CN207832632U - 煤层气直井单相流阶段合理排采速度模拟装置 - Google Patents
煤层气直井单相流阶段合理排采速度模拟装置 Download PDFInfo
- Publication number
- CN207832632U CN207832632U CN201820058551.7U CN201820058551U CN207832632U CN 207832632 U CN207832632 U CN 207832632U CN 201820058551 U CN201820058551 U CN 201820058551U CN 207832632 U CN207832632 U CN 207832632U
- Authority
- CN
- China
- Prior art keywords
- pressure
- liquid
- coal sample
- coal
- mining
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn - After Issue
Links
Landscapes
- Sampling And Sample Adjustment (AREA)
Abstract
煤层气直井单相流阶段合理排采速度模拟装置包括煤样夹持系统、地层压力模拟系统、供液系统、用于模拟排采过程中的压降及对产液量进行测试的排采控制模拟系统、流体压力传播模拟系统和信息采集分析与控制系统,煤样夹持系统与地层压力模拟系统、供液系统、排采控制模拟系统和流体压力传播模拟系统之间分别通过管路连接,地层压力模拟系统、供液系统、排采控制模拟系统和流体压力传播模拟系统分别通过数据线和信息采集分析与控制系统连接。本实用新型能对不同煤储层渗透率、不同应力状态下排采过程合理性进行评价模拟,得出不同煤储层条件下单相流阶段合理的排采工作制度,能够最大化的提高煤层气直井排采效率和其产气量。
Description
技术领域
本实用新型属于煤层气排采技术领域,涉及一种煤层气直井单相流阶段合理排采速度模拟装置。
背景技术
地面煤层气井主要是通过“排水-降压”使煤层气解吸产出的。煤层气直井排采时,随着煤储层中水的产出,煤基质所受的有效应力增加,导致煤层中的裂隙变窄甚至部分发生闭合,宏观表征就是煤层渗透率的下降。随着排采的进行,水压不断由近井筒地带向远远处传播,形成了一定的压力梯度。在未达到气体解吸压力前这段时间的排采称为单相水流阶段。
单相水流阶段排采时,若动液面下降速度太快,近井地带的压力下降过快,压降漏斗相对陡峭,渗透率下降过快,阻力梯度增加过大,进而影响了远端的水向近井地带的流动。若排采速度过慢,排采时间相对延长,无疑增加了排采成本。为了得出不同情况下煤层气直井单相水流阶段合理的排采工作制度,国内煤层气工作者基于渗流力学理论,结合现场实际生产资料,构建了单相水流阶段合理排采工作制度的数学模型,但该模型是一种平均降液速度的数学模型,对整个单相水流阶段的排采具有一定的指导性,但针对单相水流整个阶段如何排采指导具有一定的局限性。一些学者根据现场煤层气井的实际生产资料,提出了应用米产水指数、初始产水速度、典型日产水量等指标来对煤层气井排水阶段动液面合理降速进行约束,更多是基于一种统计学的观点进行的分析,分析结果对指导某一地区具有一定的适用性,但对于其他没有煤层气生产资料的地区,指导意义有限。煤储层压力、临界解吸压力、煤储层渗透率、煤层所受应力、煤层含水性的多少、煤岩力学性质等都对煤层气井排采过程渗透率变化有影响,当这些条件发生变化时,都会对单相流阶段水压传递距离有影响,到底煤层气直井在单相水流阶段什么样的排采速率才是合理的呢,目前现场更多是基于理论分析加经验相结合的方法进行排采,科学性受限,不能对不同煤储层渗透率、不同应力状态下排采过程合理性进行评价模拟,无法得出不同煤储层条件下单相流阶段合理的排采工作制度,不能最大化的提高煤层气直井排采效率和其产气量。
实用新型内容
本实用新型为了解决现有技术中的不足之处,提供了一种煤层气直井单相流阶段合理排采速度模拟装置,能对不同煤储层渗透率、不同应力状态下排采过程合理性进行评价模拟,得出不同煤储层条件下单相流阶段合理的排采工作制度,能够最大化的提高煤层气直井排采效率和其产气量。
为解决上述技术问题,本实用新型采用如下技术方案:煤层气直井单相流阶段合理排采速度模拟装置包括煤样夹持系统、用于提供煤样在轴向及侧向上的压力的地层压力模拟系统、用于模拟煤层中液体状态的供液系统、用于模拟排采过程中的压降及对产液量进行测试的排采控制模拟系统、用于模拟流体在煤层中的压力传播的流体压力传播模拟系统和用于采集分析数据和控制阀门的信息采集分析与控制系统,煤样夹持系统与地层压力模拟系统、供液系统、排采控制模拟系统和流体压力传播模拟系统之间分别通过管路连接,地层压力模拟系统、供液系统、排采控制模拟系统和流体压力传播模拟系统分别通过数据线和信息采集分析与控制系统连接。
