CN207909193U - A kind of image filtering circuit of removal salt-pepper noise - Google Patents

A kind of image filtering circuit of removal salt-pepper noise Download PDF

Info

Publication number
CN207909193U
CN207909193U CN201721204701.2U CN201721204701U CN207909193U CN 207909193 U CN207909193 U CN 207909193U CN 201721204701 U CN201721204701 U CN 201721204701U CN 207909193 U CN207909193 U CN 207909193U
Authority
CN
China
Prior art keywords
bit
module
shift
output end
logic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201721204701.2U
Other languages
Chinese (zh)
Inventor
陶砚蕴
王沁宇
姜鑫
张立军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN201721204701.2U priority Critical patent/CN207909193U/en
Application granted granted Critical
Publication of CN207909193U publication Critical patent/CN207909193U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Image Processing (AREA)

Abstract

本实用新型公开了一种去除椒盐噪声的图像滤波电路,包括第一右移1位逻辑模块、第二右移1位逻辑模块、第三右移1位逻辑模块、第四右移1位逻辑块、第一8位反相器、第二8位反相器、第一8位数值比较器、第二8位数值比较器、第三8位数值比较器、第四8位数值比较器模块、8位异或运算、第一8位与运算、第二8位与运算、第三8位与运算块、8位或运算、第一左移1位逻辑、第二左移1位逻辑、左移2位逻辑、8位加法器、8位缓冲器和8位均值运算。本实用新型进化滤波电路利用智能进化算法的寻优特性,通过比较样本图像滤波前后效果不断更新滤波器结构,最终寻求一组合适的函数级关系操作集合,使进化滤波电路能够得到最好的滤波效果。

The utility model discloses an image filter circuit for removing salt and pepper noise, which comprises a first right-shift 1-bit logic module, a second right-shift 1-bit logic module, a third right-shift 1-bit logic module, and a fourth right-shift 1-bit logic module. block, first 8-bit inverter, second 8-bit inverter, first 8-bit numerical comparator, second 8-bit numerical comparator, third 8-bit numerical comparator, fourth 8-bit numerical comparator block , 8-bit XOR operation, the first 8-bit AND operation, the second 8-bit AND operation, the third 8-bit AND operation block, 8-bit OR operation, the first left-shift 1-bit logic, the second left-shift 1-bit logic, 2-bit left shift logic, 8-bit adder, 8-bit buffer, and 8-bit average operation. The evolutionary filter circuit of the utility model utilizes the optimization characteristic of the intelligent evolutionary algorithm, continuously updates the filter structure by comparing the effect of the sample image before and after filtering, and finally seeks a set of suitable function-level relationship operation sets, so that the evolutionary filter circuit can obtain the best filtering Effect.

Description

一种去除椒盐噪声的图像滤波电路An image filter circuit for removing salt and pepper noise

技术领域technical field

本实用新型涉及一种去除椒盐噪声的图像滤波电路,属于图像处理技术领域。The utility model relates to an image filter circuit for removing salt and pepper noise, which belongs to the technical field of image processing.

背景技术Background technique

图像滤波一直是图像预处理中的热点,由于外界环境及自身物理器件的影响,图像在传输和获取的过程中,总是不可避免地产生噪声,进行图像除噪处理,是图像进行其他后续运算的必要预处理步骤。Image filtering has always been a hot spot in image preprocessing. Due to the influence of the external environment and its own physical devices, noise is always inevitably generated during the process of image transmission and acquisition. Image denoising processing is the process of performing other subsequent operations on the image. necessary preprocessing steps.

常用的图像滤波器有中值,均值滤波器,LEE、FROST和KUAN滤波器。中值滤波器是一种非线性滤波器,能够较好地保留住图像的细节和边缘,弱化模糊作用。FROST滤波算法假定影像是平稳过程,其冲激响应为一双边指数函数,FROST可以看成是低通滤波器;KUAN波算法假设噪声为与信号相关的加法噪声,然后运用最小方差估计获得固定窗口中观察强度和局部平均强度的线性组合;LEE滤波是使用滤波窗口内样本均值和方差的自适应滤波算法;Astola 等在中值滤波进一步的研究基础上,提出的矢量中值滤波算法;Trahanias等对色图像的欠量像素进行幅度、相位的分析比较,提出一种根据像素矢量的方向距离进行统计排序的矢量方向滤波器;Karakos等则将以上两种滤波器相结合,进而形成矢量幅度方向滤波器;Lukac将加权中值滤波器扩展到彩色图像除噪应用中,集合矢量方向滤波器的特性,提出矢量加权方向中值滤波器,对其中的权值系数提出梯度迭代寻优求解的方法。Commonly used image filters are median, mean filter, LEE, FROST and KUAN filters. The median filter is a nonlinear filter, which can better preserve the details and edges of the image and weaken the blurring effect. The FROST filter algorithm assumes that the image is a stationary process, and its impulse response is a bilateral exponential function. FROST can be regarded as a low-pass filter; the KUAN wave algorithm assumes that the noise is additive noise related to the signal, and then uses the minimum variance estimation to obtain a fixed window. The linear combination of medium observed intensity and local average intensity; LEE filtering is an adaptive filtering algorithm using the sample mean and variance in the filtering window; Astola et al. proposed a vector median filtering algorithm based on further research on median filtering; Trahanias et al. Analyzing and comparing the magnitude and phase of the underpixels of the color image, a vector direction filter is proposed that is statistically sorted according to the direction distance of the pixel vector; Karakos et al. combine the above two filters to form a vector magnitude direction Filter; Lukac extends the weighted median filter to the application of color image denoising, integrates the characteristics of the vector direction filter, proposes a vector weighted direction median filter, and proposes a gradient iterative optimization solution method for the weight coefficients .

近些年,除了使用传统的优化方法进行滤波性能的改进,FPGA提供了一种求解复杂系统优化问题的通用框架,在图像滤波的进化设计领域,Sekanina等提出采用笛卡儿遗传程序设计(Cartesian Genetic Programming -CGP)进行图像除噪滤波器的结构设计,取得较好的效果;Bao等提出了一种多目标滤波进化电路,在最小化滤波前后误差的基础上对电路资源进行了优化;Vasicek在Sekanina方法的基础上提出了5╳5滤波窗口的改进的进化方案,并进行了多种噪声下的多种图像的滤波实验。In recent years, in addition to using traditional optimization methods to improve filtering performance, FPGA provides a general framework for solving complex system optimization problems. In the field of evolutionary design of image filtering, Sekanina et al. proposed the use of Cartesian genetic programming (Cartesian Genetic Programming -CGP) to design the structure of the image denoising filter, and achieved good results; Bao et al. proposed a multi-objective filtering evolutionary circuit, which optimized the circuit resources on the basis of minimizing the error before and after filtering; Vasicek Based on the Sekanina method, an improved evolution scheme of 5╳5 filtering window is proposed, and the filtering experiments of various images under various noises are carried out.

然而现有技术存在以下缺点:1、目前的滤波算法多数仍然是软件滤波,其实时场合的应用和处理速率都有局限性,有些算法硬件化需要进行复杂的人工转换;2、传统的线性均值滤波器和非线性统计滤波器都采用了简单的取平均值或是排序关系操作,滤波在细节保留上仍有缺陷;3、传统的线性均值滤波器和非线性统计滤波器都采用了简单的取平均值或是排序关系操作,滤波在细节保留上仍有缺陷。However, the existing technology has the following disadvantages: 1. Most of the current filtering algorithms are still software filtering, which has limitations in real-time application and processing speed, and some algorithms require complex manual conversion for hardware; 2. Traditional linear mean Both the filter and the nonlinear statistical filter use simple averaging or sorting relationship operations, and the filtering still has defects in detail retention; 3. The traditional linear mean filter and nonlinear statistical filter both use simple Taking the average value or sorting the relationship operation, the filtering still has defects in detail preservation.

有鉴于此,开发一种新的去除椒盐噪声的图像滤波电路,解决上述缺陷,显然是有必要的。In view of this, it is obviously necessary to develop a new image filter circuit for removing salt and pepper noise to solve the above defects.

发明内容Contents of the invention

本实用新型的发明目的是提供一种去除椒盐噪声的图像滤波电路。The purpose of the invention of the utility model is to provide an image filter circuit for removing salt and pepper noise.

为达到上述发明目的,本实用新型采用的技术方案是:一种去除椒盐噪声的图像滤波电路,包括第一右移1位逻辑模块、第二右移1位逻辑模块、第三右移1位逻辑模块、第四右移1位逻辑模块、第一8位反相器模块、第二8位反相器模块、第一8位数值比较器模块、第二8位数值比较器模块、第三8位数值比较器模块、第四8位数值比较器模块、1个8位异或运算模块、第一8位与运算模块、第二8位与运算模块、第三8位与运算模块、1个8位或运算模块、第一左移1位逻辑模块、第二左移1位逻辑模块、1个左移2位逻辑模块、1个8位加法器模块、1个8位缓冲器模块和1个8位均值运算模块,In order to achieve the purpose of the above invention, the technical solution adopted by the utility model is: an image filter circuit for removing salt and pepper noise, including a first right-shift 1-bit logic module, a second right-shift 1-bit logic module, and a third right-shift 1-bit logic module. Logic module, the fourth right shift 1-bit logic module, the first 8-bit inverter module, the second 8-bit inverter module, the first 8-bit numerical comparator module, the second 8-bit numerical comparator module, the third 8-bit numerical comparator module, the fourth 8-bit numerical comparator module, 1 8-bit XOR operation module, the first 8-bit AND operation module, the second 8-bit AND operation module, the third 8-bit AND operation module, 1 An 8-bit OR operation module, a first left-shift 1-bit logic module, a second left-shift 1-bit logic module, a left-shift 2-bit logic module, an 8-bit adder module, an 8-bit buffer module and 1 8-bit mean calculation module,

所述第一8位数值比较器模块的输出端与所述第二8位数值比较器模块的一个输入端连接,所述第二8位数值比较器模块的输出端与所述第三8位数值比较器模块的一个输入端连接,所述第三8位数值比较器模块的输出端与所述第四8位数值比较器模块的一个输入端连接,The output end of the first 8-bit numerical comparator module is connected to an input end of the second 8-bit numerical comparator module, and the output end of the second 8-bit numerical comparator module is connected to the third 8-bit numerical comparator module. An input end of the numerical comparator module is connected, and an output end of the third 8-bit numerical comparator module is connected to an input end of the fourth 8-bit numerical comparator module,

所述第一8位反相器模块的输出端与所述8位异或运算模块的一个输入端连接,所述8位异或运算模块的输出端与所述第一左移1位逻辑模块的输入端连接,所述第一左移1位逻辑模块的输出端与所述8位或运算模块的一个输入端连接,所述8位或运算模块的输出端与所述第三8位数值比较器模块的另一输入端连接,The output end of the first 8-bit inverter module is connected to an input end of the 8-bit XOR operation module, and the output end of the 8-bit XOR operation module is connected to the first left-shift 1-bit logic module The input terminal of the first left-shift 1-bit logic module is connected to an input terminal of the 8-bit or operation module, and the output terminal of the 8-bit or operation module is connected to the third 8-bit value The other input of the comparator module is connected,

所述第一右移1位逻辑模块的输出端和所述第二右移1位逻辑模块的输出端分别与所述8位加法器模块的输入端连接,所述8位加法器模块的输出端与所述8位异或运算模块的另一个输入端连接,The output end of the first right-shift 1-bit logic module and the output end of the second right-shift 1-bit logic module are respectively connected to the input ends of the 8-bit adder module, and the output of the 8-bit adder module The end is connected with the other input end of the 8-bit XOR operation module,

所述第三右移1位逻辑模块的输出端与所述8位与运算模块的输入端连接,所述8位与运算模块的输出端与所述第四右移1位逻辑模块连接,所述第四右移1位逻辑模块的输出端与所述第二8位与运算的输入端连接,所述第二8位与运算的输出端与所述第三8位与运算的输入端连接,The output end of the third right-shifting 1-bit logic module is connected to the input end of the 8-bit AND operation module, and the output end of the 8-bit AND operation module is connected to the fourth right-shifting 1-bit logic module, so The output end of the fourth right shift 1-bit logic module is connected to the input end of the second 8-bit AND operation, and the output end of the second 8-bit AND operation is connected to the input end of the third 8-bit AND operation ,

所述第二8位反相器模块的输出端与所述第二8位与运算模块的另一输入端连接,The output end of the second 8-bit inverter module is connected to the other input end of the second 8-bit AND operation module,

所述左移2位逻辑模块的输出端与所述第二左移1位逻辑模块的输入端连接,所述第二左移1位逻辑模块的输出端与所述第三8位与运算模块的另一输入端连接,所述第三8位与运算模块的输出端与所述第四8位数值比较器模块的另一输入端连接,The output end of the left-shift 2-bit logic module is connected to the input end of the second left-shift 1-bit logic module, and the output end of the second left-shift 1-bit logic module is connected to the third 8-bit AND operation module The other input terminal is connected, the output terminal of the third 8-bit AND operation module is connected to the other input terminal of the fourth 8-bit value comparator module,

所述8位缓冲器模块的输出端和第四8位数值比较器模块的输出端与所述8位均值运算模块的输入端连接。The output terminal of the 8-bit buffer module and the output terminal of the fourth 8-bit numerical comparator module are connected to the input terminal of the 8-bit mean value operation module.

优选地,第四8位数值比较器模块的输出端和所述8位缓冲器模块的输出端分别连接到8位均值运算模块的两个输入端,所述8位均值运算模块的输出端连接有由8个D触发器组成的同步电路。Preferably, the output terminal of the fourth 8-bit numerical comparator module and the output terminal of the 8-bit buffer module are respectively connected to the two input terminals of the 8-bit average value operation module, and the output terminals of the 8-bit average value operation module are connected to There is a synchronous circuit consisting of 8 D flip-flops.

上文中,8个D触发器之间通过时钟信号Clk同步并行运行,8个D触发器之间没有连接,最后的电路输出为8个触发器的Q输出组合。In the above, the 8 D flip-flops run synchronously and in parallel through the clock signal Clk, there is no connection between the 8 D flip-flops, and the final circuit output is the Q output combination of the 8 flip-flops.

由于上述技术方案运用,本实用新型与现有技术相比具有下列优点:Due to the application of the above-mentioned technical solutions, the utility model has the following advantages compared with the prior art:

1.本实用新型在滤波算法硬件化的同时,实现图像细节和边缘最大程度的保留,降低高误差点数量,提高滤波后的视觉效果;1. While the filtering algorithm is hardware-based, the utility model realizes maximum retention of image details and edges, reduces the number of high error points, and improves the visual effect after filtering;

2.本实用新型进化滤波电路利用智能进化算法的寻优特性,通过比较样本图像滤波前后效果不断更新滤波器结构,最终寻求一组合适的函数级关系操作集合,使进化滤波电路能够得到最好的滤波效果;2. The evolutionary filter circuit of the utility model utilizes the optimization characteristic of the intelligent evolutionary algorithm, and continuously updates the filter structure by comparing the effect of the sample image before and after filtering, and finally seeks a set of suitable function-level relational operation sets, so that the evolutionary filter circuit can obtain the best filter effect;

3.本实用新型的进化电路具有很强的硬件实现灵活性,可以移植于多种硬件平台上,为滤波算法的实时运用提供可能。3. The evolutionary circuit of the utility model has strong hardware implementation flexibility, can be transplanted on various hardware platforms, and provides possibility for real-time application of filtering algorithms.

附图说明Description of drawings

图1是本实用新型的结构示意图。Fig. 1 is the structural representation of the utility model.

其中:1、第一右移1位逻辑模块;2、第二右移1位逻辑模块;3、第三右移1位逻辑模块;4、第四右移1位逻辑模块;5、第一8位反相器模块;6、第二8位反相器模块;7、第一8位数值比较器模块;8、第二8位数值比较器模块;9、第三8位数值比较器模块;10、第四8位数值比较器模块;11、8位异或运算模块;12、第一8位与运算模块;13、第二8位与运算模块;14、第三8位与运算模块;15、8位或运算模块;16、第一左移1位逻辑模块;17、第二左移1位逻辑模块;18、左移2位逻辑模块;19、8位加法器模块; 20、8位缓冲器模块;21、8位均值运算模块。Among them: 1. The first 1-bit right-shift logic module; 2. The second 1-bit right-shift logic module; 3. The third 1-bit right-shift logic module; 4. The fourth 1-bit right-shift logic module; 5. The first 8-bit inverter module; 6. The second 8-bit inverter module; 7. The first 8-bit numerical comparator module; 8. The second 8-bit numerical comparator module; 9. The third 8-bit numerical comparator module 10. The fourth 8-bit numerical comparator module; 11. The 8-bit XOR operation module; 12. The first 8-bit AND operation module; 13. The second 8-bit AND operation module; 14. The third 8-bit AND operation module ; 15, 8-bit OR operation module; 16, the first left-shift 1-bit logic module; 17, the second left-shift 1-bit logic module; 18, left-shift 2-bit logic module; 19, 8-bit adder module; 20, 8-bit buffer module; 21, 8-bit mean calculation module.

具体实施方式Detailed ways

下面结合附图及实施例对本实用新型作进一步描述:Below in conjunction with accompanying drawing and embodiment the utility model is further described:

实施例一:参见图1所示,一种去除椒盐噪声的图像滤波电路,包括第一右移1位逻辑模块1、第二右移1位逻辑模块2、第三右移1位逻辑模块3、第四右移1位逻辑模块4、第一8位反相器模块5、第二8位反相器模块6、第一8位数值比较器模块7、第二8位数值比较器模块8、第三8位数值比较器模块9、第四8位数值比较器模块10、1个8位异或运算模块11、第一8位与运算模块12、第二8位与运算模块13、第三8位与运算模块14、1个8位或运算模块15、第一左移1位逻辑模块16、第二左移1位逻辑模块17、1个左移2位逻辑模块18、1个8位加法器模块19、1个8位缓冲器模块20和1个8位均值运算模块21,Embodiment 1: Referring to FIG. 1 , an image filter circuit for removing salt and pepper noise, including a first right-shift 1-bit logic module 1, a second right-shift 1-bit logic module 2, and a third right-shift 1-bit logic module 3 , the fourth right shift 1-bit logic module 4, the first 8-bit inverter module 5, the second 8-bit inverter module 6, the first 8-bit numerical comparator module 7, the second 8-bit numerical comparator module 8 , the third 8-bit numerical comparator module 9, the fourth 8-bit numerical comparator module 10, one 8-bit XOR operation module 11, the first 8-bit AND operation module 12, the second 8-bit AND operation module 13, the first 8-bit AND operation module 13, Three 8-bit AND operation modules 14, one 8-bit OR operation module 15, the first left-shift 1-bit logic module 16, the second left-shift 1-bit logic module 17, one left-shift 2-bit logic module 18, one 8 Bit adder module 19, 1 8-bit buffer module 20 and 1 8-bit average computing module 21,

所述第一8位数值比较器模块7的输出端与所述第二8位数值比较器模块8的一个输入端连接,所述第二8位数值比较器模块8的输出端与所述第三8位数值比较器模块9的一个输入端连接,所述第三8位数值比较器模块9的输出端与所述第四8位数值比较器模块10的一个输入端连接,The output end of the first 8-bit numerical comparator module 7 is connected to an input end of the second 8-bit numerical comparator module 8, and the output end of the second 8-bit numerical comparator module 8 is connected to the first 8-bit numerical comparator module. One input end of three 8-bit numerical comparator modules 9 is connected, and the output end of the third 8-bit numerical comparator module 9 is connected with an input end of the fourth 8-bit numerical comparator module 10,

所述第一8位反相器模块的输出端与所述8位异或运算模块11的一个输入端连接,所述8位异或运算模块11的输出端与所述第一左移1位逻辑模块17的输入端连接,所述第一左移1位逻辑模块17的输出端与所述8位或运算模块11的一个输入端连接,所述8位或运算模块11的输出端与所述第三8位数值比较器模块9的另一输入端连接,The output end of the first 8-bit inverter module is connected to an input end of the 8-bit XOR operation module 11, and the output end of the 8-bit XOR operation module 11 is connected to the first left-shifted 1-bit The input end of logic module 17 is connected, and the output end of described first left-shift 1 bit logic module 17 is connected with an input end of described 8-bit or operation module 11, and the output end of described 8-bit or operation module 11 is connected with all The other input end of the third 8-bit value comparator module 9 is connected,

所述第一右移1位逻辑模块1的输出端和所述第二右移1位逻辑模块2的输出端分别与所述8位加法器模块19的输入端连接,所述8位加法器模块19的输出端与所述8位异或运算模块15的另一个输入端连接,The output end of the first right-shift 1-bit logic module 1 and the output end of the second right-shift 1-bit logic module 2 are respectively connected to the input end of the 8-bit adder module 19, and the 8-bit adder The output end of module 19 is connected with the other input end of described 8-bit XOR operation module 15,

所述第三右移1位逻辑模块3的输出端与所述8位与运算模块12的输入端连接,所述8位与运算模块12的输出端与所述第四右移1位逻辑模块4连接,所述第四右移1位逻辑模块4的输出端与所述第二8位与运算13的输入端连接,所述第二8位与运算模块13的输出端与所述第三8位与运算模块14的输入端连接,The output end of the third right-shifting 1-bit logic module 3 is connected to the input end of the 8-bit AND operation module 12, and the output end of the 8-bit AND operation module 12 is connected to the fourth right-shift 1-bit logic module 4 connection, the output terminal of the fourth right-shift 1-bit logic module 4 is connected with the input terminal of the second 8-bit AND operation 13, and the output terminal of the second 8-bit AND operation module 13 is connected with the third 8 bits are connected with the input end of the arithmetic module 14,

所述第二8位反相器模块6的输出端与所述第二8位与运算模块13的另一输入端连接,The output terminal of the second 8-bit inverter module 6 is connected to the other input terminal of the second 8-bit AND operation module 13,

所述左移2位逻辑模块18的输出端与所述第二左移1位逻辑模块17的输入端连接,所述第二左移1位逻辑模块17的输出端与所述第三8位与运算模块14的另一输入端连接,所述第三8位与运算模块1的输出端与所述第四8位数值比较器模块10的另一输入端连接,The output end of described left-shift 2-bit logic module 18 is connected with the input end of described second left-shift 1-bit logic module 17, and the output end of described second left-shift 1-bit logic module 17 is connected with the third 8-bit logic module 17. It is connected with the other input end of the operation module 14, and the output end of the third 8-bit and operation module 1 is connected with the other input end of the fourth 8-bit value comparator module 10,

所述8位缓冲器模块20的输出端和第四8位数值比较器模块10的输出端与所述8位均值运算模块21的输入端连接。The output terminal of the 8-bit buffer module 20 and the output terminal of the fourth 8-bit value comparator module 10 are connected to the input terminal of the 8-bit average value operation module 21 .

本实施例中,第四8位数值比较器模块的输出端和所述8位缓冲器模块的输出端分别连接到8位均值运算模块的两个输入端,所述8位均值运算模块的输出端连接有由8个D触发器组成的同步电路。In this embodiment, the output terminal of the fourth 8-bit numerical comparator module and the output terminal of the 8-bit buffer module are respectively connected to the two input terminals of the 8-bit mean value calculation module, and the output of the 8-bit mean value calculation module The terminal is connected with a synchronous circuit composed of 8 D flip-flops.

上文中,8个D触发器之间通过时钟信号Clk同步并行运行,8个D触发器之间没有连接,最后的电路输出为8个触发器的Q输出组合。In the above, the 8 D flip-flops run synchronously and in parallel through the clock signal Clk, there is no connection between the 8 D flip-flops, and the final circuit output is the Q output combination of the 8 flip-flops.

本实用新型涉及的名词解释:Explanation of terms involved in the utility model:

1.图像滤波:除去图像在传输和获取过程中产生的不可避免的噪声的处理方式:图像进行其他后续运算的必要预处理步骤。1. Image filtering: the processing method to remove the inevitable noise generated in the process of image transmission and acquisition: a necessary preprocessing step for other subsequent operations on the image.

2.像素点:0~255的8位二进制数,图像滤波输入的基本单位。2. Pixel: 8-bit binary number from 0 to 255, the basic unit of image filter input.

本实用新型中图像滤波的输入是以像素点为单位,像素点是0~255的8位二进制数,设滤波像素点为I(x, y),图像滤波的窗口可以为3╳3、5╳5、7╳7或者9╳9,窗口越大,滤波后峰值信噪比数值可能更好,但图像的视觉效果容易模糊化,同时也增加了计算开销,因此本专利使用的滤波是3╳3窗口,每次计算取图像象素点I(x, y)领域的9个像素点{I(x-1, y),I(x, y),I(x+1,y),I(x-1, y-1),I(x, y-1),I(x+1, y-1),I(x-1, y+1),I(x,y+1),I(x+1, y+1)}作为输入,滤波电路的输出为滤波后一个像素点。9个输入就用T1~T9,代表了电路输入的9个像素点。In the utility model, the input of image filtering is based on pixel points, and the pixel points are 8-bit binary numbers of 0 to 255. If the filtering pixel points are I(x, y), the window of image filtering can be 3╳3,5 ╳5, 7╳7 or 9╳9, the larger the window, the better the peak signal-to-noise ratio value after filtering, but the visual effect of the image is easy to blur, and it also increases the calculation cost, so the filtering used in this patent is 3 ╳3 window, each calculation takes 9 pixels in the image pixel point I(x, y) field {I(x-1, y), I(x, y), I(x+1, y), I(x-1, y-1), I(x, y-1), I(x+1, y-1), I(x-1, y+1), I(x,y+1) , I(x+1, y+1)} is used as input, and the output of the filter circuit is one pixel after filtering. The 9 inputs use T1~T9, representing the 9 pixels of the circuit input.

本实施例中3╳3表格共有9个像素点,对应9个像素输入端,由上往下第一行由左往右依次为第一像素输入端、第二像素输入端、第三像素输入端,第二行由左往右依次为第四像素输入端、第五像素输入端、第六像素输入端,第三行由左往右依次为第九像素输入端、第八像素输入端、第七像素输入端,第一像素输入端连接入第三8位右移1位模块3; 第二像素输入端连接第一8位数值比较器模块7的第一输入端和第一8位右移1位模块1; 第三像素输入端连接第二8位反相器模块6和第二8位数值比较器模块8; 第四像素输入端连接第二8位右移1位模块2; 第五像素输入端连接8位异或运算模块11; 第六像素输入端连接8位左移2位模块18; 第七像素输入端连接第一8位数值比较器模块7的第二输入端; 第八像素输入端连接第一8位反相器模块5; 第九像素输入端连接8位缓冲器模块20。In this embodiment, the 3╳3 table has a total of 9 pixel points, corresponding to 9 pixel input terminals, and the first row from top to bottom and from left to right are the first pixel input terminal, the second pixel input terminal, and the third pixel input terminal. terminal, the second row from left to right is the fourth pixel input terminal, the fifth pixel input terminal, the sixth pixel input terminal, the third row from left to right is the ninth pixel input terminal, the eighth pixel input terminal, The seventh pixel input terminal, the first pixel input terminal is connected to the third 8-bit right-shift 1-bit module 3; the second pixel input terminal is connected to the first input terminal of the first 8-bit value comparator module 7 and the first 8-bit right-shift module 3 Shift 1 bit module 1; The third pixel input terminal is connected to the second 8-bit inverter module 6 and the second 8-bit value comparator module 8; The fourth pixel input terminal is connected to the second 8-bit right shift 1-bit module 2; The five-pixel input terminal is connected to the 8-bit XOR operation module 11; the sixth pixel input terminal is connected to the 8-bit left shift 2-bit module 18; the seventh pixel input terminal is connected to the second input terminal of the first 8-bit value comparator module 7; The eight-pixel input terminal is connected to the first 8-bit inverter module 5; the ninth pixel input terminal is connected to the 8-bit buffer module 20.

本实用新型的滤波电路的组成模块,电路中每个逻辑模块的基本操作是2输入(像素点)的逻辑函数,对以集合{与(ADD)、或(OR)、非(NOT)}为“基”的电路而言,就是16位二进制为输入的逻辑运算,滤波运算的最小窗口为3╳3(9个像素点),滤波电路就是72位输入的较大规模电路,它可以进化以8位二进制逻辑运算集合(例如:{移位(Shift)、加法(ADD)、位与(bit AND)、位或(bit OR)、位异或(bit XOR)})为“基”的电路,可以有效进化滤波运算电路。The filter circuit of the utility model is composed of modules, the basic operation of each logic module in the circuit is a logic function of 2 inputs (pixel points), and the set {and (ADD), or (OR), not (NOT)} is As far as the "base" circuit is concerned, it is a logic operation with 16-bit binary input, and the minimum window of the filter operation is 3╳3 (9 pixels). The filter circuit is a large-scale circuit with 72-bit input, which can evolve to A set of 8-bit binary logical operations (for example: {shift (Shift), addition (ADD), bit AND (bit AND), bit OR (bit OR), bit exclusive OR (bit XOR)}) as the "base" circuit , can effectively evolve the filtering operation circuit.

本实用新型中该电路结构中包含:“右移1位”逻辑模块4个, “8位反相器”2个, “8位数值比较器”4个, “8位异或运算”模块1个, “8位’与’运算”模块3个, “8位’或’运算”模块1个, “左移1位”逻辑模块2个, “右移2位”逻辑模块1个, “8位加法器”1个, “8位缓冲器”1个, “8位均值运算模块”1个以及8个D触发器。在输出端加入由8个D触发器组成的同步电路,即加入消除竞争与冒险机制,达到消除输出端中竞争与冒险的目的。In the utility model, the circuit structure includes: 4 "right shift 1 bit" logic modules, 2 "8-bit inverters", 4 "8-bit numerical comparators", 1 "8-bit XOR operation" module , 3 "8-bit 'and' operation modules, 1 "8-bit 'or' operation" module, 2 "left shift 1 bit" logic modules, 1 "right shift 2 bit" logic modules, "8 1 "bit adder", 1 "8-bit buffer", 1 "8-bit average value operation module" and 8 D flip-flops. A synchronous circuit composed of 8 D flip-flops is added at the output end, that is, a mechanism for eliminating competition and risk is added to achieve the purpose of eliminating competition and risk at the output end.

椒盐噪声滤波的电路FPGA实现。滤波电路的每个模块都是16位的输入,共有19个这样的模块,因此,采用FPGA的可编程逻辑系统对模块进行设计,用户不仅可以方便地设计出所需的滤波电路各模块的逻辑功能,实现系统的重复编程,从而大大的降低了开发难度,缩短了研发周期,提升了系统运行速度。Circuit FPGA implementation of salt and pepper noise filtering. Each module of the filter circuit has a 16-bit input, and there are 19 such modules in total. Therefore, the programmable logic system of FPGA is used to design the module, and the user can not only conveniently design the logic of each module of the filter circuit Function, realize the repeated programming of the system, thus greatly reducing the difficulty of development, shortening the development cycle, and improving the operating speed of the system.

表1滤波电路在EPM9320LC84-15的硬件实现 In LCs Utilized P-terms 去除椒盐噪声的滤波电路实现 31 45/320 14% 150 Table 1 The hardware implementation of the filter circuit in EPM9320LC84-15 In LCs Utilized P-terms Realization of filter circuit for removing salt and pepper noise 31 45/320 14% 150

上表所示的是去椒盐噪声电路在FPGA硬件平台,无需再进行复杂的算法到硬件的转化。本申请将得到的滤波电路逻辑在Ateral的器件EPM9320LC84-15平台进行实现。表1中In 表示输入引脚的数量,LCs为逻辑细胞数量,P-terms为乘积项数量,Utilized表示资源利用率。从结果观测到,椒盐噪声下得到的进化滤波电路的硬件资源消耗较低。The table above shows that the salt and pepper noise removal circuit is implemented on the FPGA hardware platform, and there is no need to convert complex algorithms to hardware. The filter circuit logic to be obtained in this application is implemented on the EPM9320LC84-15 platform of Ateral's device. In Table 1, In represents the number of input pins, LCs represents the number of logical cells, P-terms represents the number of product terms, and Utilized represents resource utilization. It is observed from the results that the hardware resource consumption of the evolutionary filter circuit obtained under the salt and pepper noise is relatively low.

下面是本实用新型的应用:Below is the application of the present utility model:

实验噪声:方差D为0.12、0.16、0.2的椒盐噪声。噪声加载到13张标准图片(256╳256)进行学习,得到的电路并对lenna、baboon图片进行测试。Experimental noise: salt and pepper noise with variance D of 0.12, 0.16, and 0.2. The noise is loaded into 13 standard pictures (256╳256) for learning, and the obtained circuit is tested on the pictures of lenna and baboon.

本实用新型滤波电路与多种空域滤波方法(均值、中值、失量中值和失量方向中值)、频域的小波去噪方法以及以MAE最小化为优化目标的进化滤波电路(EvolutionaryImage Filter-EIF)[13]进行比较。本申请所有的数据为本课题组开发的程序运行所得,在实验结果中,MF表示中值滤波;VMF表示失量中值滤波; BVDF表示失量方向中值滤波;AF表示均值滤波; Wavelet表示小波阈值滤波。The filter circuit of the utility model and various spatial filtering methods (average value, median value, loss median value and loss direction median value), wavelet denoising method in the frequency domain, and an evolutionary filter circuit (EvolutionaryImage) with the optimization goal of minimizing MAE Filter-EIF) [13] for comparison. All the data in this application are obtained by running the program developed by our research group. In the experimental results, MF means median filter; VMF means vector median filter; BVDF means vector median filter; AF means mean filter; Wavelet means Wavelet threshold filtering.

实施案例分为2个部分:The implementation case is divided into 2 parts:

1)本实用新型滤波电路、MF和BVDF细节和边缘保留的比较;1) Comparison of filter circuit, MF and BVDF details and edge preservation of the utility model;

2)本实用新型滤波电路与EIF的比较。2) Comparison between the filter circuit of the present utility model and EIF.

1) 细节和边缘保留的比较1) Comparison of detail and edge preservation

本实用新型滤波电路与MF、BVDF滤波的边缘保留和噪声点对比,由于MF和VMF效果接近,选择MF为比较对象。可以观察到,本实用新型滤波电路在椒盐和脉冲噪声下边缘保留较好,尽管MF清晰度高,噪声点数量明显下降,但边缘保留能力上本实用新型滤波电路能力更强。在边缘较多的lenna头发处和baboon毛发处,MF的边缘平滑,而MEIF的边缘仍然能够较好地保留,BVDF的边缘较MF要更好,比本发明滤波电路稍差。BVDF在椒盐和脉冲噪声下,噪声点都比较明显,特别是在baboon图像中出现密集的噪声点。Comparing the filter circuit of the utility model with MF and BVDF filters for edge preservation and noise points, because the effects of MF and VMF are close, MF is selected as the comparison object. It can be observed that the filter circuit of the present invention retains better edges under salt and pepper and pulse noise. Although the MF definition is high and the number of noise points is significantly reduced, the filter circuit of the present invention has a stronger ability to retain edges. At the lenna hair and baboon hair with more edges, the edges of MF are smooth, while the edges of MEIF can still be well preserved, and the edges of BVDF are better than MF, slightly worse than the filtering circuit of the present invention. BVDF has obvious noise points under salt and pepper and impulse noise, especially dense noise points appear in the baboon image.

2) 本实用新型电路与EIF的比较2) Comparison between the utility model circuit and EIF

根据该领域先前的成果可知,EIF同样有较好的去噪能力, EIF的总体滤波效果上与本发明滤波电路相近,在PSNR和MSE上与本发明滤波电路差异也较小,但滤波的局部区域的噪声点更加明显。EIF和本实用新型滤波电路对椒盐噪声(lenna图)的滤波效果,EIF的大误差噪声点比本实用新型滤波电路要更多,在图像的灰度值越低的区域,EIF的噪声点就越为明显。According to previous achievements in this field, EIF has good denoising ability, and the overall filtering effect of EIF is similar to that of the filter circuit of the present invention, and the difference between the filter circuit of the present invention and PSNR and MSE is also small, but the local filtering effect of the filter is relatively small. The noise points in the area are more obvious. EIF and the filter circuit of the present utility model are to the filter effect of salt and pepper noise (lenna figure), and the large error noise point of EIF will be more than the filter circuit of the present utility model, and in the lower region of the grayscale value of image, the noise point of EIF is just more obvious.

Claims (2)

1.一种去除椒盐噪声的图像滤波电路,其特征在于:包括第一右移1位逻辑模块、第二右移1位逻辑模块、第三右移1位逻辑模块、第四右移1位逻辑模块、第一8位反相器模块、第二8位反相器模块、第一8位数值比较器模块、第二8位数值比较器模块、第三8位数值比较器模块、第四8位数值比较器模块、1个8位异或运算模块、第一8位与运算模块、第二8位与运算模块、第三8位与运算模块、1个8位或运算模块、第一左移1位逻辑模块、第二左移1位逻辑模块、1个左移2位逻辑模块、1个8位加法器模块、1个8位缓冲器模块和1个8位均值运算模块,1. An image filter circuit for removing salt-and-pepper noise, characterized in that: it comprises a first right-shift 1-bit logic module, a second right-shift 1-bit logic module, a third right-shift 1-bit logic module, and a fourth right-shift 1-bit logic module Logic module, first 8-bit inverter module, second 8-bit inverter module, first 8-bit numerical comparator module, second 8-bit numerical comparator module, third 8-bit numerical comparator module, fourth 8-bit numerical comparator module, one 8-bit XOR operation module, the first 8-bit AND operation module, the second 8-bit AND operation module, the third 8-bit AND operation module, one 8-bit OR operation module, the first Left-shift 1-bit logic module, second left-shift 1-bit logic module, 1 left-shift 2-bit logic module, 1 8-bit adder module, 1 8-bit buffer module, and 1 8-bit average calculation module, 所述第一8位数值比较器模块的输出端与所述第二8位数值比较器模块的一个输入端连接,所述第二8位数值比较器模块的输出端与所述第三8位数值比较器模块的一个输入端连接,所述第三8位数值比较器模块的输出端与所述第四8位数值比较器模块的一个输入端连接,The output end of the first 8-bit numerical comparator module is connected to an input end of the second 8-bit numerical comparator module, and the output end of the second 8-bit numerical comparator module is connected to the third 8-bit numerical comparator module. An input end of the numerical comparator module is connected, and an output end of the third 8-bit numerical comparator module is connected to an input end of the fourth 8-bit numerical comparator module, 所述第一8位反相器模块的输出端与所述8位异或运算模块的一个输入端连接,所述8位异或运算模块的输出端与所述第一左移1位逻辑模块的输入端连接,所述第一左移1位逻辑模块的输出端与所述8位或运算模块的一个输入端连接,所述8位或运算模块的输出端与所述第三8位数值比较器模块的另一输入端连接,The output end of the first 8-bit inverter module is connected to an input end of the 8-bit XOR operation module, and the output end of the 8-bit XOR operation module is connected to the first left-shift 1-bit logic module The input terminal of the first left-shift 1-bit logic module is connected to an input terminal of the 8-bit or operation module, and the output terminal of the 8-bit or operation module is connected to the third 8-bit value The other input of the comparator module is connected, 所述第一右移1位逻辑模块的输出端和所述第二右移1位逻辑模块的输出端分别与所述8位加法器模块的输入端连接,所述8位加法器模块的输出端与所述8位异或运算模块的另一个输入端连接,The output end of the first right-shift 1-bit logic module and the output end of the second right-shift 1-bit logic module are respectively connected to the input ends of the 8-bit adder module, and the output of the 8-bit adder module The end is connected with the other input end of the 8-bit XOR operation module, 所述第三右移1位逻辑模块的输出端与所述8位与运算模块的输入端连接,所述8位与运算模块的输出端与所述第四右移1位逻辑模块连接,所述第四右移1位逻辑模块的输出端与所述第二8位与运算的输入端连接,所述第二8位与运算的输出端与所述第三8位与运算的输入端连接,The output end of the third right-shifting 1-bit logic module is connected to the input end of the 8-bit AND operation module, and the output end of the 8-bit AND operation module is connected to the fourth right-shifting 1-bit logic module, so The output end of the fourth right shift 1-bit logic module is connected to the input end of the second 8-bit AND operation, and the output end of the second 8-bit AND operation is connected to the input end of the third 8-bit AND operation , 所述第二8位反相器模块的输出端与所述第二8位与运算模块的另一输入端连接,The output end of the second 8-bit inverter module is connected to the other input end of the second 8-bit AND operation module, 所述左移2位逻辑模块的输出端与所述第二左移1位逻辑模块的输入端连接,所述第二左移1位逻辑模块的输出端与所述第三8位与运算模块的另一输入端连接,所述第三8位与运算模块的输出端与所述第四8位数值比较器模块的另一输入端连接,The output end of the left-shift 2-bit logic module is connected to the input end of the second left-shift 1-bit logic module, and the output end of the second left-shift 1-bit logic module is connected to the third 8-bit AND operation module The other input terminal is connected, the output terminal of the third 8-bit AND operation module is connected to the other input terminal of the fourth 8-bit value comparator module, 所述8位缓冲器模块的输出端和第四8位数值比较器模块的输出端与所述8位均值运算模块的输入端连接。The output terminal of the 8-bit buffer module and the output terminal of the fourth 8-bit numerical comparator module are connected to the input terminal of the 8-bit mean value operation module. 2.根据权利要求1所述的去除椒盐噪声的图像滤波电路,其特征在于:第四8位数值比较器模块的输出端和所述8位缓冲器模块的输出端分别连接到8位均值运算模块的两个输入端,所述8位均值运算模块的输出端连接有由8个D触发器组成的同步电路。2. the image filter circuit of removing salt and pepper noise according to claim 1, is characterized in that: the output end of the 4th 8-bit value comparator module and the output end of described 8-bit buffer module are connected to 8 mean value calculations respectively The two input ends of the module, and the output end of the 8-bit average value operation module are connected with a synchronous circuit composed of 8 D flip-flops.
CN201721204701.2U 2017-09-15 2017-09-15 A kind of image filtering circuit of removal salt-pepper noise Active CN207909193U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201721204701.2U CN207909193U (en) 2017-09-15 2017-09-15 A kind of image filtering circuit of removal salt-pepper noise

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201721204701.2U CN207909193U (en) 2017-09-15 2017-09-15 A kind of image filtering circuit of removal salt-pepper noise

Publications (1)

Publication Number Publication Date
CN207909193U true CN207909193U (en) 2018-09-25

Family

ID=63570332

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201721204701.2U Active CN207909193U (en) 2017-09-15 2017-09-15 A kind of image filtering circuit of removal salt-pepper noise

Country Status (1)

Country Link
CN (1) CN207909193U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109741286A (en) * 2019-02-19 2019-05-10 厦门码灵半导体技术有限公司 Median filter method, device, storage medium and electronic equipment
CN110580919A (en) * 2019-08-19 2019-12-17 东南大学 Speech feature extraction method and reconfigurable speech feature extraction device in multi-noise scene

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109741286A (en) * 2019-02-19 2019-05-10 厦门码灵半导体技术有限公司 Median filter method, device, storage medium and electronic equipment
CN110580919A (en) * 2019-08-19 2019-12-17 东南大学 Speech feature extraction method and reconfigurable speech feature extraction device in multi-noise scene
CN110580919B (en) * 2019-08-19 2021-09-28 东南大学 Voice feature extraction method and reconfigurable voice feature extraction device under multi-noise scene

Similar Documents

Publication Publication Date Title
Pan et al. Learning dual convolutional neural networks for low-level vision
Wang et al. A fast implementation of adaptive histogram equalization
CN105469373B (en) A kind of Retinex image enchancing methods and system
Nair et al. Removal of salt-and pepper noise in images: a new decision-based algorithm
CN111462013A (en) Single-image rain removing method based on structured residual learning
CN107169977B (en) Self-adaptive threshold color image edge detection method based on FPGA and Kirsch
CN107481293B (en) Differential image compressed sensing reconstruction method based on multi-hypothesis weighting and intelligent terminal
CN110189260A (en) An image denoising method based on multi-scale parallel gated neural network
CN116051396B (en) An image denoising method based on feature enhancement network and GRU network
CN207909193U (en) A kind of image filtering circuit of removal salt-pepper noise
CN104899842B (en) The adaptive extreme value median filter method of sequence for remote line-structured light image
CN114881861A (en) Unbalanced image over-resolution method based on double-sampling texture perception distillation learning
CN105590301A (en) Impulse noise elimination method of self-adaption normal-inclined double cross window mean filtering
CN104809748A (en) Image compression sensing method based on variable sampling rate and linear mean prediction
CN107194889A (en) The bilateral full variational regularization image denoising method of piecemeal
CN106981046B (en) Single Image Super-resolution Reconstruction Method Based on Multilayer Gradient Constrained Regression
Kalali et al. Low complexity 2D adaptive image processing algorithm and its hardware implementation
CN118674664A (en) Image enhancement method, device and storage medium
CN105719258B (en) The image noise filtering method of minimum cross window intermediate value and mean iterative filtering
CN105719257B (en) The drop of image ultra high density salt-pepper noise removes method
CN103945091B (en) A kind of digital picture filter circuit design method based on FPGA evolutionary learnings
CN118247164A (en) Low-illumination image enhancement network and image enhancement method
CN105787890B (en) The image de-noising method of adaptive equidistant template iteration mean filter
CN113096014B (en) Video super processing method, electronic device and storage medium
Xie et al. An FPGA-based Hardware Architecture of Gaussian-Adaptive Bilateral Filter for Real-time Image Denoising

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant