CN207867335U - 移动机器人 - Google Patents

移动机器人 Download PDF

Info

Publication number
CN207867335U
CN207867335U CN201721391091.1U CN201721391091U CN207867335U CN 207867335 U CN207867335 U CN 207867335U CN 201721391091 U CN201721391091 U CN 201721391091U CN 207867335 U CN207867335 U CN 207867335U
Authority
CN
China
Prior art keywords
mobile robot
light emitters
light
controller
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201721391091.1U
Other languages
English (en)
Inventor
朱志均
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Silver Star Intelligent Group Co Ltd
Original Assignee
Shenzhen Silver Star Intelligent Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Silver Star Intelligent Technology Co Ltd filed Critical Shenzhen Silver Star Intelligent Technology Co Ltd
Priority to CN201721391091.1U priority Critical patent/CN207867335U/zh
Application granted granted Critical
Publication of CN207867335U publication Critical patent/CN207867335U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本实用新型公开了一种移动机器人,包括:本体、驱动移动机器人移动的驱动系统、朝向检测面发射光线的光线发射器、响应于来自环境和/或光线发射器发射的光线的光电传感器、连接光电传感器的可调阻抗单元、以及控制器,通过控制器调节可调阻抗单元以形成至少两种阻抗不同的档位值,在每种档位值的条件下,响应于光线发射器处于开启和关闭状态时所确定的采样差值,以防止产生误判而致使移动机器人执行意外动作,实现移动机器人能够兼顾工作在强光照射、黑色吸光检测面的特殊工作环境中。