煤样夹持系统包括固定箱体和若干个互相串联连接的煤样罐,固定箱体的前侧壁上沿左右水平方向向内凸出设置有前支撑台,固定箱体的后侧壁上沿左右水平方向向内凸出设置有后支撑台,前支撑台和后支撑台上均沿左右水平方向设有开口朝向内侧的燕尾槽;
各个煤样罐均沿左右水平方向安装在固定箱体的内部,煤样罐的内部设有用于夹持煤样的夹持槽,夹持槽的上端、左端和右端均为敞口,夹持槽内密封设置有上环形加压块和固定在腔体底部的下环形加压块,煤样夹持在上环形加压块和下环形加压块之间,煤样罐的前后两侧壁均向外凸出设置有与燕尾槽匹配的燕尾台,燕尾台滑动连接在燕尾槽内,相邻两个煤样罐之间设置有第一固定插销组件,煤样罐的端部四角处分别设置一组第一固定插销组件,第一固定插销组件包括互相匹配的插销杆和插销筒,插销杆和插销筒均沿左右水平方向设置,插销杆的左端固定连接在煤样罐的右侧壁上,插销筒的右端沿左右水平方向固定连接在相邻煤样罐的左侧壁上,插销杆的右侧部滑动连接在插销筒内。
煤样罐设置有三个,从左至右依次为一号煤样罐、二号煤样罐和三号煤样罐。
地层压力模拟系统包括液压油箱、油压泵、分流器、轴压加载装置和围压加载装置,液压油箱、油压泵和分流器依次通过管路连接;
轴压加载装置包括从左至右依次设置的轴压加载缸、轴压加载垫块、轴压传递垫块和支撑垫块,轴压加载缸沿左右水平方向设置且固定在固定箱体左侧内壁上,轴压加载缸的加压活塞右端与轴压加载垫块的左端固定连接,轴压加载垫块的右端固定连接有加压密封盖,加压密封盖的右侧与一号煤样罐中夹持的煤样左端部抵接,轴压加载垫块与一号煤样罐之间设置有第二固定插销组件,轴压传递垫块设有两个且分别设置在相邻两个煤样罐之间,轴压传递垫块的左端固定连接有右密封盖,轴压传递垫块的右端固定连接有左密封盖,右密封盖的左侧和左密封盖的右侧分别与相邻两个煤样罐中所夹持的煤样端部抵接,支撑垫块的左端固定连接有支撑密封盖,支撑密封盖的左侧与三号煤样罐中夹持的煤样右端部抵接,支撑垫块的右端固定连接在固定箱体的右侧壁上,支撑垫块与三号煤样罐之间设置有第三固定插销组件;分流器通过轴压加载管路与轴压加载缸连接,轴压加载管路上串联有轴压控制阀门和轴压压力计;第二固定插销组件的结构和第三固定插销组件的结构均与第一固定插销组件的结构相同;
围压加载装置包括三个并联连接的围压加载缸,每个围压加载缸分别与一个煤样罐对应连接,各个围压加载缸均固定在固定箱体的上侧壁上,围压加载缸的加压活塞下端与上环形加压块的顶部固定连接,分流器通过围压加载管路与并联后的各个围压加载缸连接,围压加载管路上串联有围压控制阀门和围压压力计。
供液系统包括真空泵、供液罐、液体增压泵和供液主管路,真空泵设置在固定箱体的外部,真空泵与三号煤样罐的夹持槽之间通过抽真空管路连通,抽真空管路上设置有真空管路阀门,抽真空管路与供液主管路之间连通有第一注液管路,供液罐、液体增压泵和供液主管路沿液体流动方向依次连通,供液主管路的干路上沿液体流动方向依次设置有一号液体阀门、一号液体流量计和一号液体压力计,三号煤样罐与二号煤样罐之间设置有第二注液管路,二号煤样罐与一号煤样罐之间设置有第三注液管路,第二注液管路和第三注液管路的入口端分别与供液主管路连接,第二注液管路上设置有二号液体阀门,第三注液管路上设置有三号液体阀门。
流体压力传播模拟系统包括结构相同的第一进出液结构和第二进出液结构,第一进出液结构设置在三号煤样罐和二号煤样罐之间,第二进出液结构设置在二号煤样罐和一号煤样罐之间,第一进出液结构和第二进出液结构均包括一个进液管和出液管,进液管的左端连通在煤样罐的夹持槽的右侧,出液管的右端连通在相邻煤样罐的夹持槽的左侧,第一进出液结构中的进液管右端和出液管左端与第二注液管路的出口端通过一号三通连接,第二进出液结构中的进液管右端和出液管左端与第三注液管路的出口端通过二号三通连接,进液管上从右往左依次设置有入口阀门和入口水压计,出液管上从右往左依次设置有出口水压计和出口阀门。
排采控制模拟系统包括容积箱、注气管路、气体微排管路和产液计量管路,注气管路和气体微排管路的一端分别与容积箱连通,注气管路和气体微排管路的自由端分别与外部大气连通,产液计量管路的两端分别与容积箱和一号煤样罐的夹持槽的左侧连通,注气管路上串联有气体增压泵和容积箱进气阀门,气体微排管路上串联有精密放气阀、精密气体流量计和排气气压计,产液计量管路上串联有高压密封量筒和四号液体阀门,高压密封量筒为耐高压材质制成的圆筒结构,高压密封量筒的外壁上设置有刻度,容积箱上设置有用于监测容积箱中温度的温度传感器;
产液计量管路与供液主管路之间通过连接管连通,连接管上设置有五号液体阀门、一号气压计和二号液体流量计。
信息采集分析与控制系统包括用于进行加压控制的第一计算机和用于分析计算及控制放气量的第二计算机,第一计算机分别与地层压力模拟系统中的油压泵、轴压控制阀门、轴压压力计、围压控制阀门和围压压力计通过数据线连接,第二计算机分别与供液系统中的真空泵、液体增压泵、一号液体阀门、一号液体流量计、一号液体压力计、二号液体阀门和三号液体阀门,流体压力传播模拟系统中的入口阀门、入口水压计、出口水压计和出口阀门,以及排采控制模拟系统中的气体增压泵、容积箱进气阀门、精密放气阀、精密气体流量计、排气气压计、四号液体阀门、五号液体阀门、温度传感器、二号液体流量计和一号气压计通过数据线连接。
采用上述技术方案,本实用新型具有以下优点:
通过使用本实用新型中的煤层气直井单相流阶段合理排采速度模拟装置,能够进行真实地应力和储层压力条件下的高精度排采模拟,为单相水流阶段的排采速度的确定提供科学依据;
煤样罐上与固定箱体上燕尾槽相匹配的燕尾台可以保证煤样罐在水平方向上的灵活性与可组装性以及在垂直方向上的稳定性,从而在保持稳定的前提下实现轴压在煤样罐之间的传递。
本实用新型中的排采控制模拟系统通过利用容积箱注气放气的方式实现了对高压的精细控制,解决了压力传感器量程和精度不够的难题,同时还根据理想气体状态方程确定了压降和放气量的关系并通过第二计算机进行精确计算和控制。
通过使用本实用新型的煤层气直井单相流阶段合理排采速度模拟方法,确定的排采压降速度可直接作为该储层条件下煤层气井的排采速度,而非普适性的规律,具有较强的针对性和现场指导作用。
综上,使用本实用新型,能对不同煤储层渗透率、不同应力状态下排采过程合理性进行评价模拟,得出不同煤储层条件下单相流阶段合理的排采工作制度,能够最大化的提高煤层气直井排采效率和其产气量。
附图说明
图1是本实用新型的结构示意图;
图2是本实用新型中煤样夹持系统的结构示意图;
图3是图2的A-A剖视结构示意图;
图4是图2中B处的局部放大示意图。
具体实施方式
如图1至图4所示,以图1的左侧为本实用新型的左向,本实用新型的煤层气直井单相流阶段合理排采速度模拟装置包括煤样夹持系统、用于提供煤样在轴向及侧向上的压力的地层压力模拟系统、用于模拟煤层中液体状态的供液系统、用于模拟排采过程中的压降及对产液量进行测试的排采控制模拟系统、用于模拟流体在煤层中的压力传播的流体压力传播模拟系统和用于采集分析数据和控制阀门的信息采集分析与控制系统,煤样夹持系统与地层压力模拟系统、供液系统、排采控制模拟系统和流体压力传播模拟系统之间分别通过管路连接,地层压力模拟系统、供液系统、排采控制模拟系统和流体压力传播模拟系统分别通过数据线和信息采集分析与控制系统连接。
煤样夹持系统包括固定箱体1和若干个互相串联连接的煤样罐,固定箱体1的前侧壁上沿左右水平方向向内凸出设置有前支撑台101,固定箱体1的后侧壁上沿左右水平方向向内凸出设置有后支撑台102,前支撑台101和后支撑台102上均沿左右水平方向设有开口朝向内侧的燕尾槽103;
各个煤样罐均沿左右水平方向安装在固定箱体1的内部,煤样罐的内部设有用于夹持煤样104的夹持槽105,夹持槽105的上端、左端和右端均为敞口,夹持槽105内密封设置有上环形加压块106和固定在腔体底部的下环形加压块107,煤样104夹持在上环形加压块106和下环形加压块107之间,煤样罐的前后两侧壁均向外凸出设置有与燕尾槽103匹配的燕尾台108,燕尾台108滑动连接在燕尾槽103内,相邻两个煤样罐之间设置有第一固定插销组件2,煤样罐的端部四角处分别设置一组第一固定插销组件2,第一固定插销组件2包括互相匹配的插销杆109和插销筒110,插销杆109和插销筒110均沿左右水平方向设置,插销杆109的左端固定连接在煤样罐的右侧壁上,插销筒110的右端固定连接在相邻煤样罐的左侧壁上,插销杆109的右侧部滑动连接在插销筒110内。
固定箱体1为煤样罐的放置与连接提供了平台,固定箱体1既不是固定的大小也不是一个密封的结构,其大小可以根据煤样罐的数量通过连接等方式加长,其结构上设置有足够的孔或槽来实现各个管路及数据线的连接。煤样罐上与固定箱体1上燕尾槽103相匹配的燕尾台108可以保证煤样罐在水平方向上的灵活性与可组装性以及在垂直方向上的稳定性。
本实施例中,煤样罐设置有三个,从左至右依次为一号煤样罐3、二号煤样罐4和三号煤样罐5。当然,煤样罐的数量不限于三个,可根据具体模拟测试情况选择大于三个的煤样罐进行试验。
地层压力模拟系统包括液压油箱6、油压泵7、分流器8、轴压加载装置和围压加载装置,液压油箱6、油压泵7和分流器8依次通过管路连接;
