准系统省略介绍,一般可以通过利用CCD相机采集红外系统2的图像位置,来判断二者是否为同轴。
第二光学校准系统5,用于校准所述近红外激光测距系统1与红外系统2 的同轴性,具体包括:第一激光反射镜51、第二激光反射镜52、耦合反射镜53、离轴抛物镜54以及靶标55,所述第一激光反射镜51、第二激光反射镜 52、耦合反射镜53、离轴抛物镜54均镀有相应波长的全反射膜。
具体光路流程如下,近红外激光测距系统1发射近红外激光束,例如912nm 或1064nm,该光束经过第一激光反射镜51、第二激光反射镜52、耦合反射镜 53、离轴抛物镜54反射后照亮靶标55,此时波长基本不变。所述照亮的靶标 55发射的光束经过所述离轴抛物镜54、耦合反射镜53后进入所述成像系统 4,形成靶标图像。
另外,设置计算机系统6,所述计算机系统6与所述成像系统4电连接,并对所述靶标图像进行分析,并根据分析结果自动调整多维度调整系统11的角度。
进一步优选的,上述“对所述靶标图像进行分析,并根据分析结果自动调整多维度调整系统11的角度”包括:通过所述计算机系统6比较所述靶标图像的中心位置与校准目标位置的距离,例如选取1k×1k的CCD分辨率,确定512×512位置为中心点,判断目标图像与中心位置的距离及方位。当该距离满足一定误差范围时,例如0~5个dpi,确认已校准。否则,根据所述靶标图像的中心位置与校准目标位置的偏离方位和距离,给出反馈控制信号到所述多维度调整系统11,所述多维度调整系统11控制步进电机12进行微调,实现上、下、左、右、俯、仰六个维度调节,同时,计算机系统6以一定时间间隔,比较靶标图像的中心位置与校准目标位置的距离,直至满足误差范围精度,停止调整,此时确认所述红外激光测距系统1与CCD相机系统同轴,即与红外系统2同轴。
优选的,所述多维度调整系统11包括三个步进电机12和调整架13,分别进行六个维度三方向调节。
本实用新型提供一种多光轴自动校准系统,利用激光反射镜1和激光反射镜2拉近了红外系统和激光测距系统的横向距离,减小横向跨度,从而减小光学零件的尺寸,降低成本;另外,加装可见光相机,将红外相机和激光测距系统的光轴一致性调整为激光测距系统和可见光相机的光轴一致性,方便测试;整个系统重量轻,方便搬运及外场进行调试。且通过计算机自动分析、控制激光系统光轴方向,方法简单易操作。
实施例2
本实用新型实施例提供一种多光轴自动校准方法,包括:通过第一光学校准系统实现成像系统4与红外系统2的同轴性;近红外激光测距系统1发射近红外激光束,该光束依次经过第一激光反射镜51、第二激光反射镜52、耦合反射镜53、离轴抛物镜54反射后照亮靶标55;所述照亮的靶标55发射的光束依次经过所述离轴抛物镜54、耦合反射镜53后进入所述成像系统4,形成靶标图像;计算机系统6比较所述靶标图像的中心位置与校准目标位置的距离;当该距离满足一定误差范围时,确认已校准;否则,根据所述靶标图像的中心位置与校准目标位置的偏离方位和距离,反馈控制信号到多维度调整系统11;所述多维度调整系统11根据控制信号对所述近红外激光测距系统1 的激光出射方向进行自动调整,直至所述距离满足一定误差范围。
通过所述计算机系统6比较所述靶标图像的中心位置与校准目标位置的距离,例如选取1k×1k的CCD分辨率,确定512×512位置为中心点,判断目标图像与中心位置的距离及方位。当该距离满足一定误差范围时,例如0~5 个dpi,确认已校准。否则,根据所述靶标图像的中心位置与校准目标位置的偏离方位和距离,给出反馈控制信号到所述多维度调整系统11,所述多维度调整系统11控制步进电机12进行微调,实现上、下、左、右、俯、仰六个维度调节,同时,计算机系统6以一定时间间隔,比较靶标图像的中心位置与校准目标位置的距离,直至满足误差范围精度,停止调整,此时确认所述红外激光测距系统1与CCD相机系统同轴,即与红外系统2同轴。
本实用新型提供一种多光轴自动校准方法,利用激光反射镜1和激光反射镜2拉近了红外系统和激光测距系统的横向距离,减小横向跨度,从而减小光学零件的尺寸,降低成本;另外,加装可见光相机,将红外相机和激光测距系统的光轴一致性调整为激光测距系统和可见光相机的光轴一致性,方便测试;整个系统重量轻,方便搬运及外场进行调试。且通过计算机自动分析、控制激光系统光轴方向,方法简单易操作。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
最后应说明的是:以上实施例仅用以说明本实用新型的技术方案,而非对其限制;尽管参照前述实施例对本实用新型进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本实用新型各实施例技术方案的精神和范围。

Claims (4)