Description

移动机器人
技术领域
本实用新型涉及机器人地面检测技术领域,尤其涉及一种移动机器人。
背景技术
现有的移动机器人地面检测系统和墙面检测系统均包括至少一组红外发射管和红外接收管,红外发射管用于发射红外线,红外接收管用于接收红外线。红外发射管发射的红外线经由地面或墙面反射后,部分由红外接收管接收,红外接收管接收到的红外线的强度不同,呈现出来的信号大小不同。现有技术中,通过开启一段时长的红外发射管,采集红外接收管的信号(记为X1),然后关闭一段时长的红外发射管,采集红外接收管的信号(记为X2),将X1和X2做差值(记为X3),把X3与预设阈值做比较,以此来判断移动机器人处于哪种环境。
然而,一旦移动机器人定型,红外接收管的灵敏度便固定下来,很难保证地面检测系统和墙面检测系统能够正常工作在例如强光照射的地面或墙面、正常亮度的地面或墙面、黑色毛毯铺设的地面或黑色吸光材料覆盖的墙面这三种特殊环境中。在强光照射的地面或墙面环境中,无论是红外发射管在开启或关闭期间,由于环境光线含有红外线成分,都有较高强度的红外线被红外接收管接收,使得红外接收管均处于饱和状态,X1和X2的大小几乎没有差别,移动机器人便将地面误判为处于悬崖状态,从而做出避险动作;或者远离墙面,无法抵近墙边进行清扫、拖地等动作。在黑色毛毯铺设的地面或黑色吸光材料覆盖的墙面的环境中,无论是红外发射管在开启或关闭期间,红外发射管发射的红外线大部分被黑色毛毯或黑色材料吸收了,由于小部分的红外线不足以让红外线接收管的信号大小呈现明显变化,也会被误判为处于悬崖状态或者无法抵近墙边。
实用新型内容
本实用新型所要解决的技术问题在于传统的地面检测系统和墙面检测系统无法兼顾工作在强光照射、黑色吸光检测面的特殊工作环境中,而导致产生误判,为此,提供一种移动机器人,包括:
本体;
驱动系统,连接所述本体并被配置为驱动所述移动机器人移动;
光线发射器,由所述本体承载并被配置为朝向检测面发射光线;
光电传感器,由所述本体承载并响应于来自环境和/或所述光线发射器发射的光线;
可调阻抗单元,连接所述光电传感器;以及
控制器,被配置为调节所述可调阻抗单元以形成至少两种阻抗不同的档位值,在每种所述档位值的条件下,响应于所述光线发射器处于开启和关闭状态时所确定的采样差值,以防止产生误判而致使所述移动机器人执行意外动作。
可选的,所述控制器具有:连接所述可调阻抗单元的阻抗调节端、连接所述光电传感器与所述可调阻抗单元之间的信号采样端、以及连接所述光线发射器的信号控制端;所述控制器被配置为:
通过控制所述阻抗调节端来调节所述可调阻抗单元以形成至少两种阻抗不同的档位值;
在每种所述档位值的条件下,通过控制所述信号控制端来开启和关闭所述光线发射器;
在所述光线发射器处于开启和关闭状态时,通过所述信号采样端来获取开启采样值和关闭采样值;
响应于在至少两种所述档位值的条件下所确定的至少两个采样差值,以防止产生误判而致使所述移动机器人执行意外动作,其中所述采样差值为所述开启采样值与所述关闭采样值之差。
可选的,所述控制器被配置为:
在所述光线发射器处于开启状态时,通过所述信号采样端来获取多个开启采样值,并根据所述多个开启采样值求得开启采样平均值;
在所述光线发射器处于关闭状态时,通过所述信号采样端来获取多个关闭采样值,并根据所述多个关闭采样值求得关闭采样平均值,其中所述采样差值为所述开启采样平均值与所述关闭采样平均值之差。
可选的,所述光线发射器被配置为朝向检测面发射红外线,所述光电传感器响应于来自环境和/或所述光线发射器发射的红外线。
可选的,所述可调阻抗单元包括第一电阻和至少一个第二电阻,所述第一电阻和所述第二电阻的一端连接所述光电传感器,所述第一电阻的另一端接地或连接所述控制器,所述第二电阻的另一端连接所述控制器。
可选的,所述控制器被配置为响应于所述光线发射器处于开启和关闭状态时所确定的采样差值与预设数据之间的比对结果,以防止产生误判而致使所述移动机器人执行意外动作。
可选的,所述预设数据是将所述移动机器人置于至少两种不同检测面的工作环境中,在每种所述档位值的条件下所获得的至少四个采样差值。
可选的,所述光线发射器包括红外线发射管、PNP型三极管和限流电阻,所述PNP型三极管的集电极与所述红外线发射管的正极连接,所述红外线发射管的负极接地;所述PNP型三极管的发射极经由所述限流电阻连接驱动电源;所述PNP型三极管的基极连接所述控制器。
可选的,所述光线发射器包括:红外线发射管、NPN型三极管和限流电阻,所述NPN型三极管的集电极与所述红外线发射管的负极连接,所述红外线发射管的正极经由所述限流电阻连接驱动电源;所述NPN型三极管的发射极接地;所述NPN型三极管的基极连接所述控制器。
可选的,所述光线发射器和所述光电传感器成对设于所述本体的底部,所述光线发射器被配置为朝向地面发射光线。
可选的,所述光线发射器和所述光电传感器成对设于所述本体的外周缘,所述光线发射器被配置为朝向墙面发射光线。
本实用新型实施例提供了一种移动机器人,包括:本体、驱动移动机器人移动的驱动系统、朝向检测面发射光线的光线发射器、响应于来自环境和/或光线发射器发射的光线的光电传感器、连接光电传感器的可调阻抗单元、以及控制器,通过控制器调节可调阻抗单元以形成至少两种阻抗不同的档位值,在每种档位值的条件下,响应于光线发射器处于开启和关闭状态时所确定的采样差值,以防止产生误判而致使移动机器人执行意外动作,实现移动机器人能够兼顾工作在强光照射、黑色吸光检测面的特殊工作环境中。
附图说明
为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的变形形式。
图1是本实用新型实施例的移动机器人的结构示意图;
图2是图1中移动机器人的底部结构示意图;
图3是移动机器人的光检测模块应用在对悬崖进行检测时的场景图;
图4是图3所示场景中光电传感器接收来自光线发射器发射的光线以及环境的光线的示意图;
图5是移动机器人工作在有比较强烈的太阳光照射的房间内的应用场景示意图;
图6是移动机器人的光检测模块应用在对墙面进行检测时的场景图;
图7是应用在移动机器人中的一实施例的电路图;
图8是应用在移动机器人中的另一实施例的电路图;
图9是移动机器人中控制器被配置为执行的方法步骤流程图。
具体实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
在本实用新型实施例中,单数的表述在文中没有明确地反义的情况下,可以包括复数的表述。并且,使用的“包括”或者“具有”等术语表示说明书上记载的特征、数字、步骤、操作、构成要素、部件或者其组合的存在,而不预先排除一个或以上的其他特征、数字、步骤、操作、构成要素、部件或者它们的组合的存在或者附加可能性。并且,本说明书中使用的“第一”、“第二”等包含序数的术语可以用于说明多种构成要素,但是所述构成要素不被上述术语所限制,所述术语仅用于区分一个构成要素和其他构成要素。
以下,参照附图对公开的本实用新型实施例进行详细说明。附图中示出的相同的附图编号或者符号可以表示执行实质相同的功能的部件或者构成要素。
图1是本实用新型实施例的移动机器人的结构示意图,图2是图1中所示移动机器人的底部结构示意图。
参照图1和图2,本实用新型实施例中以移动机器人10是清洁机器人为例进行说明,在其他可选实施例中,移动机器人10也可以是陪护机器人、送餐机器人、迎宾机器人、遥控摄像机器人等。
移动机器人10包括本体,该本体可以包括底盘110和上盖120,上盖120可拆卸地安装于底盘110上,以在使用期间保护移动机器人10内部的各种功能部件免受激烈撞击或无意间滴洒的液体的损坏;底盘110和/或上盖120用于承载和支撑各种功能部件。在一可选实施例中,移动机器人10的本体也可以是其他设计构造,例如,本体为一体成型结构、左右分离设置的结构,本实用新型实施例对本体的材料、形状、结构等不做限定。
移动机器人10包括驱动系统,该驱动系统连接本体并被配置为驱动移动机器人10在地面上移动,例如,移动机器人10可以被设计成自主地在地面上规划路径,也可以被设计成响应于遥控指令在地面上移动。在本实用新型实施例中,驱动系统包括两个轮子210、至少一个万向轮220、以及用于带动轮子210转动的马达,轮子210和万向轮220至少部分凸伸出底盘110的底部,例如,在移动机器人10自身重量的作用下,两个轮子210可以部分地隐藏于底盘110内。在一可选实施例中,驱动系统还可以包括三角履带轮、麦克纳姆轮等中的任意一种。
移动机器人10还可以包括清扫系统,例如,清扫系统包括中扫毛刷310和中扫胶刷中的一种或两种,中扫毛刷310、中扫胶刷适合设于底盘110的底部开设的收容槽111内,收容槽111内开设有吸尘口,该吸尘口与集尘盒320以及吸尘风机连通,使得当中扫毛刷310转动时将地面上的灰尘、垃圾搅起,利用吸尘风机产生抽吸力把灰尘、垃圾从吸尘口吸入至集尘盒320内。除了设有中扫毛刷310和/或中扫胶刷,移动机器人10还可以包含边扫330,边扫330的清扫覆盖区域延伸出本体的外轮廓范围,有利于对墙边、角落、障碍物边缘进行有效清扫。
移动机器人10还可以包括拖地系统,例如,该拖地系统包括储水箱、抹布等,储水箱与集尘盒320可以分开设置,也可以一体化设计。在一可选实施例中,储水箱中的水由抽水泵吸出并均匀地滴洒在抹布上,当移动机器人10在地面上移动时,浸湿的抹布对地面进行擦拭。在一可选实施例中,储水箱中的水由雾化器进行雾化操作,形成水雾并喷向地面,进而抹布对被水雾喷过的地面进行擦拭。
移动机器人10还可以包括碰撞传感装置,该碰撞传感装置形成于所述本体的至少部分外周缘,在本实用新型实施例中,碰撞传感装置包括包围所述本体的外周缘的碰撞部410、设于所述本体与碰撞部410之间的传感器和弹性机构,所述碰撞部410和所述本体之间设有弹性机构和传感器,包括但不限于以下情况:1)弹性机构和传感器位于碰撞部410和所述本体之间;2)弹性机构和/或传感器安装于所述本体上,但弹性机构和/或传感器的一部位位于碰撞部410和所述本体之间;3)弹性机构和/或传感器安装于碰撞部410上,但弹性机构和/或传感器的一部位位于碰撞部410和所述本体之间;4)弹性机构和/或传感器安装于碰撞部410和所述本体上。弹性机构用于保持碰撞部410和所述本体之间具有均匀的活动间隙,传感器用于感测碰撞部410与所述本体之间的相对位移。所述传感器可以是微动开关、霍尔开关、红外光电开关等中的任意一种或多种,所述本体与碰撞部410之间可以设有多个传感器,例如,在移动机器人10的前方、两侧位置处的所述本体与碰撞部410之间均分布有至少一个传感器。传感器通常与移动机器人10上的某一控制器、处理器或控制系统(未图示)电气连接,以便于采集传感器的数据从而控制移动机器人10做出相应动作。由于碰撞部410包围所述本体,移动机器人10在行走过程中无论碰撞部410的哪个部位与障碍物碰撞都将会引起碰撞部410和所述本体之间发生相对位移。由于传感器可感测到碰撞部410与所述本体之间的相对位移,使得移动机器人10可以感测到障碍物的碰撞。移动机器人10可改变运动方向以绕开碰撞到的障碍物或采取其他应对措施。
图3是本实用新型实施例中移动机器人10的光检测模块500应用在对悬崖20进行检测时的场景图,图4是图3所示场景中光电传感器520接收来自光线发射器510发射的光线L1以及环境的光线L2的示意图。
参考图3和图4,在本实用新型实施例中,光线发射器510由所述本体承载并被配置为朝向地面发射光线,光电传感器520由所述本体承载并响应于来自环境和/或光线发射器510发射的光线。
具体的,光线发射器510和光电传感器520相邻排布于移动机器人10的底部,当移动机器人10在地面上移动时,光线发射器510可以垂直朝向地面发射光线,也可以偏向光电传感器520一定角度朝向地面发射光线L1,同理,光电传感器520可以垂直朝向地面设于移动机器人10的底部,也可以偏向光线发射器510一定角度设于移动机器人10的底部。