轴压加载装置包括从左至右依次设置的轴压加载缸9、轴压加载垫块10、轴压传递垫块11和支撑垫块12,轴压加载缸9沿左右水平方向设置且固定在固定箱体1左侧内壁上,轴压加载缸9的加压活塞右端与轴压加载垫块10的左端固定连接,轴压加载垫块10的右端固定连接有加压密封盖13,加压密封盖13的右侧与一号煤样罐3中夹持的煤样104左端部抵接,轴压加载垫块10与一号煤样罐3之间设置有第二固定插销组件14,轴压传递垫块11设有两个且分别设置在相邻两个煤样罐之间,轴压传递垫块11的左端固定连接有右密封盖15,轴压传递垫块11的右端固定连接有左密封盖16,右密封盖15的左侧和左密封盖16的右侧分别与相邻两个煤样罐中所夹持的煤样104端部抵接,支撑垫块12的左端固定连接有支撑密封盖17,支撑密封盖17的左侧与三号煤样罐5中夹持的煤样104右端部抵接,支撑垫块12的右端固定连接在固定箱体1的右侧壁上,支撑垫块12与三号煤样罐5之间设置有第三固定插销组件18;分流器8通过轴压加载管路19与轴压加载缸9连接,轴压加载管路19上串联有轴压控制阀门20和轴压压力计21;第二固定插销组件14的结构和第三固定插销组件18的结构均与第一固定插销组件2的结构相同;
围压加载装置包括三个并联连接的围压加载缸22,每个围压加载缸22分别与一个煤样罐对应连接,各个围压加载缸22均固定在固定箱体1的上侧壁上,围压加载缸22的加压活塞下端与上环形加压块106的顶部固定连接,分流器8通过围压加载管路23与并联后的各个围压加载缸22连接,围压加载管路23上串联有围压控制阀门24和围压压力计25。
加压密封盖13、右密封盖15、左密封盖16、支撑密封盖17上沿同轴向均开设有用于管路穿过的通孔。进行轴压加载时,在固定箱体1和煤样罐之间的燕尾槽103和燕尾台108可以保证横向稳定的前提下实现轴压在煤样罐之间的传递;进行围压加载时,油压泵7向围压加载缸22输入高压油,从而推动加压活塞和上环形加压块106对煤样104施加围压。
供液系统包括真空泵26、供液罐27、液体增压泵28和供液主管路29,真空泵26设置在固定箱体1的外部,真空泵26与三号煤样罐5的夹持槽105之间通过抽真空管路30连通,抽真空管路30上设置有真空管路阀门31,抽真空管路30与供液主管路29之间连通有第一注液管路32,供液罐27、液体增压泵28和供液主管路29沿液体流动方向依次连通,供液主管路29的干路上沿液体流动方向依次设置有一号液体阀门33、一号液体流量计34和一号液体压力计35,三号煤样罐5与二号煤样罐4之间设置有第二注液管路36,二号煤样罐4与一号煤样罐3之间设置有第三注液管路37,第二注液管路36和第三注液管路37的入口端分别与供液主管路29连接,第二注液管路36上设置有二号液体阀门38,第三注液管路37上设置有三号液体阀门39。
一号液体流量计34和一号液体压力计35分别监测着管路中的流量和压力,一号液体阀门33、二号液体阀门38和三号液体阀门39可以对不同煤样罐的注液进行控制。
流体压力传播模拟系统包括结构相同的第一进出液结构和第二进出液结构,第一进出液结构设置在三号煤样罐5和二号煤样罐4之间,第二进出液结构设置在二号煤样罐4和一号煤样罐3之间,第一进出液结构和第二进出液结构均包括一个进液管201和出液管202,进液管201的左端连通在煤样罐的夹持槽105的右侧,出液管202的右端连通在相邻煤样罐的夹持槽105的左侧,第一进出液结构中的进液管201右端和出液管202左端与第二注液管路36的出口端通过一号三通连接,第二进出液结构中的进液管201右端和出液管202左端与第三注液管路37的出口端通过二号三通连接,进液管201上从右往左依次设置有入口阀门203和入口水压计204,出液管202上从右往左依次设置有出口水压计205和出口阀门206。
当入口阀门203和出口阀门206都关闭时,入口水压计204对相邻两个煤样罐中位于左侧的煤样罐的入口压力进行监测,出口水压计205对右侧煤样罐的出口压力进行监测,由于量程和精度限制,它们仅对注液时的压力进行监测以及模拟排采时产生的压力变化进行捕捉。
排采控制模拟系统包括容积箱40、注气管路41、气体微排管路42和产液计量管路43,注气管路41和气体微排管路42的一端分别与容积箱40连通,注气管路41和气体微排管路42的自由端分别与外部大气连通,产液计量管路43的两端分别与容积箱40和一号煤样罐3的夹持槽105的左侧连通,注气管路41上串联有气体增压泵44和容积箱进气阀门45,气体微排管路42上串联有精密放气阀46、精密气体流量计47和排气气压计48,产液计量管路43上串联有高压密封量筒49和四号液体阀门50,高压密封量筒49为耐高压材质(如有机玻璃)制成的圆筒结构,高压密封量筒49的外壁上设置有刻度,容积箱40上设置有用于监测容积箱40中温度的温度传感器51;
产液计量管路43与供液主管路29之间通过连接管52连通,连接管52上设置有五号液体阀门55、用于测量排采压降幅度的一号气压计54和二号液体流量计53。
第二计算机57根据理想气体状态方程PV=nRT编程计算出压降量和放气量的关系,通过对精密放气阀46和精密气体流量计47的控制,实现对排采压降的精准模拟。
