CN207685180U - The preparation system of polypropylene or propylene ethylene copolymers - Google Patents

The preparation system of polypropylene or propylene ethylene copolymers Download PDF

Info

Publication number
CN207685180U
CN207685180U CN201721493341.2U CN201721493341U CN207685180U CN 207685180 U CN207685180 U CN 207685180U CN 201721493341 U CN201721493341 U CN 201721493341U CN 207685180 U CN207685180 U CN 207685180U
Authority
CN
China
Prior art keywords
propylene
gas
liquid phase
liquid
phase polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201721493341.2U
Other languages
Chinese (zh)
Inventor
李泽民
刘立新
崔忠
陈红
刘利妍
吴霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Huafu Engineering Co Ltd
Original Assignee
Beijing Huafu Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Huafu Engineering Co Ltd filed Critical Beijing Huafu Engineering Co Ltd
Priority to CN201721493341.2U priority Critical patent/CN207685180U/en
Application granted granted Critical
Publication of CN207685180U publication Critical patent/CN207685180U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The utility model is related to propylene polymerization fields, disclose polypropylene or the preparation system of propylene ethylene copolymers, including:Prepolymerization unit (A), liquid phase polymerization unit (B), gas-phase polymerization unit (C) and the post-processing unit (D) being sequentially connected to;Prepolymerization unit (A) includes the propylene surge tank (1), propylene compression pump (2) and prepolymerization kettle (3) being sequentially connected to, the propylene of propylene surge tank (1) will be come from, through propylene compression pump (2) boil down to liquid propylene, polymerization catalyst is carried again without condensing unit and is all passed through prepolymerization kettle (3) and carries out Propylene Pre-polymerization, obtains raw slurry;Raw slurry is carried out liquid phase polymerization, gas-phase polymerization and product gas solid separation by liquid phase polymerization unit (B), gas-phase polymerization unit (C) and post-processing unit (D) successively, obtains Noblen or random copolymer.The system reduces propylene polymerization energy consumption of unit product and propylene loss.

Description

The preparation system of polypropylene or propylene ethylene copolymers
Technical field
The utility model is related to propylene polymerizations to industrialize field, and in particular, to one kind carrying out poly- third with three-stage technique The preparation system of alkene or propylene ethylene copolymers.
Background technology
Polypropylene is using propylene as polymer made of monomer polymerization, is a very important kind in general-purpose plastics, Its with abundant raw material, it is cheap, be easily worked the characteristics such as molding, nontoxic, can also pass through the measures such as copolymerization, blending, enhancing It is modified, it is to be only second to the second largest plastics of polyethylene in vistanex to have very wide application field.And Propylene can also be copolymerized with ethylene, prepare Propylene-ethylene random copolymer.
Producing polyacrylic technology both at home and abroad at present mainly has:Liquid phase noumenal method, gas phase substance law and liquid-phase bulk The polymerization being in series with gas phase ontology.According to the difference of reactor types, and endless tube method (Spheripol), gas can be divided into Phase fluidized bed process (Unipol), vertical stirred tank method (Novolen, Hypol), horizontal agitated vessel method (Inoes, JPP) and difference The combined method of reaction kettle.In the technique for having liquid phase polymerization, polymerisation occurs in the liquid phase, in order to control reaction Temperature and the degree of polymerization are designed with pre-polymerization, and in the technique of gas-phase polymerization, catalyst and raw material propylene are added directly into reaction In, do not set pre-polymerization.
In polypropylene production process, propylene monomer is anti-in polymerization under the action of catalyst, activator, electron donor Progress polymerisation in device is answered to obtain polypropylene slurry or solid material, the polypropylene of generation loses using flash liberation, catalyst Living, dry and nitrogen displacement, obtains polypropylene powder product, in the propylene gas that reactor discharging is carried secretly in the process, through too low It compresses and washes and washs, returns to reaction system recycling after the separation of gas compression, light gas, to reduce disappearing for raw material propylene and hydrogen Consumption.
Current domestic and international polymarization method for prodcing polyacrylates, each own different advantage and disadvantage:
Batch process bulk technique:By the propylene polymerization process of domestic independent development, advantage have flow it is short, investment Low, quick, disadvantage is that technique is backward, the degree of automation is low, unstable product quality, operating cost are high, poor product quality.
The Spheripol techniques of Lyondell Basell:Ring canal reaction kettle, using axial-flow pump forced circulation, liquid-phase bulk Polymerization, the chuck outside endless tube remove heat.Its advantage is that reaction condition is relatively easy to control, reactor heat transfer coefficient is big, unit volume production Rate is high, properties of product are stablized, and the covering of trade mark range is wide;The investment of its disadvantage is big, reaction conversion per pass is low, has large-scale rotation to set Standby, high energy consumption, the construction period is long, after-treatment system is complicated.
The Unipol techniques of Grace:Gas-phase fluidized-bed reactor, heat of polymerization are taken away by the sensible heat of gas, gas circulation amount Greatly, need powerful booster fan that could realize, it is less uniform for mixed type, product quality entirely in reaction kettle.Its advantage has suitable It closes ethylene and propylene is copolymerized, flow is simple, the covering of product good physical performance, the trade mark is wide;Its disadvantage has high energy consumption, equipment size Greatly, difficulty of processing is high, investment is high, device efficiency is low.
The Innovene techniques of INEOS companies:Using Horizontal stirring reactor and high performance INcat CDi catalyst, The reactor removes heat close to plug flow reactor, using liquid propylene vaporization.Its advantage has reactor to remove, and the thermal efficiency is high, produces Smooth operation, residence time of material is uniform in the reaction phase, and the product melting means range of production is wide, energy consumption is relatively low;Its disadvantage has reaction Hot spot is easy tod produce in kettle and plasticizing block, reactor difficulty of processing height, key equipment need import, investment high.
The Hypol techniques of Mitsui:Liquid-phase bulk and gas phase ontology group technology produce polypropylene, the first two reaction kettle For vertical stirred tank, latter two is vertical gas fluidised bed polymerisation kettle;Its advantage can produce random copolymerization and block copolymerization product; Its disadvantage long flow path, device efficiency are low, gas phase reaction is complete mixed type, product quality is uneven, catalyst adaptability is poor, device Small scale;The Hypol process units without on newly domestic in recent years.
But during above-mentioned polytechnic industrializing implementation, there is acrylic polymers production unit high energy consumption Defect, and quality and the safety of stability and device operation of polymeric articles are influenced in turn, it is industrialized to increase project Investment, influences the economic benefit of project.
Utility model content
Purpose of the utility model is to solve the specific energy consumptions for how reducing polypropylene production, improve the quality of product With the safety of stability and system operation, the problem of reducing the loss of propylene, proposes polypropylene or propylene ethylene copolymers Preparation system, the equipment that the system coupled propylene prepolymerization, liquid phase bulk propylene polymerization and propylene gas phase bulk polymerization are completed, The mitigation prepolymerization of propylene may be implemented, reduce catalyst amount, meet the requirement of acrylic polymers product, reduce entire technique Specific energy consumption in industrializing implementation and propylene loss, improve the economy of propylene industrialized production.
To achieve the goals above, the utility model provides a kind of polypropylene or the preparation system of propylene ethylene copolymers, The system includes:
Prepolymerization unit A, liquid phase polymerization unit B, gas-phase polymerization unit C and the post-processing unit D being sequentially connected to;
Prepolymerization unit A includes the propylene surge tank 1, propylene compression pump 2 and prepolymerization kettle 3 being sequentially connected to, and will come from propylene The propylene of surge tank 1 through 2 boil down to liquid propylene of propylene compression pump, then carries olefin polymerization catalysis, activator and electron Body is all passed through prepolymerization kettle 3 without condensing unit and carries out Propylene Pre-polymerization, obtains the raw material slurry containing propylene pre-polymer Liquid;
Liquid phase polymerization unit B carries out liquid propylene homopolymerization or the raw slurry and ethylene for the raw slurry Liquid phase random copolymerization is carried out, liquid phase polymerization product is obtained;
Gas-phase polymerization unit C is used to the liquid phase polymerization product carrying out gas-phase polymerization, obtains Noblen or random Copolymer;
The product that post-processing unit D is used to obtain gas-phase polymerization carries out gas solid separation, obtains Noblen or random Copolymer, while isolating propylene gas and returning to liquid phase polymerization unit B.
Preferably, propylene surge tank 1 is arranged the propylene that one is connected to propylene compression pump 2 and exports, and third in propylene surge tank 1 Alkene is passed through prepolymerization kettle 3 merely through propylene compression pump 2.
Preferably, the propylene compression pump 2 in prepolymerization unit A and it is not provided with propylene condensing unit between prepolymerization kettle 3.
Preferably, propylene compression pump 2 is directly connected to prepolymerization kettle 3 by pipeline 100, and alkene is respectively set on pipeline 100 The addition mouth of polymerization catalyst, activator and electron donor.
Preferably, liquid phase polymerization unit B includes slurry line 101, liquid phase polymerizer 4 and propylene vaporization-reuse unit;Slurry Liquid pipe line 101 is connected to prepolymerization kettle 3 and liquid phase polymerizer 4, and reclaim liquid phase propylene entrance and recycling are provided in slurry line 101 Circulating hydrogen entrance;Propylene vaporization-reuse unit is connected to liquid phase polymerizer 4, is used for liquid propylene vapour in liquid phase polymerizer 4 Change the propylene gas changed into be condensed and be recycled back to liquid phase polymerizer 4.
Preferably, the propylene vaporization-reuse unit includes propylene condenser 6, lime set knockout drum 5, circulating fan 7, with And the pipeloop 102 of connection lime set knockout drum 5 and circulating fan 7;Propylene condenser 6 is connected to liquid phase polymerizer 4 and lime set point From tank 5, the part propylene air cooling coalescence for releasing liquid phase polymerizer 4 is sent into lime set knockout drum 5 and carries out gas-liquid separation, point The liquid propylene separated out returns to liquid phase polymerizer 4;Circulating fan 7 is connected to lime set knockout drum 5 and liquid phase polymerizer 4, for that will coagulate The propylene gas that liquid knockout drum 5 is isolated returns to liquid phase polymerizer 4.
Preferably, optional ethylene inlet is set on pipeloop 102, is used for propylene-ethylene random copolymerization.
Preferably, gas-phase polymerization unit C includes polypropylene slurry line 103, gas-phase polymerization reactor 8, propylene cycle list Member and vapor phase polymerizer discharge nozzle 14;
Polypropylene slurry line 103 is connected to liquid phase polymerizer 4 and gas-phase polymerization reactor 8, in polypropylene slurry line 103 Upper setting control valve;
Propylene cycling element is connected to gas-phase polymerization reactor 8, and the propylene for releasing gas-phase polymerization reactor 8 returns Return propylene gas-phase polymerization.
Preferably, the propylene cycling element includes gas phase kettle propylene condenser 10, propylene lime set tank 11, propylene lime set pump 12 and propylene circulating fan 13;Gas phase kettle propylene condenser 10 is connected to gas-phase polymerization reactor 8 and propylene lime set tank 11, and being used for will The propylene gas that gas-phase polymerization reactor 8 releases, which condenses and is sent into propylene lime set tank 11, carries out gas-liquid separation, the part isolated Propylene condensate liquid returns to gas-phase polymerization reactor 8 from the top of gas-phase polymerization reactor 8 and participates in propylene gas-phase polymerization, isolates Propylene gas is passed through gas-phase polymerization reactor 8 from the lower part of gas-phase polymerization reactor 8 by propylene circulating fan 13 and helps blender gas Polymer material in phase polymerization reaction device 8.
Preferably, post-processing unit D is connected to by vapor phase polymerizer discharge nozzle 14 with gas-phase polymerization unit C, for that will gather It closes product and carries out gas solid separation, obtain Noblen or random copolymer;The propylene gas isolated passes through in slurry line 101 Reclaim liquid phase propylene entrance be passed through liquid phase polymerizer 4, the upper fresh hydrogen of the recycling hydrogen isolated mixing passes through slurry line Recycling circulating hydrogen entrance on 101 is passed through liquid phase polymerizer 4.
Through the above technical solutions, the utility model, which provides one kind, being used for propylene homo or the industrialized liquid of random copolymerization Phase prepolymerization, liquid-phase bulk polymerization and the combined three stage polymerization system of gas phase bulk polymerization.It is combined by three stage polymerization so that This system can integrally improve Propylene Pre-polymerization, not need condensing propylene specifically, in system to the condensing unit of sub-zero temperature, Propylene Pre-polymerization can be carried out at 40~45 DEG C, 3.2~3.9MPaG, and 5~10 DEG C of condition compared with the prior art is more Mildly.Polymerization catalyst can be taken primary all from prepolymerization addition, catalyst be filled in batches without the prior art, in system Reduce the addition mouth of setting polymerization catalyst.
Further more, liquid propylene, which may be implemented, in system provided by the utility model once feeds all participation Propylene Pre-polymerizations, The raw slurry containing the polypropylene prepolymer more preferably disperseed is obtained, only pipeline 100 is connected to 2 He of propylene compression pump in system Prepolymerization kettle 3, liquid phase, the homogeneous reaction of gas-phase polymerization of subsequent coupling can also be conducive to by simplifying system setting, improve polymer The quality of product.
Unreacted propylene gas recycling is no longer needed to setting fresh propylene by entire technical process in technical process Supplement entrance.
Whole system provided by the utility model can reduce units of product energy consumption and propylene loss.After measured, this is used The system that utility model provides, unit of the product energy consumption can be less than 50kg and mark oil/ton PP powders, and minimum reachable 40kg marks oil/ton PP powders, unit product processing cost is about the same as the 1/2 of scale same type imported technology product.
In addition the system is avoided that in force the case where hot spot and implode occurs in reaction part, is reduced product and is moulded Change the probability of block, product particle is non-breakable.The liquid phase polymerization unit of the system removes heat by the way of liquid propylene vaporization, and third Alkene circulation and stress amount is small, and system is not necessarily to large-scale recycle unit, can effectively reduce system investments, the construction period is short, and economy is more preferable.
Description of the drawings
Fig. 1 is the process flow diagram of the polyacrylic preparation method of the present invention;
Fig. 2 is the process flow diagram of the preparation method of the propylene ethylene copolymers of the present invention.
Reference sign
1- propylene surge tank 2- propylene compression pump 3- prepolymerization kettles
4- liquid phase polymerizer 5- lime set knockout drum 6- propylene condensers
7- circulating fan 8- gas-phase polymerization reactor 9- blenders
10- gas phase kettle propylene condenser 11- propylene lime set tank 12- propylene lime sets pump
13- propylene circulating fan 14- vapor phase polymerizer discharge nozzle 100- pipelines
101- stock line 102- pipeloop 103- polypropylene slurry lines
15- degassing cabin 16- drier 17- deactivators
18- drier filters 19- replaces kettle 20- nitrogen heaters
21- water sealed tank 22- water scrubber 23- propylene recovery compressors
24- washing pump 25- oil scrubber 26- oil washes pumps
27- propylene gas surge tank 28- propylene air compressor 29- high pressure propylene washing towers
30- dehydrogenation tower 31- propylene lime set tank 32- Propylene recovery lime sets pump
33- Propylene recovery condenser 34- circulating hydrogen surge tank 35- circulating hydrogen compressors
36- hydrogen gas buffer 37- reboiler 38- oil scrubber condensers
39- water scrubber condenser 40- cyclone separators
Specific implementation mode
The endpoint of disclosed range and any value are not limited to the accurate range or value herein, these ranges or Value should be understood as comprising the value close to these ranges or value.For numberical range, between the endpoint value of each range, respectively It can be combined with each other between the endpoint value of a range and individual point value, and individually between point value and obtain one or more New numberical range, these numberical ranges should be considered as specific open herein.
The utility model provides a kind of polypropylene or the preparation system of propylene ethylene copolymers, and as shown in Figure 1 and Figure 2, this is System includes:
Prepolymerization unit A includes the propylene surge tank 1, propylene compression pump 2 and prepolymerization kettle 3 being sequentially connected to, and will come from propylene The propylene of surge tank 1 through 2 boil down to liquid propylene of propylene compression pump, then carries olefin polymerization catalysis, activator and electron Body is all passed through prepolymerization kettle 3 without condensing unit and carries out Propylene Pre-polymerization, obtains the raw material slurry containing propylene pre-polymer Liquid;
Liquid phase polymerization unit B carries out liquid propylene homopolymerization or the raw slurry and ethylene for the raw slurry Liquid phase random copolymerization is carried out, liquid phase polymerization product is obtained;
Gas-phase polymerization unit C is used to the liquid phase polymerization product carrying out gas-phase polymerization, obtains Noblen or random Copolymer.
In the utility model, liquid phase prepolymerization, liquid-phase bulk polymerization and the combined three stage polymerization of gas phase bulk polymerization are taken System can allow the propylene feed in prepolymerization unit A before prepolymerization reactor 3 to be improved.Preferably, propylene surge tank 1 The propylene outlet of one connection propylene compression pump 2 is set, and the propylene in propylene surge tank 1 is passed through pre- merely through propylene compression pump 2 Poly- kettle 3.Prepolymerization is carried out with the prior art only part propylene raw material, another part is fed directly to downstream without prepolymerization Liquid phase or gas-phase polymerization are different, and propylene feedstocks may be implemented all by prepolymerization in system provided by the utility model, reduce control System operation, and catalytic systems for polymerization of olefins is made preferably to disperse in propylene feedstocks.
In the utility model, further, take three stage polymerization system that can reduce the requirement of prepolymerization condition.It is preferred that Ground is not provided with propylene condensing unit between the propylene compression pump 2 and prepolymerization kettle 3 in prepolymerization unit A.Preferably, liquid propylene Pressure is 4~4.5MPaG, and liquid propylene temperature is 40~45 DEG C.System provided by the utility model can allow propylene liquid phase Prepolymerization carries out at 40~45 DEG C, the low temperature prepolymerization generally carried out at 5~10 DEG C or so higher than the prior art.It can reduce Condensing steps simultaneously reduce corresponding energy consumption and operation needs.
It in the utility model, can simply be connected between propylene compression pump 2 and prepolymerization kettle 3, reduce industrial construction expense.It is excellent Selection of land, propylene compression pump 2 and prepolymerization kettle 3 are directly connected to by pipeline 100, be respectively set on pipeline 100 olefin polymerization catalysis, The addition mouth of activator and electron donor.
In the utility model, it can be gone successively to through the raw slurry containing propylene pre-polymer that prepolymerization unit A is obtained Further polymerization reaches the industrial polymeric articles needed to improve for liquid phase polymerization and the concatenated polymerization process of gas-phase polymerization.It is preferred that Ground, liquid phase polymerization unit B include slurry line 101, liquid phase polymerizer 4 and propylene vaporization-reuse unit;Slurry line 101 connects Logical prepolymerization kettle 3 and liquid phase polymerizer 4, are provided with reclaim liquid phase propylene entrance in slurry line 101 and recycling circulating hydrogen enters Mouthful;Propylene vaporization-reuse unit is connected to liquid phase polymerizer 4, for liquid propylene in liquid phase polymerizer 4 to be vaporized change into third Alkene gas is condensed and is recycled back to liquid phase polymerizer 4.
In the utility model, liquid phase polymerizer 4 can select vertical stirred autoclave, with cycle water leg.Blade Stirring make reaction evenly, while the heat transfer between strength imparting material prevents local reaction from overheating and luming.It is gas in polymeric kettle Liquid two-phase coexistent is not necessarily to powerful hybrid control device, and equipment production intensity is big, and reaction operating mode is easy to control.According to production Product or scale are different, and polymeric kettle can also be arranged more parallel connections, system production capacity can be adjusted flexibly, can also be wanted according to owner The polypropylene product for production multimodal of seeking survival.
In the utility model, liquid phase polymerization unit B can take the side using the liquid propylene vaporization in liquid phase polymerizer 4 The heat that propylene polymerization releases is removed in formula help, while the propylene vaporized can pass through the propylene vaporization-reuse list Member recycling, and yield can be reduced compared with prior art, to reduce the industrialization investment of recycle unit.Preferably, described Propylene vaporization-reuse unit includes propylene condenser 6, lime set knockout drum 5, circulating fan 7, and 5 He of connection lime set knockout drum The pipeloop 102 of circulating fan 7;Propylene condenser 6 is connected to liquid phase polymerizer 4 and lime set knockout drum 5, is used for liquid phase polymerization The part propylene air cooling coalescence that kettle 4 releases is sent into lime set knockout drum 5 and carries out gas-liquid separation, the liquid propylene rework solution isolated Phase-polymerization kettle 4;Circulating fan 7 is connected to lime set knockout drum 5 and liquid phase polymerizer 4, the propylene for isolating lime set knockout drum 5 Gas returns to liquid phase polymerizer 4.In the propylene vaporization-reuse unit, the liquid phase that can will be directly condensed out with propylene condenser 6 Propylene returns to liquid phase polymerizer 4.The part propylene gas that liquid phase polymerizer 4 releases can be sent directly into the participation of lime set knockout drum 5 Gas-liquid separation.
In the utility model, it is preferable that optional ethylene inlet is set on pipeloop 102, it is random for propylene-ethylene Copolymerization.
In the utility model, can propylene homo or nothing further be continued by the gas-phase polymerization unit C of the system Rule copolymerization.Preferably, gas-phase polymerization unit C includes polypropylene slurry line 103, gas-phase polymerization reactor 8, propylene cycling element With vapor phase polymerizer discharge nozzle 14;Polypropylene slurry line 103 is connected to liquid phase polymerizer 4 and gas-phase polymerization reactor 8, poly- third Control valve is set in alkene slurry line 103;Propylene cycling element is connected to gas-phase polymerization reactor 8, is used for gas-phase polymerization The propylene that reactor 8 releases returns to propylene gas-phase polymerization.
In the utility model, gas-phase polymerization reactor 8 can be selected the horizontal reactor of belt stirrer 9, material in reactor It is big, adaptable to the slightly tacky material such as high melting means and copolymer that residence time is uniformly, equipment produces intensity;Blender 9 can To use "ON" type structure, powder is made to be uniformly mixed.Gas-phase polymerization reactor 8 has chuck recirculated water to realize that reaction heat is removed.Gas Radioactivity level-sensing device is also set up in phase polymerization reaction device 8 or by electric current come the material position of control material.Gas-phase polymerization reactor 8 can Wise temperature automatic control system is arranged, 6~8 temperature control areas can be divided into according to reactor scale.Blender 9 has simultaneously to be stirred The function of mixing and push powder product to move forward, specific paddle angle according to reaction kettle scale and residence time not Together.
In the utility model, the propylene cycling element can recycle gas-phase polymerization reactor 8 release it is unreacted Propylene, and partially recycled propylene can be returned to the stirring being used to help in gas-phase polymerization reactor 8 with gas phase.It is preferred that Ground, the propylene cycling element include gas phase kettle propylene condenser 10, propylene lime set tank 11, propylene lime set pump 12 and propylene cycle Wind turbine 13;Gas phase kettle propylene condenser 10 is connected to gas-phase polymerization reactor 8 and propylene lime set tank 11, is used for gas phase polymerization The propylene gas that device 8 releases condense and be sent into propylene lime set tank 11 carry out gas-liquid separation, the part propylene condensate liquid isolated from The top of gas-phase polymerization reactor 8 returns to gas-phase polymerization reactor 8 and participates in propylene gas-phase polymerization, and the propylene gas isolated is by third Alkene circulating fan 13 is passed through gas-phase polymerization reactor 8 from the lower part of gas-phase polymerization reactor 8 and helps stirred gas-phase polymerization reactor 8 In polymer material.
In the utility model, it is preferable that post-processing unit D passes through vapor phase polymerizer discharge nozzle 14 and gas-phase polymerization unit C Connection, for polymerizate to be carried out gas solid separation, obtains Noblen or random copolymer;The propylene gas isolated passes through Reclaim liquid phase propylene entrance in slurry line 101 is passed through liquid phase polymerizer 4, the upper fresh hydrogen of recycling hydrogen mixing isolated Gas is passed through liquid phase polymerizer 4 by the recycling circulating hydrogen entrance in slurry line 101.
Specifically, post-processing unit D includes drying device and gas separating and reclaiming device.
The drying device includes:Inside carries the degassing cabin 15 of cyclone separator 40 and bag filter, setting is lost The drier 16 of device 17 and filter 18 living, carries water scrubber at the displacement kettle 19 for being connected with nitrogen heater 20 and water sealed tank 21 The water scrubber 22 and propylene recovery compressor 23 of condenser 39 and washing pump 24.
Wherein, degassing cabin 15 by from vapor phase polymerizer discharge nozzle 14 containing Noblen product or contain propylene and ethylene The product of random copolymer carries out gas solid separation, and the propylene gas isolated is passed through the gas separating and reclaiming device, isolates Polymer powders are passed through deactivator 17;
Degassing is dried in deactivated polymer powder from deactivator 17 by drier 16, and the gas of abjection is through filter 18 are passed through gas through water scrubber 22, and dry polymer powders are passed through displacement kettle 19;
The polymer powders of the drying are subjected to the hot nitrogen that nitrogen heater 20 provides, abjection micro third by displacement kettle 19 Final polypropylene or propylene-ethylene copolymers are obtained after alkene gas;The propylene gas of abjection high idle discharge after water sealed tank 21, spark arrester It puts;
Gas is passed through propylene recovery compressor 23 after the washing of the gas of water scrubber inherent filtration in 22 future device 18, then can be with Direct Propylene recovery is used for other processes.
The gas separating and reclaiming device includes:With oil scrubber condenser 38 and oil wash pump 26 oil scrubber 25, carry High pressure propylene washing tower 29, dehydrogenation tower 30 and the propylene condensate pipe 31 of reboiler 37.
Wherein, the alkyl aluminum and oligomer of the propylene gas washing removing entrainment that oil scrubber 25 isolates degassing cabin 15 etc. are miscellaneous The white oil containing antistatic agent may be used as cleaning solvent in matter.
In the utility model, oil scrubber 25 is connected to by propylene gas surge tank 27, the propylene air compressor 28 being sequentially communicated High pressure propylene washing tower 29 will be sent into high pressure propylene washing tower 29 by the gas of white oil washing.In high pressure propylene washing tower 29 The unreacted propylene gas of the discharge of partial gas phase polymer reactor 8 can also be added.29 bottom of tower of high pressure propylene washing tower can arrange Go out the Propylene recovery that part is used for other processes.
In the utility model, dehydrogenation tower 30 is connected to the tower top of high pressure propylene washing tower 29, and tower top fixed gas is isolated richness Hydrogen and propylene lime set.Dehydrogenation tower 30 passes through the Propylene recovery condenser 33, circulating hydrogen surge tank 34, recycle hydrogen that are sequentially communicated Air compressor 35 and hydrogen gas buffer 36 are connected with the recycling circulating hydrogen entrance in slurry line 101, by the hydrogen rich gas Fresh hydrogen is passed through liquid phase polymerizer 4 as circulating hydrogen in mixing.The setting connection of propylene lime set tank 31 is under dehydrogenation tower 30 Face, for containing the propylene lime set.Propylene lime set tank 31 passes through returning in 32 connection slurry line 101 of Propylene recovery lime set pump Cycle propylene entrance is received, for returning to liquid phase polymerizer 4 using the propylene lime set as recycling cycle propylene.
The course of work combination Fig. 1, Fig. 2 of polypropylene provided by the utility model or the preparation system of propylene ethylene copolymers It is described in further detail.
(I) it stocks up:
It is up to the fresh propylene that polymerization requires and enters propylene surge tank 1, then go out from unique propylene of propylene surge tank 1 Mouth, which conveys propylene, to be forced into 4~4.5MPaG into propylene compression pump 2 and obtains the liquid propylene that temperature is 40~45 DEG C.Liquid phase Propylene is conveyed by pipeline 100 into prepolymerization kettle 3, meanwhile, olefin polymerization catalysis, activator and electron donor pass through pipeline 100 On respective addition mouth be mixed into liquid propylene, under the carrying of liquid propylene enter prepolymerization kettle 3.
Because the utility model is by Propylene Pre-polymerization unit A, liquid phase polymerization unit B and gas-phase polymerization unit C during this It is combined, propylene feedstocks can be made to be not necessarily to frozen cooling equipment, and can all feed into Propylene Pre-polymerization excessively, final propylene The whole preparation process of homopolymerization or random copolymerization reduces energy consumption and propylene loss.
(II) paradigmatic system:
(1) Propylene Pre-polymerization:In prepolymerization kettle 3, liquid propylene is in olefin polymerization catalysis, activator and electron donor Effect is lower to carry out Propylene Pre-polymerization reaction.Prepolymerization kettle 3 carries blender, and prepolymerization temperature is 40~45 DEG C, and pre-polymerization resultant pressure is 3.2~3.9MPaG, prepolymerization residence time are about 4~5min, and the polymerization multiple for obtaining propylene pre-polymer is about 50~100 times.
Prepolymerization kettle is fed:Olefin polymerization catalysis (Ti catalyst) is about 0.04~0.06 weight % of liquid propylene, work Agent (triethyl aluminum) be about 0.2~0.4 weight % of liquid propylene, electron donor (Cyclohexyl Methyl Dimethoxysilane) about For 0.04~0.06 weight % of liquid propylene.
(2) liquid phase bulk propylene polymerization:
(a) liquid phase homopolymerization:Raw slurry containing propylene pre-polymer is obtained by prepolymerization kettle 3, is mixed into back through slurry line 101 Receive liquid propylene, hydrogen becomes liquid phase polymerization raw material, polyacrylic a concentration of 150~300g/L in liquid phase polymerization raw material;Recycling The addition of liquid propylene is 25~30 weight % of liquid propylene;Relative to the 1000kg polypropylene in liquid phase polymerization raw material, The addition of hydrogen is 0.04~0.3kg.Liquid phase polymerizer 4 is the vertical reactor with stirring.
Liquid phase polymerization raw material enters liquid phase polymerizer 4 and carries out propylene liquid phase homopolymerization.Propylene liquid phase homopolymerization temperature is 65~70 DEG C, propylene liquid phase homopolymerization pressure is 3~3.8MPaG, residence time about 40min.The material of liquid phase polymerization raw material in liquid phase polymerizer 4 45~57 volume %s of the position control in liquid phase polymerizer 4.The reaction heat of liquid phase homopolymerization can be by liquid propylene vaporization and folder Set recirculated water is taken away, wherein the part propylene gas after vaporization, after the cooling of propylene condenser 6, part directly rework solution is met Kettle 4 is closed, enters lime set knockout drum after partly being mixed (from liquid phase polymerizer 4 and propylene condenser 6) with uncooled propylene gas 5, the liquid propylene through isolating returns in liquid phase polymerizer 4, and the gas phase isolated is passed through is communicated to cycle through pipeloop 102 Wind turbine 7 returns after supercharging and is bubbled in the liquid phase of liquid phase polymerizer 4, gas and reaction solution can on the one hand mixed uniformly, a side Face makes gas reduce the liquidus temperature among polymeric kettle, and the pressure of liquid phase polymerizer 4 is come also by the amount of external circulation cooling system Control;
(b) random copolymerization:Be passed through ethylene on pipeloop 102, ethylene feed amount be 5 weight % of liquid propylene with Under, preferably 1~3 weight % may be implemented propylene and carry out liquid phase random copolymerization in liquid phase polymerizer 4 with ethylene, with production Random copolymerization product.
(3) propylene gas phase bulk polymerization:
(i) gas-phase homopolymerization:The polypropylene slurries (containing propylene and polypropylene) being discharged from liquid phase polymerizer 4 are logical by pressure difference It crosses and enters gas-phase polymerization reactor 8 with valvular polypropylene slurry line 103, wherein the unreacted propylene carried secretly continues Polymerisation is polypropylene;Gas-phase polymerization temperature is 80~95 DEG C, and reaction pressure is 2.5~2.8MPaG, and polypropylene slurries are in gas Residence time in phase polymerization reaction device 8 is about 45~60min, obtains the product containing Noblen.Alternatively,
(ii) gas phase random copolymerization:Be discharged from liquid phase polymerizer 4 copolymer slurries (containing propylene and propylene-ethylene without Advise copolymer) rely on pressure difference by entering gas-phase polymerization reactor 8 with valvular polypropylene slurry line 103, wherein pressing from both sides The unreacted propylene of band carries out gas phase random copolymerization with ethylene;Gas phase random copolymerization temperature is 80~95 DEG C, and gas phase is randomly total Poly- pressure is 2.5~2.8MPaG;The residence time of gas phase random copolymerization is about 45~60min;It obtains randomly total containing propylene and ethylene The product of polymers.
The material position of material can be controlled by radioactivity level-sensing device or electric current in gas-phase polymerization reactor 8, and material position is general Control is in 35~60 volume %.Gas-phase polymerization reactor 8 can be selected the horizontal reactor of belt stirrer 9, material in reactor It is big, adaptable to the slightly tacky material such as high melting means and copolymer that residence time is uniformly, equipment produces intensity;Blender 9 can To use "ON" type structure, powder is made to be uniformly mixed.Polymerization reaction heat in gas-phase polymerization reactor 8 can pass through propylene Quench The vaporization of liquid and chuck recirculated water are taken away;Unreacted gas (mainly propylene gas, ethylene tolerance is few to participate in copolymerization completely) is logical After crossing the settling section settlement section powder on 8 top of gas-phase polymerization reactor, a part of gas is returned by adjusting to be distributed to propylene Receipts system, another part gas enter propylene lime set tank 11 after the cooling of gas phase kettle propylene condenser 10, isolate propylene and swash Cold liquid is returned by propylene lime set pump 12 to gas-phase polymerization reactor 8, is reabsorbed polymerisation thermal evaporation and is withdrawn reaction heat.Propylene The gas that lime set tank 11 is isolated is sent after the supercharging of propylene circulating fan 13 to the bottom of gas-phase polymerization reactor 8, i.e. reuse Propylene again fluidizes the polypropylene powder inside gas-phase polymerization reactor 8, removes heat to help system and reduces reaction kettle Power of agitator.Whether this wind circulating system is arranged, and can be determined according to the scale of gas-phase polymerization reactor 8.Gas-phase polymerization reactor 8 Wise temperature automatic control system may be used, 6~8 temperature control areas can be divided into according to reactor scale.Blender 9 has simultaneously Stirring and the function of pushing powder product to move forward, specific paddle angle according to reaction kettle scale and residence time It is different.
(III) post-processing of the product containing Noblen or the product containing propylene-ethylene random copolymer:
(first) gas solid separation:By from vapor phase polymerizer discharge nozzle 14 containing Noblen product (containing propylene gas, Hydrogen, polypropylene) or product (containing propylene gas, hydrogen, propylene-ethylene copolymers) containing propylene-ethylene random copolymer, according to Depended on pressure enters degassing cabin 15 through exporting powder control valve, and the product goes out in vapor phase polymerizer discharge nozzle 14 for pulse mode Material.
15 inside of degassing cabin is arranged to separate and recover the cyclone separator 40 and bag filter of the dust in propylene gas; The polymer powders that degassing cabin 15 separates, to deactivator 17, are passed through suitable steam by gravity fall in deactivator 17 The catalyst carried secretly in the product is inactivated, the powder inactivated enters drier 16 and degassing is dried, further Propylene recovery.
Drier 16 is a horizontal indirectly heat blade stirring drier, and hollow hot axis and external jacket are passed through low pressure Steam is thermally dried wet mash by wall, while wet stock can also be moved to material outlet, drier 16 by agitating shaft Operation temperature is 100~105 DEG C, and pressure is micro-positive pressure.
(second) harvests polymeric articles:Powder after inactivation, drying falls on displacement kettle 19 by gravity under drier 16, The hot nitrogen provided with nitrogen heater 20 in displacement kettle 19 is further backing out the denier propylene gas carried secretly in powder;It excludes Gas after water sealed tank 21, spark arrester high-altitude qualified discharge;Powder after degassing is sent by nitrogen supply air system after Continuous workshop section, obtains final polypropylene or propylene-ethylene copolymers product.
(the third) gas recovery:Wet mash heats the propylene gas released in drier 16, enters through filter 18 and washes Tower 22 washs, and water scrubber 22 is used as washing medium using desalted water, the denier hydrogen chloride of entrained catalyst decomposition in gas, because The hydrochloric acid in appropriate alkaline liquor and in water is added in desalted water in this, propylene gas after washing after the cooling of water scrubber cooler 39, then It is recycled after the pressurization of propylene recovery compressor 23, can be used for sending outside.
The Propylene recovery gas for leaving degassing cabin 15 enters the washing of oil scrubber 25, then through propylene gas surge tank 27, propylene gas Compressor 28 enters high pressure propylene washing tower 29 after compressing;The tower top fixed gas that 29 tower top of high pressure propylene washing tower is isolated enters Dehydrogenation tower 30 removes hydrogen rich gas, and the recovered propylene condenser 33 of hydrogen rich gas returns to dehydrogenation tower condensation and separation of liquid propylene 30;The hydrogen rich gas is mixed with the fresh hydrogen after metering, then successively through circulating hydrogen surge tank 34, circulating hydrogen compressor 35 It is sent after pressurization and hydrogen gas buffer 36 to liquid phase polymerizer 4 and is utilized;30 bottom of tower lime set of dehydrogenation tower is buffered into propylene lime set tank 31, so It uses 32 pressurization rear portion of Propylene recovery lime set pump to return to liquid phase polymerizer 4 afterwards to utilize, a part is used as high pressure propylene washing tower 29 overhead reflux liquid;Leave the propylene (about 19 weight % of propane content) for containing a large amount of propane in 29 bottom of tower of high pressure propylene washing tower Battery limit (BL) processing is sent out after being mixed after filtering with the aqueous propylene that propylene recovery compressor 23 pressurizes.
Wherein, oil scrubber 25 is the plate column of a top tape washing oil tower condenser 38, inside it with containing antistatic agent White oil propylene gas is washed, to deviate from the impurity such as the alkyl aluminum carried secretly in propylene gas and oligomer.High pressure third Alkene scrubbing tower 29 is the sieve plate distillation column that a bottom carries reboiler 37, is flowed back with the propylene lime set of propylene lime set tank 31 Liquid, to detach the propane in propylene, propane is accumulated in anti-locking system;Dehydrogenation tower 30 is connected after high pressure propylene washing tower 29 Sieve-plate tower, using the lime set body of Propylene recovery condenser 33 as the propylene in the phegma of dehydrogenation tower 30 cooling dehydrogenation tower 30, To detach the hydrogen rich gas contained in propylene gas, 30 bottom of dehydrogenation tower is direct-connected logical with propylene lime set tank 31, straight after the liquid condensing that flows back It connects and enters propylene lime set tank 31.
The utility model will be described in detail by embodiment below.
Embodiment 1
(1) prepolymerization
By propylene pressurize pressure about 4.2MPaG, temperature be about 42 DEG C liquid propylene;Using liquid propylene as carrier, Be separately added into content in liquid propylene be the Ti catalyst (CS-1) of 0.04 weight %, 0.3 weight % triethyl aluminum and The Cyclohexyl Methyl Dimethoxysilane of 0.05 weight %;So all it is directly inputted in prepolymerization kettle and forms polymeric size, then Propylene Pre-polymerization is carried out under the conditions of 42 DEG C, 3.2MPaG, residence time 4min, polyacrylic polymerization in obtained raw slurry Multiple is 75 times;
(2) liquid-phase bulk polymerization
Reclaim liquid phase propylene is added in the raw slurry that (1) obtains and hydrogen blendes together liquid phase polymerization raw material (wherein polypropylene A concentration of 200g/L, reclaim liquid phase propylene addition is about 25 weight % of liquid propylene, added hydrogen 0.08kg/ 1000kg polypropylene), propylene liquid phase homopolymerization is carried out at 68 DEG C, 3MPaG, material position is 45 volume % in reaction kettle, is stopped 40min;
In propylene liquid phase homopolymerization process, partially polymerized reaction heat is taken away in the vaporization of Partial Liquid Phase propylene.The propylene gas of vaporization passes through Recycling returns to propylene liquid phase homopolymerization with gas phase or liquid phase.
(3) gas phase bulk polymerization
The polypropylene slurries that (2) are obtained are added in gas phase bulk polymerization device, and third is carried out at 90 DEG C, 2.6MPaG Alkene gas-phase homopolymerization, residence time 45min, material position is 55 volume % in reactor.
In propylene gas phase homopolymerization process, the unreacted propylene gas in part of discharge is recovered, and third is returned with gas phase or liquid phase Alkene gas-phase homopolymerization.
Complete propylene gas-phase homopolymerization after, the obtained product containing Noblen after subsequent drying and propylene recovery, Polypropylene product and propylene are isolated, propylene recovery continues on for the propylene liquid phase homopolymerization of step (2).
It calculates in above-mentioned entire technical process, the specific energy consumption for producing Noblen is that 42kg marks oil/ton PP powders.It is raw 1000kg polypropylene is produced, propylene loss is 4kg.
Embodiment 2
(1) prepolymerization
By propylene pressurize pressure about 4MPaG, temperature be about 45 DEG C liquid propylene;Using liquid propylene as carrier, point Be not added content in liquid propylene be the Ti catalyst (CS-1) of 0.06 weight %, 0.2 weight % triethyl aluminum and The Cyclohexyl Methyl Dimethoxysilane of 0.06 weight %;Then all it is directly inputted in prepolymerization kettle and forms polymeric size, connects It and carries out Propylene Pre-polymerization under the conditions of 45 DEG C, 3.6MPaG, residence time 4min, it is polyacrylic poly- in obtained raw slurry It is 50 times to close multiple;
(2) liquid-phase bulk polymerization
It is (wherein polyacrylic dense that raw slurry addition Propylene recovery and hydrogen that (1) obtains are blended together into liquid phase polymerization raw material Degree is 150g/L, and Propylene recovery addition is about 27 weight % of liquid propylene, and added hydrogen is 0.12kg/1000kg poly- third Alkene), propylene liquid phase homopolymerization is carried out at 70 DEG C, 3.5MPaG, material position is 60 volume % in reaction kettle, stops 35min;
In propylene liquid phase homopolymerization process, partially polymerized reaction heat is taken away in the vaporization of Partial Liquid Phase propylene.The propylene gas of vaporization passes through Recycling returns to propylene liquid phase homopolymerization with gas phase or liquid phase.
(3) gas phase bulk polymerization
The polypropylene slurries that (2) are obtained are added in gas phase bulk polymerization device, and third is carried out at 80 DEG C, 2.7MPaG Alkene gas-phase homopolymerization, residence time 60min, material position is 45 volume % in reactor.
In propylene gas phase homopolymerization process, the unreacted propylene gas in part of discharge is recovered, and third is returned with gas phase or liquid phase Alkene gas-phase homopolymerization.
Complete propylene gas-phase homopolymerization after, the obtained product containing Noblen after subsequent drying and propylene recovery, Polypropylene product and propylene are isolated, propylene recovery continues on for the propylene liquid phase homopolymerization of step (2).
It calculates in above-mentioned entire technical process, the specific energy consumption for producing Noblen is that 45kg marks oil/ton PP powders.It is raw 1000kg polypropylene is produced, propylene loss is 5kg.
Embodiment 3
(1) prepolymerization
By propylene pressurize pressure about 4.5MPaG, temperature be about 40 DEG C liquid propylene;Using liquid propylene as carrier, Be separately added into content in liquid propylene be the Ti catalyst (CS-1) of 0.05 weight %, 0.4 weight % triethyl aluminum and The Cyclohexyl Methyl Dimethoxysilane of 0.04 weight %;Then all it is directly inputted in prepolymerization kettle and forms polymeric size, connects It and carries out Propylene Pre-polymerization under the conditions of 40 DEG C, 3.8MPaG, residence time 5min, it is polyacrylic poly- in obtained raw slurry It is 100 times to close multiple;
(2) liquid-phase bulk polymerization
It is (wherein polyacrylic dense that raw slurry addition Propylene recovery and hydrogen that (1) obtains are blended together into liquid phase polymerization raw material Degree is 300g/L, and Propylene recovery addition is about 30 weight % of liquid propylene, and added hydrogen is 0.2kg/1000kg poly- third Alkene), propylene liquid phase homopolymerization is carried out at 69 DEG C, 3.7MPaG, material position is 40 volume % in reaction kettle, stops 45min;
In propylene liquid phase homopolymerization process, partially polymerized reaction heat is taken away in the vaporization of Partial Liquid Phase propylene.The propylene gas of vaporization passes through Recycling returns to propylene liquid phase homopolymerization with gas phase or liquid phase.
(3) gas phase bulk polymerization
The polypropylene slurries that (2) are obtained are added in gas phase bulk polymerization device, and third is carried out at 95 DEG C, 2.8MPaG Alkene gas-phase homopolymerization, residence time 48min, material position is 50 volume % in reactor.
In propylene gas phase homopolymerization process, the unreacted propylene gas in part of discharge is recovered, and third is returned with gas phase or liquid phase Alkene gas-phase homopolymerization.
Complete propylene gas-phase homopolymerization after, the obtained product containing Noblen after subsequent drying and propylene recovery, Polypropylene product and propylene are isolated, propylene recovery continues on for the propylene liquid phase homopolymerization of step (2).
It calculates in above-mentioned entire technical process, the specific energy consumption for producing Noblen is that 50kg marks oil/ton PP powders.It is raw 1000kg polypropylene is produced, propylene loss is 5kg.
Embodiment 4
(1) prepolymerization
By propylene pressurize pressure about 4.2MPaG, temperature be about 42 DEG C liquid propylene;Using liquid propylene as carrier, Be separately added into content in liquid propylene be the Ti catalyst (CS-1) of 0.04 weight %, 0.3 weight % triethyl aluminum and The Cyclohexyl Methyl Dimethoxysilane of 0.05 weight %;Then all it is directly inputted in prepolymerization kettle and forms polymeric size, connects It and carries out Propylene Pre-polymerization under the conditions of 42 DEG C, 3.2MPaG, residence time 4min, it is polyacrylic poly- in obtained raw slurry It is 75 times to close multiple;
(2) liquid-phase bulk polymerization
It is (wherein polyacrylic dense that raw slurry addition Propylene recovery and hydrogen that (1) obtains are blended together into liquid phase polymerization raw material Degree is 200g/L, and Propylene recovery addition is about 25 weight % of liquid propylene, and added hydrogen is 0.08kg/1000kg poly- third Alkene).The ethylene of 3 weight % of liquid propylene is added on the pipeloop 102 of Propylene recovery gas, is carried out at 68 DEG C, 3MPaG Propylene, ethylene liquid phase random copolymerization, material position is 45 volume % in reaction kettle, stops 40min;
During liquid phase random copolymerization, partially polymerized reaction heat is taken away in the vaporization of Partial Liquid Phase propylene.The propylene gas of vaporization passes through Recycling returns to liquid phase random copolymerization with gas phase or liquid phase.
(3) gas phase bulk polymerization
The copolymer slurries that (2) are obtained are added in gas phase bulk polymerization device, and third is carried out at 90 DEG C, 2.6MPaG Alkene, ethylene gas phase random copolymerization, residence time 45min, material position is 55 volume % in reactor;
During propylene, ethylene gas phase random copolymerization, the unreacted propylene gas in part of discharge is recovered, with gas phase or liquid Mutually return to gas phase random copolymerization.
The obtained product containing propylene-ethylene random copolymer isolates propylene second after subsequent drying and propylene recovery Olefinic random copolymer product and propylene, propylene recovery continue on for the liquid phase random copolymerization of step (2).
It calculates in above-mentioned entire technical process, the specific energy consumption for producing propylene-ethylene random copolymer is that 42kg marks oil/ton PP-PE powders, produce 1000kg Propylene-ethylene random copolymers, and propylene loss is 4kg.
Comparative example 1
(1) prepolymerization
Take -5 DEG C, 50 weight % of the liquid propylene of 3.81MPaG mixed with polymerization catalyst, contain in polymerization catalyst The Ti catalyst (CS-1) of the 0.08 weight % on the basis of whole liquid propylenes, the triethyl aluminum and 0.08 weight of 0.5 weight % The Cyclohexyl Methyl Dimethoxysilane of % to be measured, is added in pre-polymerization endless tube and carries out low temperature prepolymerization, prepolymerization temperature is about 10 DEG C, Pre-polymerization resultant pressure is about 3.8MPaG, residence time 12min, and polyacrylic polymerization multiple is about 60 in obtained raw slurry Times;
(2) liquid-phase bulk polymerization
By raw material slurry and remaining 50 weight % liquid propylenes, (0.08kg/ is added in polyacrylic a concentration of 50 weight % The polyacrylic hydrogen of 1000kg) it is mixed into liquid phase polymerization raw material, subsequently into the first annular-pipe reactor, in liquid phase polymerization raw material A part of propylene polymerize, and remaining liquid makes the material in reactor be in paste-like as the diluent of polymer, passes through Axial-flow pump beats cycle, keeps slurry flow at high speed in the reactor and is uniformly mixed;
The slurry in the first annular-pipe reactor is continuously sent into the second annular-pipe reactor by the industrial siding that discharges again and is continued It carries out liquid phase polymerization and supplements fresh propylene (addition is 25 weight % of liquid propylene).First and second annular-pipe reactor reacts Temperature is about 70~73 DEG C, and reaction pressure is about 3.8MPaG, residence time about 1h.
The polymerisation slurry being discharged from the second annular-pipe reactor obtains polypropylene powder after flash distillation, degassing, drying, inactivation Material.The obtained gas that deaerates send reaction system reuse after propylene recovery.
By calculating above-mentioned endless tube propylene polymerization processes, the specific energy consumption for producing Noblen is about 70kg mark oil/tons PP powders, produce 1000kg polypropylene, and propylene loss is 5kg.
Above-mentioned annular-pipe reactor and technique are to use more propene polymerization reactor and technique both at home and abroad at present, due to ring Pipe reactor removes heat and all realizes that slurry in ring Bottomhole pressure is realized by axial-flow pump promotion by chuck recirculated water, and poly- third Alkene slurry is liquid phase flash distillation discharging, must increase steam-heating system, further increase the energy consumption of the technological reaction process.
Comparative example 2
Propylene pressurization is reached 3.5MPa and condensed to liquid phase after -5 DEG C and is entered in the poly- kettle of prepolymerization, with polymerization catalyst (including Ti catalyst (CS-1), triethyl aluminum, Cyclohexyl Methyl Dimethoxysilane) is contacted at 0 DEG C, and catalyst components exist Content in liquid propylene is the triethyl aluminum and 0.08 weight % of the Ti catalyst (CS-1) of 0.08 weight %, 0.5 weight % Cyclohexyl Methyl Dimethoxysilane, be used in combination blender to pinch material mixing, herein generate catalyst activated centre, then open The pre-polymerization of beginning propylene, prepolymerized residence time are 5min, and polyacrylic polymerization multiple is 75 times in obtained raw slurry.
What prepolymerization obtained enters containing active catalyst and propylene mixtures slurry in liquid phase polymerizer, 69 DEG C, 1~1.6h is stopped under 3.4MPa, and the reaction was continued.A concentration of 130g/L of polypropylene, propylene total amount are 10t/h in slurry, hydrogen is added Amount is 150L/min.Material position is 45 volume % in liquid phase reactor kettle.
Polymerization catalyst is also added in liquid phase polymerization:Ti catalyst (CS-1) 0.4g/h, triethyl aluminum 3L/h, cyclohexyl first Base dimethoxysilane 0.4L/h.
The slurry of liquid phase polymerizer discharge enters gas phase reaction kettle, and gas phase bulk polymerization is carried out at 90 DEG C, 2.8MPa, is stopped Stay the time for 1.5h, material position is 40 volume % in gas phase reaction kettle.
The product containing Noblen for completing to obtain after gas-phase polymerization is isolated after subsequent drying and propylene recovery Polypropylene product and propylene, propylene recovery continue on for the liquid phase bulk propylene polymerization of step (2).
It calculates in above-mentioned entire technical process, the specific energy consumption for producing Noblen is that 60kg marks oil/ton PP powders.It is raw 1000kg polypropylene is produced, propylene loss is 6kg.
System provided by the utility model is can be seen that by the result of above-described embodiment and comparative example, and propylene may be implemented Prepolymerization, the combination of liquid phase bulk propylene polymerization and propylene gas phase bulk polymerization, Propylene Pre-polymerization process simplification is without propylene Condensation, can once whole liquid propylenes and polymerization catalyst charging, and olefin polymerization catalysis can reduce addition, can be with Whole propylene are involved in pre-polymerization merging and carry out Propylene Pre-polymerization under 40~45 DEG C of mild temperature, obtain propylene pre-polymer dispersion Better raw slurry improves product quality, can reduce energy consumption of unit product and the propylene loss of propylene polymerization.
Need propylene to condense to subzero in comparative example 1, and can only Partial Liquid Phase propylene carry out low temperature prepolymerization;Polymerization process In need to add fresh propylene and polymerization catalyst, product needs flash distillation process, the propylene polymerization unit product of entire technical process Energy consumption and propylene loss are high.
In comparative example 2, the prior art needs propylene to condense to subzero, and prepolymerization temperature is low, and catalyst charge is high, Also polymerization catalyst is added, propylene polymerization energy consumption of unit product and the propylene loss for completing entire technical process are high.
Preferred embodiments of the present invention, still, the utility model and unlimited are described in detail above in association with attached drawing In this.In the range of the technology design of the utility model, a variety of simple variants can be carried out to the technical solution of the utility model, It is combined with any other suitable method including each technical characteristic, these simple variants and combination equally should be considered as this Utility model disclosure of that, belongs to the scope of protection of the utility model.

Claims (10)

1. the preparation system of a kind of polypropylene or propylene ethylene copolymers, which is characterized in that the system includes:
Prepolymerization unit (A), liquid phase polymerization unit (B), gas-phase polymerization unit (C) and the post-processing unit (D) being sequentially connected to;
Prepolymerization unit (A) includes the propylene surge tank (1), propylene compression pump (2) and prepolymerization kettle (3) being sequentially connected to, and will be come from The propylene of propylene surge tank (1) through propylene compression pump (2) boil down to liquid propylene, then carries olefin polymerization catalysis, activator And electron donor, it is all passed through prepolymerization kettle (3) without condensing unit and carries out Propylene Pre-polymerization, obtains containing propylene pre-polymer Raw slurry;
Liquid phase polymerization unit (B) for the raw slurry carry out liquid propylene homopolymerization or the raw slurry and ethylene into Row liquid phase random copolymerization, obtains liquid phase polymerization product;
Gas-phase polymerization unit (C) is used to the liquid phase polymerization product carrying out gas-phase polymerization;
The product that post-processing unit (D) is used to obtain gas-phase polymerization carries out gas solid separation, obtains Noblen or random total Polymers, while isolating propylene gas and returning to liquid phase polymerization unit (B).
2. system according to claim 1, which is characterized in that a connection propylene compression pump is arranged in propylene surge tank (1) (2) propylene exports, and the propylene in propylene surge tank (1) is passed through prepolymerization kettle (3) merely through propylene compression pump (2).
3. system according to claim 1 or 2, which is characterized in that propylene compression pump (2) in prepolymerization unit (A) and Prepolymerization kettle is not provided with propylene condensing unit between (3).
4. system according to claim 3, which is characterized in that propylene compression pump (2) and prepolymerization kettle (3) pass through pipeline (100) it is directly connected to, the addition mouth of olefin polymerization catalysis, activator and electron donor is respectively set on pipeline (100).
5. system according to claim 1, which is characterized in that liquid phase polymerization unit (B) includes slurry line (101), liquid Phase-polymerization kettle (4) and propylene vaporization-reuse unit;
Slurry line (101) is connected to prepolymerization kettle (3) and liquid phase polymerizer (4), and reclaim liquid phase is provided in slurry line (101) Propylene entrance and recycling circulating hydrogen entrance;
Propylene vaporization-reuse unit is connected to liquid phase polymerizer (4), for turning liquid propylene vaporization in liquid phase polymerizer (4) At propylene gas condensed and be recycled back to liquid phase polymerizer (4).
6. system according to claim 5, which is characterized in that the propylene vaporization-reuse unit includes propylene condenser (6), lime set knockout drum (5), circulating fan (7), and it is connected to the pipeloop of lime set knockout drum (5) and circulating fan (7) (102);
Propylene condenser (6) is connected to liquid phase polymerizer (4) and lime set knockout drum (5), for release liquid phase polymerizer (4) Part propylene air cooling coalescence is sent into lime set knockout drum (5) and carries out gas-liquid separation, and the liquid propylene isolated returns to liquid phase polymerizer (4);
Circulating fan (7) is connected to lime set knockout drum (5) and liquid phase polymerizer (4), and third for isolating lime set knockout drum (5) Alkene gas returns to liquid phase polymerizer (4).
7. system according to claim 5, which is characterized in that optional ethylene inlet is arranged on pipeloop (102), uses In propylene-ethylene random copolymerization.
8. system according to claim 1, which is characterized in that gas-phase polymerization unit (C) includes polypropylene slurry line (103), gas-phase polymerization reactor (8), propylene cycling element and vapor phase polymerizer discharge nozzle (14);
Polypropylene slurry line (103) is connected to liquid phase polymerizer (4) and gas-phase polymerization reactor (8), in polypropylene slurry line (103) control valve is set on;
Propylene cycling element is connected to gas-phase polymerization reactor (8), for returning the propylene that gas-phase polymerization reactor (8) releases Return propylene gas-phase polymerization.
9. system according to claim 8, which is characterized in that the propylene cycling element includes gas phase kettle propylene condenser (10), propylene lime set tank (11), propylene lime set pump (12) and propylene circulating fan (13);
Gas phase kettle propylene condenser (10) is connected to gas-phase polymerization reactor (8) and propylene lime set tank (11), is used for gas-phase polymerization The propylene gas that reactor (8) releases, which condenses and is sent into propylene lime set tank (11), carries out gas-liquid separation, the part propylene isolated Condensate liquid returns to gas-phase polymerization reactor (8) from the top of gas-phase polymerization reactor (8) and participates in propylene gas-phase polymerization, isolates Propylene gas is passed through gas-phase polymerization reactor (8) from the lower part of gas-phase polymerization reactor (8) by propylene circulating fan (13) and helps Polymer material in stirred gas-phase polymerization reactor (8).
10. system according to claim 8, which is characterized in that post-processing unit (D) passes through vapor phase polymerizer discharge nozzle (14) it is connected to gas-phase polymerization unit (C), for polymerizate to be carried out gas solid separation, obtains Noblen or random copolymerization Object;The propylene gas isolated is passed through liquid phase polymerizer (4) by the reclaim liquid phase propylene entrance in slurry line (101), separation The upper fresh hydrogen of recycling hydrogen mixing gone out, liquid phase polymerization is passed through by the recycling circulating hydrogen entrance in slurry line (101) Kettle (4).
CN201721493341.2U 2017-11-10 2017-11-10 The preparation system of polypropylene or propylene ethylene copolymers Active CN207685180U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201721493341.2U CN207685180U (en) 2017-11-10 2017-11-10 The preparation system of polypropylene or propylene ethylene copolymers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201721493341.2U CN207685180U (en) 2017-11-10 2017-11-10 The preparation system of polypropylene or propylene ethylene copolymers

Publications (1)

Publication Number Publication Date
CN207685180U true CN207685180U (en) 2018-08-03

Family

ID=62988236

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201721493341.2U Active CN207685180U (en) 2017-11-10 2017-11-10 The preparation system of polypropylene or propylene ethylene copolymers

Country Status (1)

Country Link
CN (1) CN207685180U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022250822A1 (en) * 2021-05-24 2022-12-01 Exxonmobil Chemical Patents Inc. Biphasic polymerization processes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022250822A1 (en) * 2021-05-24 2022-12-01 Exxonmobil Chemical Patents Inc. Biphasic polymerization processes

Similar Documents

Publication Publication Date Title
CN109776702A (en) The preparation method of polypropylene or propylene ethylene copolymers
CN207685181U (en) The paradigmatic system of impact polypropylene
CN109776703A (en) The polymerization of impact polypropylene
CN101942051B (en) Continuous polymerization process for liquid-phase propylene bulk polymerization
KR102403464B1 (en) Olefin polymerization apparatus and olefin polymerization process
CN110394125A (en) A kind of polyacrylic preparation method
CN102030841A (en) Gas-phase polymerization of propylene
CN111875724A (en) Micro-interface enhanced reaction system and method for preparing polyethylene by solution method
CN102399332B (en) Propylene polymerization production technology by loop reactor batch liquid bulk method
CN207685180U (en) The preparation system of polypropylene or propylene ethylene copolymers
CN101928387B (en) Aliphatic polycarbonate washing coagulation devolatilization method and specific device thereof
CN112625155B (en) Preparation method of polypropylene
CN108794669A (en) A kind of multi-stage polymeric process and device of propylene
CN110357991A (en) A kind of batch polypropylene plant production process and device of series polymerizations kettle
CN109776701A (en) Propylene homo or the method for random copolymerization
CN104761814B (en) Preparation method of polyolefin alloy
CN207685179U (en) Propylene homo or the system of random copolymerization
CN108976329A (en) A kind of multi-stage polymeric process and device of propylene
CN216764762U (en) Production device of impact-resistant polypropylene based on dehydrogenation bin-depropenizer
CN111499776A (en) Continuous solution polymerization device based on L CST and continuous solution polymerization method adopting continuous solution polymerization device
CN102060943B (en) Multi-zone circulating reaction device and method for olefin polymerization
CN110548331A (en) method and device for separating polymer in slurry method polyethylene production process
CN1014523B (en) Multi-stage polymerzation for alkenes
CN111116776A (en) Method for improving gas-phase external circulation heat removal capacity of polymerization kettle
CN106977638B (en) Continuous production method and device for preparing granular trans-isoprene rubber

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
PP01 Preservation of patent right

Effective date of registration: 20201216

Granted publication date: 20180803

PP01 Preservation of patent right
PD01 Discharge of preservation of patent

Date of cancellation: 20231216

Granted publication date: 20180803

PD01 Discharge of preservation of patent
PP01 Preservation of patent right

Effective date of registration: 20231216

Granted publication date: 20180803

PP01 Preservation of patent right