在本实用新型实施例中,光线发射器510被配置为朝向地面发射红外线,光电传感器520响应于来自环境和/或光线发射器510发射的红外线,即光线发射器510包括红外线发射管,光电传感器520包括红外线接收管;实际上,环境的红外线主要由太阳光、灯光等生成,多数情况下,移动机器人10工作的环境不可避免地受到太阳光或灯光的影响,因此,为了减小环境中红外线的影响,通过开启一段时长的红外线发射管,采集红外线接收管的信号(记为X1),然后关闭一段时长的红外线发射管,采集红外线接收管的信号(记为X2);由于信号X1的产生是同时受到环境中红外线和光线发射器510发射的红外线的影响,信号X2的产生是受到环境中红外线的影响,将信号X1和信号X2做差值(记为X3),进而把差值X3与预设阈值做比较,以此来判断移动机器人10是否遇到悬崖。需要说明的是,本说明书中提及的“悬崖”是指相对于移动机器人10当前所在地面有一定高度落差的情况。
在实际应用中,当移动机器人10遇到悬崖时,光线发射器510发射的红外线射向悬崖,只有很少量的反射红外线被光电传感器520接收到,差值X3很小;当移动机器人10未遇到悬崖时,光线发射器510发射的红外线射向地面,有大量的反射红外线被光电传感器520接收到,差值X3比较大,因此,可以根据差值X3来判断移动机器人10是否遇到悬崖。
图5是移动机器人10工作在有比较强烈的太阳光照射的房间内的应用场景示意图;例如,在图5这种特殊情况下,地面上被照射有比较强烈的太阳光,受限于红外线接收管本身的特性,达到饱和,即当射向红外线接收管的红外线的强度达到一定程度,红外线接收管通过光电转化的电流强度趋于稳定,因此,信号X1和信号X2的大小并无明显差异,差值X3很小;结合上文提到的判断移动机器人10是否遇到悬崖的方法可知,有强光照射的地面很容易被移动机器人10误判为悬崖,从而采取后退、转向等意外动作,导致移动机器人10无法覆盖被强光照射的地面区域;当移动机器人10是清洁机器人时,导致清洁机器人无法清洁被强光照射的地面区域,造成遗漏清洁。
又如,在移动机器人10遇到铺设在地面上的黑色毛毯时,由于黑色毛毯具有很强的吸光性,从光线发射器510发射的红外线大部分被黑色毛毯吸收,只有很少量的反射红外线被光电传感器520接收到,受限于红外线接收管本身的特性,红外线接收管可能未被导通,差值X3为零或者差值X3很小;结合上文提到的判断移动机器人10是否遇到悬崖的方法可知,有黑色毛毯等吸光性材料铺设的地面很容易被移动机器人10误判为悬崖,从而采取后退、转向等意外动作,导致移动机器人10无法覆盖被黑色毛毯等吸光性材料铺设的地面区域;当移动机器人10是清洁机器人时,导致清洁机器人无法清洁被黑色毛毯等吸光性材料铺设的地面区域,造成漏扫。
图6是本实用新型实施例中移动机器人10的光检测模块600应用在对墙面进行检测时的场景图。参考图6,在本实用新型实施例中,光检测模块600设于所述本体的外周缘,光检测模块600可以为多个,例如,多个光检测模块600沿所述本体的外周缘间隔排布。其中,每个光检测模块600包括成对的光线发射器和光电传感器。光检测模块600中光线发射器和光电传感器的相对位置关系可以参考上述光检测模块500中光线发射器510和光电传感器520的相对位置关系,在此不再赘述。
在本实用新型实施例中,光线发射器被配置为朝向墙面发射红外线,光电传感器响应于来自环境和/或光线发射器发射的红外线,即光线发射器包括红外线发射管,光电传感器包括红外线接收管;实际上,环境的红外线主要由太阳光、灯光等生成,多数情况下,移动机器人10工作的环境不可避免地受到太阳光或灯光的影响,因此,为了减小环境中红外线的影响,通过开启一段时长的红外线发射管,采集红外线接收管的信号(记为X1),然后关闭一段时长的红外线发射管,采集红外线接收管的信号(记为X2);由于信号X1的产生是同时受到环境中红外线和光线发射器发射的红外线的影响,信号X2的产生是受到环境中红外线的影响,将信号X1和信号X2做差值(记为X3),进而把差值X3与预设阈值做比较,可以以此来判断移动机器人10是否靠近了墙面、障碍物等检测面。
在实际应用中,当移动机器人10还未靠近墙面、障碍物等检测面时,光检测模块600中光线发射器发射的红外线射向周围,只有很少量的反射红外线被光检测模块600中光电传感器接收到,差值X3很小;当移动机器人10靠近墙面、障碍物等检测面时,光线发射器发射的红外线射向墙面、障碍物等检测面,有大量的反射红外线被光电传感器接收到,差值X3比较大,因此,可以根据差值X3来判断移动机器人10是否靠近了墙面、障碍物等检测面;在判断移动机器人10靠近了墙面、障碍物等检测面的情况下,通常控制移动机器人10执行减速、转向、后退等规避动作。
例如,在图6这种特殊情况下,墙面被照射有比较强烈的太阳光,受限于红外线接收管本身的特性,达到饱和,即当射向红外线接收管的红外线的强度达到一定程度,红外线接收管通过光电转化的电流强度趋于稳定,因此,信号X1和信号X2的大小并无明显差异,差值X3很小;结合上文提到的判断移动机器人10是否靠近了墙面、障碍物等检测面的方法可知,遇到有强光照射的墙面、障碍物等检测面很容易被移动机器人10误判为还未靠近墙面、障碍物等,从而继续保持原有速度移动、加速移动等意外动作,导致移动机器人10剧烈的碰撞到墙面、障碍物等。
又如,在移动机器人10遇到有黑色吸光材料覆盖的墙面、障碍物等检测面时,由于黑色吸光材料具有很强的吸光性,从光检测模块600中光线发射器发射的红外线大部分被黑色吸光材料吸收,只有很少量的反射红外线被光电传感器接收到,受限于红外线接收管本身的特性,红外线接收管可能未被导通,差值X3为零或者差值X3很小;结合上文提到的判断移动机器人10是否靠近了墙面、障碍物等检测面的方法可知,遇到有黑色吸光材料覆盖的墙面、障碍物等检测面很容易被移动机器人10误判为还未靠近墙面、障碍物等,从而继续保持原有速度移动、加速移动等意外动作,导致移动机器人10剧烈的碰撞到墙面、障碍物等。
本实用新型实施例的移动机器人10中光线发射器和光电传感器720应用在如图7或图8所示的电路图,并配合控制器730对光线发射器和可调阻抗单元740的控制逻辑来解决上述误判问题。光检测模块500中的光线发射器510或光检测模块600中的光线发射器可以参考图7或图8中的光线发射器,光检测模块500中的光电传感器520或光检测模块600中的光电传感器可以参考图7或图8中的光电传感器720。
图7和图8中的电路图的不同点在于光线发射器。具体的,在图7中,光线发射器710包括:红外线发射管711、PNP型三极管712和限流电阻713,PNP型三极管712的集电极与红外线发射管711的正极连接,红外线发射管711的负极接地;PNP型三极管712的发射极经由限流电阻713连接驱动电源714;PNP型三极管712的基极连接控制器730的信号控制端731。在图8中,光线发射器810包括:红外线发射管811、NPN型三极管812和限流电阻813,NPN型三极管812的集电极与红外线发射管811的负极连接,红外线发射管812的正极经由限流电阻813连接驱动电源814;NPN型三极管812的发射极接地;NPN型三极管812的基极连接控制器730的信号控制端731。
下文中将以图7中的电路图为例,详细说明控制器730是如何通过对光线发射器710和可调阻抗单元740的控制逻辑来解决上述误判问题的。
概括来讲,控制器730被配置为调节可调阻抗单元740以形成至少两种阻抗不同的档位值,在每种档位值的条件下,响应于光线发射器710处于开启和关闭状态时所确定的采样差值,以防止产生误判而致使移动机器人10执行意外动作。在本实用新型实施例中,可调阻抗单元740是通过至少两个电阻并联的形式构成,在其他实施例中,可调阻抗单元740也可以以其他形式构成,只要满足能够被控制器730调节以形成至少两种阻抗不同的档位值即可考虑采用。控制器730可以为单片机、FPGA、ASIC等微控制单元,可调阻抗单元740可以集成于控制器730内,也可以作为控制器730的外围电路形式存在。
在本实用新型实施例中,控制器730具有:连接可调阻抗单元740的阻抗调节端732、连接光电传感器720与可调阻抗单元740之间的信号采样端733、以及连接光线发射器710的信号控制端731。
具体的,如图9所示,控制器730被配置为执行方法步骤S10、步骤S20、步骤S30、以及步骤S40。
步骤S10包括:通过控制阻抗调节端732来调节可调阻抗单元740以形成至少两种阻抗不同的档位值。
在本实用新型实施例中,可调阻抗单元740包括第一电阻741和两个第二电阻,为了方便引用,这两个第二电阻分别被标示为第二电阻74a和第二电阻74b。第一电阻741、第二电阻74a以及第二电阻74b的一端连接光电传感器720,第一电阻741的另一端接地,第二电阻74a和第二电阻74b的另一端连接控制器730。阻抗调节端732包括两个阻抗调节端,为了方便引用,这两个阻抗调节端分别被标示为阻抗调节端73a和阻抗调节端73b。第二电阻74a的另一端连接阻抗调节端73a,第二电阻74b的另一端连接阻抗调节端73b。在其他实施例中,第一电阻741的另一端也可以连接控制器730的一个阻抗调节端或者接地端。
在实际应用中,通过控制阻抗调节端73a和阻抗调节端73b均处于高阻态,光电传感器720与地之间只有第一电阻741,此时,光电传感器720对地具有最大的阻抗(形成最大档位值)。通过控制阻抗调节端73a和阻抗调节端73b均置零,光电传感器720与地之间有第一电阻741、第二电阻74a、以及第二电阻74b这三个电阻的并联形式,此时,光电传感器720对地具有最小的阻抗(形成最小档位值)。通过控制阻抗调节端73a和阻抗调节端73b中的一个处于高阻态、另一个置零,光电传感器720与地之间有第一电阻741与第二电阻74a这两个电阻的并联形式或者第一电阻741与第二电阻74b这两个电阻的并联形式,此时,光电传感器720对地具有中等大小的阻抗(形成中等档位值)。
综上所述,通过控制阻抗调节端73a和阻抗调节端73b来调节可调阻抗单元740,可以形成三种阻抗不同的档位值,即最大档位值、中等档位值以及最小档位值。
在其他实施例中,可调阻抗单元740包括一个第一电阻741和一个第二电阻,这一个第二电阻的一端连接光电传感器720,另一端连接控制器730的一个阻抗调节端732。容易得知,通过控制这一个阻抗调节端732处于高阻态或置零,可调阻抗单元740只能形成两种阻抗不同的档位值。
步骤S20包括:在每种档位值的条件下,通过控制信号控制端731来开启和关闭光线发射器710。
在本实用新型实施例中,通过控制信号控制端731置零来开启光线发射器710,具体的,当信号控制端731置零时,PNP型三极管712导通,红外线发射管711发射红外线。通过控制信号控制端731处于高阻态来关闭光线发射器710,当信号控制端731处于高阻态时,PNP型三极管712截止,红外线发射管711不发射红外线。
步骤S30包括:在光线发射器710处于开启和关闭状态时,通过信号采样端733来获取开启采样值和关闭采样值。
在本实用新型实施例中,在最大档位值的条件下,可以先通过控制信号控制端731来开启光线发射器710,在光线发射器710处于开启状态时,通过信号采样端733来获取开启采样值(可以称之为最大档位开启采样值);再通过控制信号控制端731来关闭光线发射器710,在光线发射器710处于关闭状态时,通过信号采样端733来获取关闭采样值(可以称之为最大档位关闭采样值)。
在中等档位值的条件下,可以先通过控制信号控制端731来开启光线发射器710,在光线发射器710处于开启状态时,通过信号采样端733来获取开启采样值(可以称之为中等档位开启采样值);再通过控制信号控制端731来关闭光线发射器710,在光线发射器710处于关闭状态时,通过信号采样端733来获取关闭采样值(可以称之为中等档位关闭采样值)。
在最小档位值的条件下,可以先通过控制信号控制端731来开启光线发射器710,在光线发射器710处于开启状态时,通过信号采样端733来获取开启采样值(可以称之为最小档位开启采样值);再通过控制信号控制端731来关闭光线发射器710,在光线发射器710处于关闭状态时,通过信号采样端733来获取关闭采样值(可以称之为最小档位关闭采样值)。
步骤S40包括:响应于在至少两种档位值的条件下所确定的至少两个采样差值,以防止产生误判而致使移动机器人10执行意外动作,其中采样差值为开启采样值与关闭采样值之差。
在本实用新型实施例中,可以得到三种档位值的条件下所确定的三个采样差值,即最大档位开启采样值与最大档位关闭采样值之差形成的最大档位采样差值、中等档位开启采样值与中等档位关闭采样值之差形成的中等档位采样差值、以及最小档位开启采样值与最小档位关闭采样值之差形成的最小档位采样差值。
为了防止单次采样造成的误差,在一可选实施例中,通过多次采样取平均值的方法,具体的,在光线发射器710处于开启状态时,通过信号采样端733来获取多个开启采样值,并根据多个开启采样值求得开启采样平均值;在光线发射器710处于关闭状态时,通过信号采样端733来获取多个关闭采样值,并根据多个关闭采样值求得关闭采样平均值,其中所述采样差值为开启采样平均值与关闭采样平均值之差。
为了判定移动机器人10处于哪种工作环境中,在本实用新型实施例中,预先将移动机器人10置于每种环境中,并在每种环境中分别获得在最大档位值、中等档位值、最小档位值这三种档位值条件下的采样差值,从而形成预设数据。以光线发射器设于移动机器人10的底部、被配置为朝向地面发射光线为例,工作环境包括:强光照射地面、正常亮度地面、黑色毛毯覆盖地面、悬崖这四种。同时,为了更形象化地表示采样差值的大小,暂且把采样差值较大的表示为明显,把采样差值较小的表示为不明显,现绘制如下表格来展示移动机器人10在上述四种工作环境中的最大档位值、中等档位值、最小档位值这三种档位值组合的差异,基于这种组合的差异来判定移动机器人10处于上述四种工作环境中的哪一种,从而防止产生误判,实现控制移动机器人10执行常规动作。
从上述表格可以看出,移动机器人10处于强光照射地面的工作环境中,在最大档位值、中等档位值、最小档位值下的采样差值的明显性组合为(不明显,不明显,明显);移动机器人10处于正常亮度地面的工作环境中,在最大档位值、中等档位值、最小档位值下的采样差值的明显性组合为(明显,明显,明显);移动机器人10处于黑色毛毯覆盖地面的工作环境中,在最大档位值、中等档位值、最小档位值下的采样差值的明显性组合为(明显,不明显,不明显);移动机器人10遇到悬崖的工作环境中,在最大档位值、中等档位值、最小档位值下的采样差值的明显性组合为(不明显,不明显,不明显)。显而易见,在上述四种工作环境中的四种明显性组合存在差异。
因此,在移动机器人10的实际应用中,通过控制器730循环调节可调阻抗单元740处于最大档位值、中等档位值、最小档位值,记录在这三种阻抗不同的档位值的条件下所确定的采样差值组合,并将这种采样差值组合与预设数据进行比对,以便获知对比结果,根据该对比结果即可得知移动机器人10处于上述四种工作环境中的哪一种。
通过上文中对在三种阻抗不同的档位值的条件下的描述可以理解,在其他实施例中,也可以将控制器730配置为调节可调阻抗单元740处于最大档位值、最小档位值这两种档位值,现绘制如下表格来展示移动机器人10在上述四种工作环境中的最大档位值、最小档位值这两种档位值组合的差异,基于这种组合的差异来判定移动机器人10处于上述四种工作环境中的哪一种,从而防止产生误判,实现控制移动机器人10执行常规动作。
从上述表格可以看出,移动机器人10处于强光照射地面的工作环境中,在最大档位值、最小档位值下的采样差值的明显性组合为(不明显,明显);移动机器人10处于正常亮度地面的工作环境中,在最大档位值、最小档位值下的采样差值的明显性组合为(明显,明显);移动机器人10处于黑色毛毯覆盖地面的工作环境中,在最大档位值、最小档位值下的采样差值的明显性组合为(明显,不明显);移动机器人10遇到悬崖的工作环境中,在最大档位值、最小档位值下的采样差值的明显性组合为(不明显,不明显)。显而易见,在上述四种工作环境中的四种明显性组合存在差异。
因此,在移动机器人10的实际应用中,通过控制器730循环调节可调阻抗单元740处于最大档位值、最小档位值,记录在这两种阻抗不同的档位值的条件下所确定的采样差值组合,并将这种采样差值组合与预设数据进行比对,以便获知对比结果,根据该对比结果即可得知移动机器人10处于上述四种工作环境中的哪一种。
同理,也可以利用上述控制器730对设于所述本体的外周缘的光线发射器710和可调阻抗单元740的控制逻辑来解决对墙面、障碍物等检测面的误判问题。例如,可以判定移动机器人10遇到强光照射墙面、正常亮度墙面、黑色吸光材料覆盖墙面三种工作环境中的哪一种。
本实用新型实施例提供了一种移动机器人10,包括:本体、驱动移动机器人10移动的驱动系统、朝向检测面发射光线的光线发射器、响应于来自环境和/或光线发射器发射的光线的光电传感器、连接光电传感器的可调阻抗单元740、以及控制器730,通过控制器730调节可调阻抗单元740以形成至少两种阻抗不同的档位值,在每种档位值的条件下,响应于光线发射器处于开启和关闭状态时所确定的采样差值,以防止产生误判而致使移动机器人10执行意外动作,实现移动机器人10能够兼顾工作在强光照射、黑色吸光检测面的特殊工作环境中。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”或“一可选实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本实用新型的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述的实施方式,并不构成对该技术方案保护范围的限定。任何在上述实施方式的精神和原则之内所作的修改、等同替换和改进等,均应包含在该技术方案的保护范围之内。

Claims (11)

1.一种移动机器人,其特征在于,包括:
本体;
驱动系统,连接所述本体并被配置为驱动所述移动机器人移动;
光线发射器,由所述本体承载并被配置为朝向检测面发射光线;
光电传感器,由所述本体承载并响应于来自环境和/或所述光线发射器发射的光线;
可调阻抗单元,连接所述光电传感器;以及
控制器,被配置为调节所述可调阻抗单元以形成至少两种阻抗不同的档位值,在每种所述档位值的条件下,响应于所述光线发射器处于开启和关闭状态时所确定的采样差值,以防止产生误判而致使所述移动机器人执行意外动作。
2.根据权利要求1所述的移动机器人,其特征在于,所述控制器具有:连接所述可调阻抗单元的阻抗调节端、连接所述光电传感器与所述可调阻抗单元之间的信号采样端、以及连接所述光线发射器的信号控制端;所述控制器被配置为:
通过控制所述阻抗调节端来调节所述可调阻抗单元以形成至少两种阻抗不同的档位值;
在每种所述档位值的条件下,通过控制所述信号控制端来开启和关闭所述光线发射器;
在所述光线发射器处于开启和关闭状态时,通过所述信号采样端来获取开启采样值和关闭采样值;
响应于在至少两种所述档位值的条件下所确定的至少两个采样差值,以防止产生误判而致使所述移动机器人执行意外动作,其中所述采样差值为所述开启采样值与所述关闭采样值之差。
3.根据权利要求2所述的移动机器人,其特征在于,所述控制器被配置为:
在所述光线发射器处于开启状态时,通过所述信号采样端来获取多个开启采样值,并根据所述多个开启采样值求得开启采样平均值;
在所述光线发射器处于关闭状态时,通过所述信号采样端来获取多个关闭采样值,并根据所述多个关闭采样值求得关闭采样平均值,其中所述采样差值为所述开启采样平均值与所述关闭采样平均值之差。
4.根据权利要求1所述的移动机器人,其特征在于,所述光线发射器被配置为朝向检测面发射红外线,所述光电传感器响应于来自环境和/或所述光线发射器发射的红外线。
5.根据权利要求1-4中任一所述的移动机器人,其特征在于,所述可调阻抗单元包括第一电阻和至少一个第二电阻,所述第一电阻和所述第二电阻的一端连接所述光电传感器,所述第一电阻的另一端接地或连接所述控制器,所述第二电阻的另一端连接所述控制器。
6.根据权利要求1-4中任一所述的移动机器人,其特征在于,所述控制器被配置为响应于所述光线发射器处于开启和关闭状态时所确定的采样差值与预设数据之间的比对结果,以防止产生误判而致使所述移动机器人执行意外动作。
7.根据权利要求6所述的移动机器人,其特征在于,所述预设数据是将所述移动机器人置于至少两种不同检测面的工作环境中,在每种所述档位值的条件下所获得的至少四个采样差值。
8.根据权利要求4所述的移动机器人,其特征在于,所述光线发射器包括红外线发射管、PNP型三极管和限流电阻,所述PNP型三极管的集电极与所述红外线发射管的正极连接,所述红外线发射管的负极接地;所述PNP型三极管的发射极经由所述限流电阻连接驱动电源;所述PNP型三极管的基极连接所述控制器。
9.根据权利要求4所述的移动机器人,其特征在于,所述光线发射器包括:红外线发射管、NPN型三极管和限流电阻,所述NPN型三极管的集电极与所述红外线发射管的负极连接,所述红外线发射管的正极经由所述限流电阻连接驱动电源;所述NPN型三极管的发射极接地;所述NPN型三极管的基极连接所述控制器。
10.根据权利要求1至4、8、9中任一项所述的移动机器人,其特征在于,所述光线发射器和所述光电传感器成对设于所述本体的底部,所述光线发射器被配置为朝向地面发射光线。
11.根据权利要求1至4、8、9中任一项所述的移动机器人,其特征在于,所述光线发射器和所述光电传感器成对设于所述本体的外周缘,所述光线发射器被配置为朝向墙面发射光线。
CN201721391091.1U 2017-10-26 2017-10-26 移动机器人 Active CN207867335U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201721391091.1U CN207867335U (zh) 2017-10-26 2017-10-26 移动机器人

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201721391091.1U CN207867335U (zh) 2017-10-26 2017-10-26 移动机器人

Publications (1)

Publication Number Publication Date
CN207867335U true CN207867335U (zh) 2018-09-14

Family

ID=63474450

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201721391091.1U Active CN207867335U (zh) 2017-10-26 2017-10-26 移动机器人

Country Status (1)

Country Link
CN (1) CN207867335U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107608360A (zh) * 2017-10-26 2018-01-19 深圳市银星智能科技股份有限公司 移动机器人

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107608360A (zh) * 2017-10-26 2018-01-19 深圳市银星智能科技股份有限公司 移动机器人

Similar Documents

Publication Publication Date Title
US10725477B2 (en) Mobile robot
CN107608360A (zh) 移动机器人
CN207704265U (zh) 一种无人驾驶式自动扫洗一体化装置
US10912433B2 (en) Mobile robot
CN108403007B (zh) 清洁机器人以及控制清洁机器人的方法
WO2018041191A1 (zh) 清洁机器人及其控制方法
CN110989630B (zh) 自移动机器人控制方法、装置、自移动机器人和存储介质
KR102388448B1 (ko) 이동 로봇 및 그 제어 방법
CN110968081B (zh) 具有可伸缩摄像头的扫地机器人的控制方法及控制装置
CN107822565A (zh) 能够实现狭缝清理的智能家居扫地机
WO2014175706A1 (ko) 로봇 청소기 및 그 제어방법
CN103941306A (zh) 清洁机器人及用于控制其避开障碍物的方法
CN208002736U (zh) 一种自适应桌面清洁设备
CN110955235A (zh) 扫地机器人的控制方法及控制装置
CN110269547A (zh) 自移动机器人及其避障处理方法
US11819174B2 (en) Cleaning control method and device, cleaning robot and storage medium
CN110141160A (zh) 清洁机器人沿壁面清洁的方法及清洁机器人
WO2022257553A1 (zh) 清洁设备和清洁路径、清洁地图生成方法及生成系统
CN207867335U (zh) 移动机器人
CN114938927A (zh) 自动清洁设备、控制方法及存储介质
WO2022135556A1 (zh) 一种清洁机器人及其清洁控制方法
CN207858841U (zh) 移动机器人
CN208864213U (zh) 自移动机器人
CN218500628U (zh) 清洁设备及系统
CN217792904U (zh) 一种浮子支撑装置、净水箱及清洁设备

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 518110 1701, building 2, Yinxing Zhijie, No. 1301-72, sightseeing Road, Xinlan community, Guanlan street, Longhua District, Shenzhen, Guangdong Province

Patentee after: Shenzhen Yinxing Intelligent Group Co.,Ltd.

Address before: 518110 D, Longhua science and Technology Park, Guanfu street, Longhua, Shenzhen.

Patentee before: Shenzhen Silver Star Intelligent Technology Co.,Ltd.

CP03 Change of name, title or address