信息采集分析与控制系统包括用于进行加压控制的第一计算机56和用于分析计算及控制放气量的第二计算机57,第一计算机56分别与地层压力模拟系统中的油压泵7、轴压控制阀门20、轴压压力计21、围压控制阀门24和围压压力计25通过数据线连接,第二计算机57分别与供液系统中的真空泵26、液体增压泵28、一号液体阀门33、一号液体流量计34、一号液体压力计35、二号液体阀门38和三号液体阀门39,流体压力传播模拟系统中的入口阀门203、入口水压计204、出口水压计205和出口阀门206,以及排采控制模拟系统中的气体增压泵44、容积箱进气阀门45、精密放气阀46、精密气体流量计47、排气气压计48、四号液体阀门50、五号液体阀门55、温度传感器51、二号液体流量计53和一号气压计54通过数据线连接。
使用本实用新型所述的煤层气直井单相流阶段合理排采速度模拟装置进行试验时,按以下步骤进行操作:
(1)、样品制备与夹持:将沿着平行层理方向钻取的直径d为50mm,长度L为100mm的煤样104分别放置在煤样罐中,并安装好右密封盖15、轴压传递垫块11和左密封盖16,将煤样罐从左至右依次通过第二固定插销组件14、第一固定插销组件2和第三固定插销组件18串联,此时注意各个煤样罐的燕尾台108方向的一致性,串联完成后,整体顺着燕尾槽103放入固定箱体1内,并将各条管路和线路分别伸出固定箱体1外,完成煤样罐的连接与固定;
(2)、管线连接和气密性检查:将轴压加载管路19与轴压加载缸9连接,围压加载管路23与各个围压加载缸22连接,抽真空管路30与三号煤样罐5的夹持槽105连接,第二注液管路36和第三注液管路37分别与第一进出液结构和第二进出液结构连接,产液计量管路43与一号煤样罐3的夹持槽105连接;关闭所有末端阀门,即关闭精密放气阀46、真空管路阀门31和一号液体阀门33,通过气体增压泵44向装置中充入高压气体,观察压力变化,检查气密性;
(3)、排采控制模拟系统调试:关闭四号液体阀门50和精密放气阀46,打开气体增压泵44和容积箱进气阀门45向容积箱40内注入高压气体(氮气等纯净气体)直到排气气压计48显示压力等于所需要模拟的储层压力,关闭气体增压泵44和容积箱进气阀门45停止注气,计算出压降量和放气量的关系,通过第二计算机57控制精密放气阀46和精密气体流量计47控制放气速度和放气量,并观察压降值是否和计算值相符,对放气速度和压降的关系进行校正;校正无误后,向容积箱40内加气使其值等于模拟储层压力,关闭精密放气阀46、容积箱进气阀门45和四号液体阀门50;
计算出压降量和放气量的关系的具体方法为:
第二计算机57根据理想气体状态方程PV=nRT编程计算出压降量和放气量的关系,通过对精密放气阀46和精密气体流量计47的控制,实现对排采压降的精准模拟;式中,P为理想气体的压强,kPa;V为理想气体的体积,cm3;n为理想气体中气体物质的量,mol;R为理想气体常数;T为理想气体的绝对温度,K。
(4)、轴压、围压、水压轮流加载:加载前先通过真空泵26对装置进行抽真空,即打开真空管路阀门31、二号液体阀门38、三号液体阀门39、五号液体阀门55、入口阀门203、出口阀门206,关闭一号液体阀门33,启动真空泵26抽真空,抽真空后,关停真空泵26,关闭真空管路阀门31;抽真空后,按照先加轴压、后加围压、最后加水压的原则进行操作,操作步骤依次为:a、先打开油压泵7和轴压控制阀门20对煤样104施加0.5MPa的轴向应力后暂停加载;b、打开围压控制阀门24对煤样104施加围压至0.5MPa后暂停加载;c、打开液体增压泵28、一号液体阀门33、二号液体阀门38和三号液体阀门39,关闭四号液体阀门50和五号液体阀门55,打开第一进出液结构和第二进出液结构中的入口阀门203,并关闭出口阀门206,从每个煤样罐的进液管201注入0.5MPa的水,当出口水压计205显示达到0.5MPa时暂停加压,重复a-c,直到加载到所需的应力和压力状态后,关闭油压泵7、轴压控制阀门20和围压控制阀门24,同时关闭液体增压泵28及供液系统中所有的阀门,即关闭一号液体阀门33、二号液体阀门38和三号液体阀门39,打开第一进出液结构和第二进出液结构中的所有阀门和四号液体阀门50,应力加载过程中,为防止煤样104损坏,加载速率应小于等于0.2MPa/s;
(5)、煤样启动压力梯度测试:先设定排采压降为0.01MPa,计算达到此压降幅度所需的放气体积,然后第二计算机57通过控制精密放气阀46和精密气体流量计47对容积箱40进行放气,使容积箱40内压降幅度达到0.01MPa,持续观测并采集第一进出液结构和第二进出液结构中的入口水压计204和出口水压计205的数据2小时(由于第一进出液结构和第二进出液结构中的所有阀门处于打开状态,同一个进出液结构中的入口水压计204和出口水压计205测得的数据相同),如果两个小时内测得的水压数据没有发生变化,将排采压降提高0.002MPa,以此类推,直到测得的水压数据发生变化,记录此时的排采压降幅度值A,排采压降幅度值A除以煤样104的长度L即为煤样104的启动压力梯度;测试结束后,重复步骤(4)中的步骤c,通过供液系统恢复煤样104中的流体压力;
(6)、动态压力传播速度测试:以一号气压计54为一号煤样罐3出口处的压力监测点,记为第一压力监测点,该处的启动压力为乘以L;以第二进出液结构中的出口水压计205为二号煤样罐4出口处的压力监测点,记为第二压力监测点,该处的启动压力为乘以2L;以第一进出液结构中的出口水压计205为三号煤样罐5出口处的压力监测点,记为第三压力监测点,该处的启动压力为乘以3L;首先,通过控制精密放气阀46和精密气体流量计47对容积箱40进行放气,达到以0.002MPa/h的速度模拟排采压降速度,同时,记录第一压力监测点、第二压力监测点和第三压力监测点测得的压力数据发生变化的时间,当根据一号气压计54测得的压降幅度等于时,关闭精密放气阀46以停止放气降压,持续记录各压力监测点的数据和一号液体压力计35的数据,直至三号煤样罐5进口处的压力不再变化,即一号液体压力计35的数值不再变化,在此过程中,读取高压密封量筒49的刻度得到产液量,分析各个压力监测点读数发生变化的时间和变化时对应的模拟排采的压降幅度,如果对应压降幅度大于该压力监测点的启动压力,则说明压降速度过快,反之则过慢;此步骤结束后,重复步骤(4)中的步骤c,通过供液系统恢复煤样104中的流体压力;
(7)、排采工作制度的确定:不断调整压降速度并重复步骤(6)的操作直至各个压力监测点的压力开始变化时模拟排采的压降幅度刚好近似等于该压力监测点的启动压力,此时的压降速度刚好能维持压力稳定传播,同时对比相同压降幅度下产液量最高的压降速度,如果两个压降速度是同一值,则选取该压降速度作为该储层条件下单相水流阶段的排采速度,如果不是同一值,则根据实际需要在两个压降速度之间任意取值作为排采速度;
(8)、测试结束后,卸压、卸载、回收煤样104。
本实施例并非对本实用新型的形状、材料、结构等作任何形式上的限制,凡是依据本实用新型的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均属于本实用新型技术方案的保护范围。
Claims (8)
1.煤层气直井单相流阶段合理排采速度模拟装置,其特征在于:包括煤样夹持系统、用于提供煤样在轴向及侧向上的压力的地层压力模拟系统、用于模拟煤层中液体状态的供液系统、用于模拟排采过程中的压降及对产液量进行测试的排采控制模拟系统、用于模拟流体在煤层中的压力传播的流体压力传播模拟系统和用于采集分析数据和控制阀门的信息采集分析与控制系统,煤样夹持系统与地层压力模拟系统、供液系统、排采控制模拟系统和流体压力传播模拟系统之间分别通过管路连接,地层压力模拟系统、供液系统、排采控制模拟系统和流体压力传播模拟系统分别通过数据线和信息采集分析与控制系统连接。
2.根据权利要求1所述的煤层气直井单相流阶段合理排采速度模拟装置,其特征在于:煤样夹持系统包括固定箱体和若干个互相串联连接的煤样罐,固定箱体的前侧壁上沿左右水平方向向内凸出设置有前支撑台,固定箱体的后侧壁上沿左右水平方向向内凸出设置有后支撑台,前支撑台和后支撑台上均沿左右水平方向设有开口朝向内侧的燕尾槽;
各个煤样罐均沿左右水平方向安装在固定箱体的内部,煤样罐的内部设有用于夹持煤样的夹持槽,夹持槽的上端、左端和右端均为敞口,夹持槽内密封设置有上环形加压块和固定在腔体底部的下环形加压块,煤样夹持在上环形加压块和下环形加压块之间,煤样罐的前后两侧壁均向外凸出设置有与燕尾槽匹配的燕尾台,燕尾台滑动连接在燕尾槽内,相邻两个煤样罐之间设置有第一固定插销组件,煤样罐的端部四角处分别设置一组第一固定插销组件,第一固定插销组件包括互相匹配的插销杆和插销筒,插销杆和插销筒均沿左右水平方向设置,插销杆的左端固定连接在煤样罐的右侧壁上,插销筒的右端沿左右水平方向固定连接在相邻煤样罐的左侧壁上,插销杆的右侧部滑动连接在插销筒内。
3.根据权利要求2所述的煤层气直井单相流阶段合理排采速度模拟装置,其特征在于:煤样罐设置有三个,从左至右依次为一号煤样罐、二号煤样罐和三号煤样罐。
4.根据权利要求3所述的煤层气直井单相流阶段合理排采速度模拟装置,其特征在于:地层压力模拟系统包括液压油箱、油压泵、分流器、轴压加载装置和围压加载装置,液压油箱、油压泵和分流器依次通过管路连接;
轴压加载装置包括从左至右依次设置的轴压加载缸、轴压加载垫块、轴压传递垫块和支撑垫块,轴压加载缸沿左右水平方向设置且固定在固定箱体左侧内壁上,轴压加载缸的加压活塞右端与轴压加载垫块的左端固定连接,轴压加载垫块的右端固定连接有加压密封盖,加压密封盖的右侧与一号煤样罐中夹持的煤样左端部抵接,轴压加载垫块与一号煤样罐之间设置有第二固定插销组件,轴压传递垫块设有两个且分别设置在相邻两个煤样罐之间,轴压传递垫块的左端固定连接有右密封盖,轴压传递垫块的右端固定连接有左密封盖,右密封盖的左侧和左密封盖的右侧分别与相邻两个煤样罐中所夹持的煤样端部抵接,支撑垫块的左端固定连接有支撑密封盖,支撑密封盖的左侧与三号煤样罐中夹持的煤样右端部抵接,支撑垫块的右端固定连接在固定箱体的右侧壁上,支撑垫块与三号煤样罐之间设置有第三固定插销组件;分流器通过轴压加载管路与轴压加载缸连接,轴压加载管路上串联有轴压控制阀门和轴压压力计;第二固定插销组件的结构和第三固定插销组件的结构均与第一固定插销组件的结构相同;
围压加载装置包括三个并联连接的围压加载缸,每个围压加载缸分别与一个煤样罐对应连接,各个围压加载缸均固定在固定箱体的上侧壁上,围压加载缸的加压活塞下端与上环形加压块的顶部固定连接,分流器通过围压加载管路与并联后的各个围压加载缸连接,围压加载管路上串联有围压控制阀门和围压压力计。
5.根据权利要求4所述的煤层气直井单相流阶段合理排采速度模拟装置,其特征在于:供液系统包括真空泵、供液罐、液体增压泵和供液主管路,真空泵设置在固定箱体的外部,真空泵与三号煤样罐的夹持槽之间通过抽真空管路连通,抽真空管路上设置有真空管路阀门,抽真空管路与供液主管路之间连通有第一注液管路,供液罐、液体增压泵和供液主管路沿液体流动方向依次连通,供液主管路的干路上沿液体流动方向依次设置有一号液体阀门、一号液体流量计和一号液体压力计,三号煤样罐与二号煤样罐之间设置有第二注液管路,二号煤样罐与一号煤样罐之间设置有第三注液管路,第二注液管路和第三注液管路的入口端分别与供液主管路连接,第二注液管路上设置有二号液体阀门,第三注液管路上设置有三号液体阀门。
6.根据权利要求5所述的煤层气直井单相流阶段合理排采速度模拟装置,其特征在于:流体压力传播模拟系统包括结构相同的第一进出液结构和第二进出液结构,第一进出液结构设置在三号煤样罐和二号煤样罐之间,第二进出液结构设置在二号煤样罐和一号煤样罐之间,第一进出液结构和第二进出液结构均包括一个进液管和出液管,进液管的左端连通在煤样罐的夹持槽的右侧,出液管的右端连通在相邻煤样罐的夹持槽的左侧,第一进出液结构中的进液管右端和出液管左端与第二注液管路的出口端通过一号三通连接,第二进出液结构中的进液管右端和出液管左端与第三注液管路的出口端通过二号三通连接,进液管上从右往左依次设置有入口阀门和入口水压计,出液管上从右往左依次设置有出口水压计和出口阀门。
7.根据权利要求6所述的煤层气直井单相流阶段合理排采速度模拟装置,其特征在于:排采控制模拟系统包括容积箱、注气管路、气体微排管路和产液计量管路,注气管路和气体微排管路的一端分别与容积箱连通,注气管路和气体微排管路的自由端分别与外部大气连通,产液计量管路的两端分别与容积箱和一号煤样罐的夹持槽的左侧连通,注气管路上串联有气体增压泵和容积箱进气阀门,气体微排管路上串联有精密放气阀、精密气体流量计和排气气压计,产液计量管路上串联有高压密封量筒和四号液体阀门,高压密封量筒为耐高压材质制成的圆筒结构,高压密封量筒的外壁上设置有刻度,容积箱上设置有用于监测容积箱中温度的温度传感器;
产液计量管路与供液主管路之间通过连接管连通,连接管上设置有五号液体阀门、一号气压计和二号液体流量计。
8.根据权利要求7所述的煤层气直井单相流阶段合理排采速度模拟装置,其特征在于:信息采集分析与控制系统包括用于进行加压控制的第一计算机和用于分析计算及控制放气量的第二计算机,第一计算机分别与地层压力模拟系统中的油压泵、轴压控制阀门、轴压压力计、围压控制阀门和围压压力计通过数据线连接,第二计算机分别与供液系统中的真空泵、液体增压泵、一号液体阀门、一号液体流量计、一号液体压力计、二号液体阀门和三号液体阀门,流体压力传播模拟系统中的入口阀门、入口水压计、出口水压计和出口阀门,以及排采控制模拟系统中的气体增压泵、容积箱进气阀门、精密放气阀、精密气体流量计、排气气压计、四号液体阀门、五号液体阀门、温度传感器、二号液体流量计和一号气压计通过数据线连接。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201820058551.7U CN207832632U (zh) | 2018-01-15 | 2018-01-15 | 煤层气直井单相流阶段合理排采速度模拟装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201820058551.7U CN207832632U (zh) | 2018-01-15 | 2018-01-15 | 煤层气直井单相流阶段合理排采速度模拟装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN207832632U true CN207832632U (zh) | 2018-09-07 |
Family
ID=63392907
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201820058551.7U Withdrawn - After Issue CN207832632U (zh) | 2018-01-15 | 2018-01-15 | 煤层气直井单相流阶段合理排采速度模拟装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN207832632U (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108169098A (zh) * | 2018-01-15 | 2018-06-15 | 河南理工大学 | 煤层气直井单相流阶段合理排采速度模拟装置 |
CN112213234A (zh) * | 2020-09-28 | 2021-01-12 | 中国石油大学(华东) | 一种煤岩与页岩原位含气性评价方法及系统 |
-
2018
- 2018-01-15 CN CN201820058551.7U patent/CN207832632U/zh not_active Withdrawn - After Issue
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108169098A (zh) * | 2018-01-15 | 2018-06-15 | 河南理工大学 | 煤层气直井单相流阶段合理排采速度模拟装置 |
CN112213234A (zh) * | 2020-09-28 | 2021-01-12 | 中国石油大学(华东) | 一种煤岩与页岩原位含气性评价方法及系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108316916A (zh) | 不同煤储层条件下的排采压降控制模拟试验方法 | |
CN102374963B (zh) | 煤层气完井方式评价实验装置 | |
CN110029987B (zh) | 一种两相气藏压裂水平井温度剖面模拟实验装置及其方法 | |
CN103994943B (zh) | 一种煤/页岩等温吸附实验装置 | |
CN206192785U (zh) | 一种饱和土渗流与蠕变耦合三轴试验装置 | |
CN106769767A (zh) | 一种各向异性岩石渗透率和弹性模量的测量装置及方法 | |
CN104632153B (zh) | 水驱油气藏型储气库水体往复运移规律的实验系统 | |
CN109211755A (zh) | 含瓦斯水合物煤体渗透率测试装置及方法 | |
WO2020087860A1 (zh) | 一种煤层气水平井塌孔造洞穴卸压开采模拟试验系统 | |
CN201747363U (zh) | 煤层气完井方式评价实验装置 | |
CN104297126B (zh) | 低渗透储层气体渗流启动压力梯度测量装置及测量方法 | |
CN109470616B (zh) | 岩石多功能渗流测试系统 | |
CN207280877U (zh) | 一种模拟低渗透储层应力敏感测试装置 | |
CN108181201A (zh) | 一种通过co2置换开采页岩气的实验方法及实验装置 | |
CN103163059A (zh) | 一种覆压加温下煤岩孔渗电声应力应变联测装置 | |
CN103472206A (zh) | 一种测量土水特征曲线的双层压力板仪 | |
CN108169098A (zh) | 煤层气直井单相流阶段合理排采速度模拟装置 | |
CN109946215A (zh) | 一种原位煤体气体吸附量测试模拟装置 | |
CN209855773U (zh) | 一种高含硫有水气藏硫沉积模拟装置 | |
CN207832632U (zh) | 煤层气直井单相流阶段合理排采速度模拟装置 | |
CN102590016B (zh) | 一种基于土壤水分特征曲线测量装置的测量方法 | |
CN108732329B (zh) | 一种煤层瓦斯压力测定相似模拟实验装置及方法 | |
CN203081430U (zh) | 一种高温高压砂床堵漏模拟装置 | |
CN203908915U (zh) | 一种煤/页岩等温吸附实验装置 | |
CN206504969U (zh) | 滑溜水作用下页岩气井产量模拟测试仪 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
AV01 | Patent right actively abandoned | ||
AV01 | Patent right actively abandoned | ||
AV01 | Patent right actively abandoned |
Granted publication date: 20180907 Effective date of abandoning: 20230606 |
|
AV01 | Patent right actively abandoned |
Granted publication date: 20180907 Effective date of abandoning: 20230606 |