1.一种多光轴自动校准系统,其特征在于,包括:
近红外激光测距系统(1),其安装于多维度调整系统(11)上;
红外系统(2),通过转台(3)与所述近红外激光测距系统(1)连接,用于确定目标位置;
CCD相机(4),与所述红外系统(2)固定连接,且与所述红外系统(2)具有同轴性;
光学校准系统(5),用于校准所述近红外激光测距系统(1)与红外系统(2)的同轴性,沿光路方向依次包括:第一激光反射镜(51)、第二激光反射镜(52)、耦合反射镜(53)、离轴抛物镜(54)以及靶标(55),所述第一激光反射镜(51)、第二激光反射镜(52)、耦合反射镜(53)、离轴抛物镜(54)均镀有相应波长的全反射膜;
其中,近红外激光测距系统(1)发射近红外激光束,该光束经过第一激光反射镜(51)、第二激光反射镜(52)、耦合反射镜(53)、离轴抛物镜(54)反射后照亮靶标(55);所述照亮的靶标(55)发射的光束经过所述离轴抛物镜(54)、耦合反射镜(53)后进入所述CCD相机(4),形成靶标图像;
计算机系统(6),所述计算机系统(6)与所述CCD相机(4)电连接,并对所述靶标图像进行分析。
2.如权利要求1所述的系统,其特征在于,所述计算机系统(6)与所述多维度调整系统(11)电连接,并根据对所述靶标图像进行分析的结果自动调整所述多维度调整系统(11)的角度。
3.如权利要求1所述的系统,其特征在于,所述多维度调整系统(11)包括至少一个步进电机(12),可以实现上、下、左、右、俯、仰六个维度调节。
4.如权利要求1所述的系统,其特征在于,所述CCD相机(4)与所述红外系统(2)位于所述转台(3)同侧,直接固定连接。
CN201820543631.1U 2018-04-16 2018-04-16 一种多光轴自动校准系统 Active CN208155323U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201820543631.1U CN208155323U (zh) 2018-04-16 2018-04-16 一种多光轴自动校准系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201820543631.1U CN208155323U (zh) 2018-04-16 2018-04-16 一种多光轴自动校准系统

Publications (1)

Publication Number Publication Date
CN208155323U true CN208155323U (zh) 2018-11-27

Family

ID=64378312

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201820543631.1U Active CN208155323U (zh) 2018-04-16 2018-04-16 一种多光轴自动校准系统

Country Status (1)

Country Link
CN (1) CN208155323U (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110160460A (zh) * 2019-06-13 2019-08-23 广东省特种设备检测研究院东莞检测院 一种基于数字摄影的金属结构变形测量装置及方法
CN110207743A (zh) * 2019-06-16 2019-09-06 西安应用光学研究所 一种适用于机载光电观瞄系统的在线校轴装置及方法
CN110207605A (zh) * 2019-06-13 2019-09-06 广东省特种设备检测研究院东莞检测院 一种基于机器视觉的金属结构变形的测量装置及方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110160460A (zh) * 2019-06-13 2019-08-23 广东省特种设备检测研究院东莞检测院 一种基于数字摄影的金属结构变形测量装置及方法
CN110207605A (zh) * 2019-06-13 2019-09-06 广东省特种设备检测研究院东莞检测院 一种基于机器视觉的金属结构变形的测量装置及方法
CN110207743A (zh) * 2019-06-16 2019-09-06 西安应用光学研究所 一种适用于机载光电观瞄系统的在线校轴装置及方法
CN110207743B (zh) * 2019-06-16 2021-07-16 西安应用光学研究所 一种适用于机载光电观瞄系统的在线校轴装置及方法

Similar Documents

Publication Publication Date Title
CN108759862A (zh) 一种多光轴自动校准系统及方法
CN208155323U (zh) 一种多光轴自动校准系统
CN103162832B (zh) 包含参考光束的垂直入射宽带偏振光谱仪及光学测量系统
US4150888A (en) Closed loop automatic focusing unit
US20090158604A1 (en) Electronic leveling apparatus and method
CN110146259A (zh) 一种大口径离轴反射式多光轴一致性定量测试和校准装置
CN110989695B (zh) 一种移动平台上的太阳自动跟踪装置及方法
CN110662020B (zh) 一种基于自准直原理的传函测试系统及方法
CN103162831B (zh) 宽带偏振光谱仪及光学测量系统
US10422861B2 (en) Electro-optical distance measuring instrument
CN109029925A (zh) 一种用于瞄准监测望远镜光轴的立方棱镜光校装置
CN104748720B (zh) 空间测角装置及测角方法
CN108955537A (zh) 一种可实现离轴反射镜高低点位置精确测量的系统及方法
CN109100733A (zh) 激光雷达设备误差检测设备、方法及装置
US6885465B2 (en) Optical element inspection device and optical element inspection method
CN211698179U (zh) 一种基于干涉条纹的智能光轴装调系统
CN112834462A (zh) 反射镜反射率的测量方法
CN102519594B (zh) 用于大口径平行光束光谱辐照度的测量系统及方法
CN209198785U (zh) 一种用于透镜组调整的调整装置
CN110824459A (zh) 一种基于干涉条纹的智能光轴装调系统及其装调方法
US3002419A (en) Alignment theodolite
CN112710237B (zh) 对准系统及对准方法
CN205719253U (zh) 一种具有定位功能的光谱仪
CN114923671A (zh) 一种红外光学系统光谱透过率测量装置及测量方法
CN114967022A (zh) 基于双经纬仪的自准直动态靶标光学装校方法

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant