CN207991341U - 一种拓展蒸发端面积的热管蓄热换热器 - Google Patents

一种拓展蒸发端面积的热管蓄热换热器 Download PDF

Info

Publication number
CN207991341U
CN207991341U CN201820255196.2U CN201820255196U CN207991341U CN 207991341 U CN207991341 U CN 207991341U CN 201820255196 U CN201820255196 U CN 201820255196U CN 207991341 U CN207991341 U CN 207991341U
Authority
CN
China
Prior art keywords
heat
storage heater
vertical tube
pipe
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201820255196.2U
Other languages
English (en)
Inventor
周建全
林涛
张磊
张国庆
张海静
鞠文杰
李宏
刘宗杰
周翔宇
徐永萍
轩诗鹏
李静
马俊迪
樊相臣
魏姗姗
朱国梁
陈书祥
刘建文
张雪缘
吕雯
李燕
王永彬
李�真
李一真
冷学礼
邱燕
田茂诚
张冠敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STATE GRID SHANDONG ENERGY-SAVING SERVICE Co Ltd
State Grid Corp of China SGCC
Jining Power Supply Co of State Grid Shandong Electric Power Co Ltd
Original Assignee
STATE GRID SHANDONG ENERGY-SAVING SERVICE Co Ltd
State Grid Corp of China SGCC
Jining Power Supply Co of State Grid Shandong Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STATE GRID SHANDONG ENERGY-SAVING SERVICE Co Ltd, State Grid Corp of China SGCC, Jining Power Supply Co of State Grid Shandong Electric Power Co Ltd filed Critical STATE GRID SHANDONG ENERGY-SAVING SERVICE Co Ltd
Priority to CN201820255196.2U priority Critical patent/CN207991341U/zh
Application granted granted Critical
Publication of CN207991341U publication Critical patent/CN207991341U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

本实用新型提供了一种拓展蒸发端面积的热管蓄热换热器,包括重力热管,所述热管包括蒸发端和冷凝端,所述蒸发端设置在蓄热器中,所述蓄热器设置在热源中,所述冷凝端设置在冷源的容器中,所述蓄热器的横截面积大于冷源所在的容器的横截面积。本实用新型通过设置蓄热器,可以将热源中的热量储存起来,而且通过蓄热器的横截面积大于冷源所在的容器的横截面积,可以进一步的增加蓄热器与热源的换热面积,而且可以储存更多的热量,进一步满足加热的要求。

Description

一种拓展蒸发端面积的热管蓄热换热器
技术领域
本实用新型涉及一种换热器技术,尤其涉及一种拓展蒸发端面积的热管蓄热换热器。
背景技术
热管技术是1963年美国洛斯阿拉莫斯(Los Alamos)国家实验室的乔治格罗佛(George Grover)实用新型的一种称为“热管”的传热元件,它充分利用了热传导原理与相变介质的快速热传递性质,透过热管将发热物体的热量迅速传递到热源外,其导热能力超过任何已知金属的导热能力。
热管技术以前被广泛应用在宇航、军工等行业,自从被引入散热器制造行业,使得人们改变了传统散热器的设计思路,摆脱了单纯依靠高风量电机来获得更好散热效果的单一散热模式,采用热管技术使得散热器获得满意的换热效果,开辟了散热行业新天地。目前热管广泛的应用于各种换热设备,其中包括核电领域,例如核电的余热利用等。
现有技术中,热管的外形影响了蒸发端的吸热面积,因此一般蒸发端吸热范围比较小,在热源中有时候需要设置多个热管来满足吸热需求;而且多蒸发端存在的时候,各个蒸发端因为处于热源的位置不同,会产生吸热不均匀的现象。
在目前的热管蓄热器中,基本上都是采用重力热管,而且因为热管冷凝端蒸发端管径相同,导致受热面积小,无法更好的拓展换热面积,因此针对上述问题,本实用新型在前面实用新型的基础上进行了改进,提供了一种新的热管蓄热器,进一步提高换热效果,充分利用热源,降低能耗,提高效果。
实用新型内容
本实用新型提供了一种新的热管结构,扩展蒸发端的吸热范围,节约能源。
为了实现上述目的,本实用新型的技术方案如下:
一种拓展蒸发端面积的热管蓄热换热器,包括重力热管,所述热管包括蒸发端和冷凝端,其特征在于,所述蒸发端设置在蓄热器中,所述蓄热器设置在热源中,所述冷凝端设置在冷源的容器中,所述蓄热器的横截面积大于冷源所在的容器的横截面积。
作为优选,所述热源是地热能。
作为优选,所述蓄热器中蓄热材料的熔点是60-80摄氏度。
作为优选,所述蓄热器中的蓄热材料是石蜡。
作为优选,所述蓄热器的横截面积是容器横截面积的10-26倍。
作为优选,所述热管包括竖直部分、水平部分和竖直管,其中竖直部分的底端连通水平部分,所述水平部分从竖直部分的底端向着远离竖直部分的方向延伸,所述水平部分下部连通多个竖直管,其中竖直管是热管的蒸发端,竖直部分是热管的冷凝端。
作为优选,所述水平部分为扁平管结构,竖直管为圆管结构。
作为优选,水平部分为方形结构。
作为优选,所述的竖直管为多排,其中相邻两排为错列布置。
作为优选,竖直管的圆心与相邻排的临近的两个竖直管圆心构成等腰三角形,所述竖直管的圆心位于等腰三角形顶角的点的位置。
作为优选,竖直管的外径为d,同一排的相邻的竖直管圆心之间的距离为L,竖直管3的圆心与相邻排的临近的两个竖直管圆心构成等腰三角形的顶角为A,则满足下面要求:
Sin(A)=a-b*Ln(d/L),其中Ln是对数函数,a,b是参数,满足如下要求:
0.095<a<0.105,0.29<b<0.31;0.1<d/L<0.7。
作为优选,随着d/L的逐渐变小,a越来越大,b越来越大。
作为优选,15°<A<80°。
作为优选,20°<A<40°。
作为优选,0.2<d/L<0.5。
与现有技术相比较,本实用新型具有如下的优点:
1)本实用新型通过蓄热器的横截面积大于冷源所在的容器的横截面积,可以进一步的增加蓄热器与热源的换热面积,而且可以储存更多的热量,进一步满足加热的要求。
2)本实用新型对热管的蒸发端的结构进行了改进,将热管的蒸发端延伸到更远的方向,在不改变热管的冷凝端体积的情况下,使得热管的蒸发端的吸热面积增加,这样可以扩大热管的吸热范围,可以吸收热源最远端的热量。相对于现有技术中的热管蒸发端和冷凝端保持一致大小,能够提高40%以上的换热效率。同时减少换热器的体积和占地面积,使得结构紧凑。
3)本实用新型在相邻的蒸发端设置连通管,可以在竖直管受热不同而导致压力不同的情况下,可以使得压力大的蒸发端内的流体快速的流向压力小的蒸发端,从而保持整体压力均衡,避免局部过热或者过冷。
4)进行了大量的数值模拟和实验的研究,对热管在蓄热器中的分布结构进行了最优的结构,而且通过研究得出热管分布的最优关系式,进一步提高热管的分布,达到最佳的热吸收,降低成本。
5)本实用新型在相邻的热管之间设置连通管,实现热管之间的压力均衡,换热均衡。
附图说明
图1为本实用新型热管结构示意图。
图2为图1从底部观察的示意图。
图3为本实用新型设置连通管的热管局部结构示意图。
图4为本实用新型热管具体实施方式结构示意图。
图5为图4的本实用新型热管之间设置连通管的结构示意图。
图6是图2的局部放大标注示意图。
图中:1竖直部分2水平部分3竖直管4蓄热器5冷源6热源7连通管8连通管9容器
具体实施方式
下面结合附图对本实用新型的具体实施方式做详细的说明。
本文中,如果没有特殊说明,涉及公式的,“/”表示除法,“×”、“*”表示乘法。
下面结合附图对本实用新型的具体实施方式做详细的说明。
一种热管,包括竖直部分1、水平部分2和竖直管3,其中竖直部分1的底端连通水平部分2,所述水平部分2从竖直部分1的底端向着远离竖直部分1的方向延伸,所述水平部分2下部连通多个竖直管3,其中竖直管3是热管的蒸发端,竖直部分1是热管的冷凝端。
本实用新型热管在运行中,通过竖直管3从热源中吸收热量,然后竖直管3中的流体进行蒸发,通过水平部分进入到竖直部分,然后在竖直部分将热量释放给冷源,流体进行冷凝,依靠重力的作用再进入竖直管3。
本实用新型对热管的通过设置热管的蒸发端的结构进行了改进,将热管的蒸发端延伸到更远的方向,在不改变热管的冷凝端体积的情况下,使得热管的蒸发端的吸热面积增加,这样可以扩大热管的吸热范围,可以吸收热源最远端的热量。相对于现有技术中的热管蒸发端和冷凝端保持一致大小,能够提高45%以上的换热效率。同时减少冷凝端的体积和占地面积,使得结构紧凑。
此外,本实用新型通过设置多个竖直管3作为热管的蒸发端,使得每个竖直管3作为一个个独立的吸热管加入热量的吸收,也增加了整体热管蒸发端的吸热面积。
作为优选,所述热源可以是土壤或者锅炉尾气等。
作为优选,所述冷源为水或者空气。
作为优选,所述水平部分2为扁平管结构,竖直管3为圆管结构。通过设置水平部分为扁平管结构,可以增加竖直管3的分布,进一步提高热量的吸收。
进一步优选,水平部分2为方形结构。
作为优选,如图2所示,所述的竖直管3为多排,其中相邻两排为错列布置。通过错列布置,可以进一步提高热管的吸热量。
作为优选,竖直管3位于相邻排的相邻竖直管3的圆心连接线段的中线的延长线上。即竖直管3的圆心与相邻排的临近的两个竖直管3圆心构成等腰三角形,所述竖直管的圆心位于等腰三角形顶角的点的位置。
作为优选,如图3所示,至少两个相邻的竖直管3之间设置连通管8。在研究中发现,在竖直段吸热的过程中,会出现不同位置的吸热管的吸收热量不同,导致竖直管3之间的压力或者温度不同,这样会导致部分竖直管3受热过高,造成寿命缩短,一旦一个竖直管3出现问题,可能导致整个热管出现无法使用的问题。本实用新型通过大量的研究,在相邻的竖直管设置连通管8,可以在竖直管受热不同而导致压力不同的情况下,可以使得压力大的竖直管3内的流体快速的流向压力小的竖直管3,从而保持整体压力均衡,避免局部过热或者过冷。
作为优选,从竖直管3下部向竖直管3上部,相邻的竖直管3之间设置多个连通管8。通过设置多个连通管,能够使得流体在吸热蒸发过程中不断的均衡压力,保证整个竖直管内的压力均衡。
作为优选,从竖直管3下部向竖直管3上部,相邻连通管8之间的距离不断减小。此目的是为了设置更多的连通管,因为随着流体的向上流动,流体不断的受热,随着流体不断的受热,不同集热管内的受热越来越不均匀,因此通过上述设置,能够保证在流体流动过程中尽快的达到压力均衡。
作为优选,从竖直管3下部向竖直管3上部,相邻连通管之间的距离不断减小的幅度越来越大。通过实验发现,上述设置,能够保证在流体流动过程中更优更快的达到压力均衡。这也是通过大量的研究压力分布变化规律而得来的最佳的连通方式。
作为优选,从竖直管3下部向竖直管3上部,连通管8的直径不断增加。此目的是为了设置保证更大的连通面积,因为随着流体的向上流动,流体不断的受热,随着流体不断的受热,不同集热管内的受热越来越不均匀,因此通过上述设置,能够保证在流体流动过程中尽快的达到压力均衡。
作为优选,从竖直管3下部向竖直管3上部,连通管8的直径不断增加的幅度越来越大。通过实验发现,上述设置,能够保证在流体流动过程中更优更快的达到压力均衡。这也是通过大量的研究压力分布变化规律而得来的最佳的连通方式。
图4展示了一种热管利用系统,作为优选,如图4所示,热管的竖直管3设置在蓄热器4中。所述蓄热器4设置在热源中。所述热源可以是地热能。
作为优选,所述蓄热器4中蓄热材料的熔点是60-80摄氏度,优选65摄氏度。
作为优选,所述蓄热器4中的蓄热材料是石蜡。
本实用新型通过设置蓄热器4,可以将热源6中的热量储存起来,而且因为蓄热器的热熔比较大,因此可以储存更多的热量,因此热管可以更加充分的利用干热源6的热量,而且因为设置蓄热器,蓄热器与热源6接触面积更大,而且可以大大的减小热管和热源6之间的接触热阻,安装方便,吸热效果要远好于热管单独的放置在热源6中。因此通过设置蓄热器可以大大提高热管的吸热效率。通过实验发现,通过设置蓄热器,可以提高15-20%的加热效率,可以进一步节约能源。
作为优选,所述热源为干热岩层的地热能,所述冷源是水,热管用于页岩气的开采中加热水产生蒸汽,将蒸汽引入页岩层来进行页岩气的开采。
作为优选,所述蓄热器4的横截面为方形结构,所述蓄热器4的横截面积大于冷源所在的容器9的横截面积。通过蓄热器4的横截面积大于冷源所在的容器9的横截面积,可以进一步的增加蓄热器与热源6的换热面积,而且可以储存更多的热量,进一步满足加热的要求。
作为优选,所述蓄热器4和容器9的横截面积是正方形结构。蓄热器4的边长大于容器9的边长。
作为优选,所述蓄热器4的横截面积是容器9横截面积的10-26倍,优选是18倍。
作为优选,从蓄热器4的中心向蓄热器的外壁的方向,蓄热器4中的蓄热材料的蓄热能力逐渐变弱。
采取蓄热材料的蓄热能力的逐渐变化,可以进一步提高蓄热能力,能够实现竖直管3的均匀加热。因为越到蓄热器外壁,则因为和热源直接接触,因此此处的温度最高,蓄热材料可以直接被加热,在蓄热材料被充分蓄热后,热量会向蓄热器的内部传递。通过蓄热器蓄热材料的蓄热能力的变化,可以保证外部蓄热材料达到蓄热饱和后,会立刻将热量向内部传递,保证内部也存储热量。这样,竖直管3在蓄热器中的不同位置都能充分吸热,避免有的热管过热,有的热管吸热不够,保证整体热管的吸热均匀,避免部分过热蒸汽损坏,造成产品的维护困难。通过这样设置,可以是热管整体的使用寿命达到相同。同时使得冷源也整体加热均匀。
作为优选,从蓄热器4的中心向蓄热器4的外壁方向,蓄热材料的蓄热能力逐渐减弱的幅度逐渐增加。通过实验和数值模拟发现,采取这种设置,可以进一步提高热管的吸热均匀度。
作为优选,从蓄热器4的中心向蓄热器4的外壁方向,连通管8数量不断增加。此目的是为了设置更多的连通管,因为越靠近蓄热器4的外壁方向,蓄热量最多,流体受热也多,竖直管3内的蒸汽压力也越大,因此通过上述设置,能够保证在流体受热过程中尽快的达到压力均衡。
作为优选,从蓄热器4的中心向蓄热器4的外壁方向,连通管8数量不断增加的幅度越来越大。通过实验发现,上述设置,能够保证在流体受热过程中更优更快的达到压力均衡。这也是通过大量的研究压力分布变化规律而得来的最佳的连通方式。
作为优选从蓄热器4的中心向蓄热器4的外壁方向,连通管8的直径不断增加。此目的是为了设置保证更大的连通面积,因为越靠近蓄热器4的外壁方向,蓄热量最多,流体受热也多,竖直管3内的蒸汽压力也越大,因此通过上述设置,能够保证在流体受热过程中尽快的达到压力均衡。
作为优选,从蓄热器4的中心向蓄热器4的外壁方向,连通管8的直径不断增加的幅度越来越大。通过实验发现,上述设置,能够保证在流体流动过程中更优更快的达到压力均衡。这也是通过大量的研究压力分布变化规律而得来的最佳的连通方式。
在蓄热器内装满了蓄热用石蜡。石蜡类相变蓄热材料具有相变潜热高、几乎没有过冷现象、融化时蒸汽压力低、不易发生化学反应且化学稳定性较好、没有相分离和腐蚀性,以及价格低等优点,成为蓄热材料的首选。石蜡内嵌竖直管3。竖直管3吸收来自蓄热器内石蜡的热量,在顶端竖直部分放热,实现对冷源的加热。
通过数值模拟和实验发现,竖直管3之间的距离,包括同一排的距离和相邻排之间的距离不能过小,过小会导致热管分布过多,导致每根热管的吸热量不足,过大会导致热管分布太少,导致热管过热,因此本申请通过大量的数值模拟和实验,总结出来热管竖直管3分布的最优化的分布,使得热管既不能吸热量不足,又不能吸热量过大。
如图6所示,竖直管3的外径为d,同一排的相邻的竖直管3圆心之间的距离为L,竖直管3的圆心与相邻排的临近的两个竖直管3圆心构成等腰三角形的顶角为A,则满足下面要求:
Sin(A)=a-b*Ln(d/L),其中Ln是对数函数,a,b是参数,满足如下要求:
0.095<a<0.105,0.29<b<0.31;
进一步优选,所述a=0.1016,b=0.3043。
作为优选,随着d/L的逐渐变小,a越来越大,b越来越大。
作为优选,15°<A<80°。
进一步优选,20°<A<40°。
0.1<d/L<0.7,进一步优选,0.2<d/L<0.5。
上述经验公式是通过大量数值模拟和实验得到,通过上述关系式得到的结构,能够实现最优化的热管结构,而且经过试验验证,误差基本上在3%以内。
热管的吸热能力900-1100W,进一步优选为1000W;
热源的温度100-120摄氏度,进一步优选为110℃。
图2所示的热管水平部分优选为正方形,边长为400-600毫米,进一步优选为500毫米。
竖直管3外径d为9-12毫米,进一步优选为11mm。
作为优选,如图4所示,所述系统中包括了两个热管,所述两个热管的水平部分2分别朝向相对的方向延伸.通过设置两个对称的热管,可以在不同方向上吸热,满足换热的需求。
作为优选,如图5所示,互相靠近的两个热管的竖直管3之间设置连通管7。通过设置连通管,可以避免热管之间受热不均匀,实现热管之间的压力均衡,避免不同热管之间的受热不均匀导致的缺陷。
作为优选,从竖直管3下部向竖直管3上部,相邻连通管7之间的距离不断减小。此目的是为了设置更多的连通管,因为随着流体的向上流动,流体不断的受热,随着流体不断的受热,不同热管内的受热越来越不均匀,因此通过上述设置,能够保证在流体流动过程中尽快的达到压力均衡。
作为优选,从竖直管3下部向竖直管3上部,相邻连通管7之间的距离不断减小的幅度越来越大。通过实验发现,上述设置,能够保证在流体流动过程中更优更快的达到压力均衡。这也是通过大量的研究压力分布变化规律而得来的最佳的连通方式。
作为优选,从竖直管3下部向竖直管3上部,连通管7的直径不断增加。此目的是为了设置保证更大的连通面积,因为随着流体的向上流动,流体不断的受热,随着流体不断的受热,不同热管内的受热越来越不均匀,因此通过上述设置,能够保证在流体流动过程中尽快的达到压力均衡。
作为优选,从竖直管3下部向竖直管3上部,连通管7的直径不断增加的幅度越来越大。通过实验发现,上述设置,能够保证在流体流动过程中更优更快的达到压力均衡。这也是通过大量的研究压力分布变化规律而得来的最佳的连通方式。
虽然本实用新型已以较佳实施例披露如上,但本实用新型并非限定于此。任何本领域技术人员,在不脱离本实用新型的精神和范围内,均可作各种更动与修改,因此本实用新型的保护范围应当以权利要求所限定的范围为准。

Claims (10)

1.一种拓展蒸发端面积的热管蓄热换热器,包括重力热管,所述热管包括蒸发端和冷凝端,其特征在于,所述蒸发端设置在蓄热器中,所述蓄热器设置在热源中,所述冷凝端设置在冷源的容器中,所述蓄热器的横截面积大于冷源所在的容器的横截面积。
2.如权利要求1所述的换热器,其特征在于,所述热源是地热能。
3.如权利要求1所述的换热器,其特征在于,所述蓄热器中蓄热材料的熔点是60-80摄氏度。
4.如权利要求1所述的换热器,其特征在于,所述蓄热器中的蓄热材料是石蜡。
5.如权利要求1所述的换热器,其特征在于,所述蓄热器的横截面积是容器横截面积的10-26倍。
6.如权利要求1所述的换热器,其特征在于,所述热管包括竖直部分、水平部分和竖直管,其中竖直部分的底端连通水平部分,所述水平部分从竖直部分的底端向着远离竖直部分的方向延伸,所述水平部分下部连通多个竖直管,其中竖直管是热管的蒸发端,竖直部分是热管的冷凝端。
7.如权利要求6所述的换热器,其特征在于,所述的竖直管为多排,其中相邻两排为错列布置。
8.如权利要求7所述的换热器,其特征在于,竖直管的圆心与相邻排的临近的两个竖直管圆心构成等腰三角形,所述竖直管的圆心位于等腰三角形顶角的点的位置。
9.如权利要求8所述的换热器,其特征在于,竖直管的外径为d,同一排的相邻的竖直管圆心之间的距离为L,竖直管3的圆心与相邻排的临近的两个竖直管圆心构成等腰三角形的顶角为A,则满足下面要求:
Sin(A)=a-b*Ln(d/L),其中Ln是对数函数,a,b是参数,满足如下要求:
0.095<a<0.105,0.29<b<0.31;0.1<d/L<0.7。
10.如权利要求9所述的换热器,其特征在于,随着d/L的逐渐变小,a越来越大,b越来越大。
CN201820255196.2U 2018-02-13 2018-02-13 一种拓展蒸发端面积的热管蓄热换热器 Active CN207991341U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201820255196.2U CN207991341U (zh) 2018-02-13 2018-02-13 一种拓展蒸发端面积的热管蓄热换热器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201820255196.2U CN207991341U (zh) 2018-02-13 2018-02-13 一种拓展蒸发端面积的热管蓄热换热器

Publications (1)

Publication Number Publication Date
CN207991341U true CN207991341U (zh) 2018-10-19

Family

ID=63825632

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201820255196.2U Active CN207991341U (zh) 2018-02-13 2018-02-13 一种拓展蒸发端面积的热管蓄热换热器

Country Status (1)

Country Link
CN (1) CN207991341U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108225068A (zh) * 2018-02-13 2018-06-29 国网山东省电力公司济宁供电公司 一种拓展蒸发端面积的热管蓄热换热器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108225068A (zh) * 2018-02-13 2018-06-29 国网山东省电力公司济宁供电公司 一种拓展蒸发端面积的热管蓄热换热器

Similar Documents

Publication Publication Date Title
CN109668460A (zh) 一种重力热管
CN108151564A (zh) 一种连通管管径变化的热管蓄热换热器
CN109668461A (zh) 一种重力热管
Wang et al. Effect of inclination angle on the charging process of flat heat pipe-assisted latent heat storage unit
CN208205882U (zh) 一种连通管管径变化的重力热管
Javidan et al. Heat storage by melting the organic material of Paraffin RT50 in a heat exchanger with eccentric pipes
CN108204759A (zh) 一种连通管数量变化的热管蓄热换热器
CN207991341U (zh) 一种拓展蒸发端面积的热管蓄热换热器
CN207991342U (zh) 一种连通管数量变化的热管蓄热换热器
CN208075636U (zh) 一种连通管管径变化的热管蓄热换热器
CN207963584U (zh) 一种新型热管结构
CN204787967U (zh) 一种绝热段具有弯曲角度的热管
CN108168344B (zh) 一种新型热管结构
CN205784775U (zh) 一种套管相变蓄热换热器
CN208075637U (zh) 一种压力均衡的热管结构
CN108225068A (zh) 一种拓展蒸发端面积的热管蓄热换热器
CN108168346A (zh) 一种蓄热能力变化的热管蓄热换热器
CN208171081U (zh) 一种蓄热能力变化的热管蓄热换热器
CN205174886U (zh) 一种横式热管型太阳能集热器
CN208205881U (zh) 一种连通管间距变化的重力热管
CN108225070B (zh) 一种内部压力分配均衡的热管
CN208011831U (zh) 一种有蓄热能力的热管装置
CN201885462U (zh) 一种热管式太阳能热水器高温控制装置
Idrus et al. Experimental Model to Optimize the Design of Cylindrical Heat Pipes for Solar Collector Application

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant