CN207421795U - 分布式光纤带及分布式光纤传感管网监测装置 - Google Patents
分布式光纤带及分布式光纤传感管网监测装置 Download PDFInfo
- Publication number
- CN207421795U CN207421795U CN201720097185.1U CN201720097185U CN207421795U CN 207421795 U CN207421795 U CN 207421795U CN 201720097185 U CN201720097185 U CN 201720097185U CN 207421795 U CN207421795 U CN 207421795U
- Authority
- CN
- China
- Prior art keywords
- filler
- optical fiber
- layer
- substance
- distribution type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn - After Issue
Links
Landscapes
- Examining Or Testing Airtightness (AREA)
Abstract
本实用新型提供了一种分布式光纤带及分布式光纤传感管网监测装置,涉及管网监控技术领域。分布式光纤带包括:外护套、包覆层、填充物、温度感测光纤和振动监测光纤,外护套的内部设有至少一层填充物,每层填充物中埋有相互不接触的至少一根温度感测光纤和至少一根振动监测光纤,每层填充物的外围设有包覆层;填充物为与空气或水接触会释放热量的物质。本实用新型还涉及分布式光纤传感管网监测装置,光纤带采用分层结构,结合有特殊检测功能的填充物,监测装置能监测到管线是否受到外力破损,迅速准确的判断出发生故障的实际位置和灾害程度,很大程度提高了管线监测的可靠性和及时性,解决了现有技术中难以实现实时监测管线破损准确定位的问题。
Description
技术领域
本实用新型涉及管网监控技术领域,具体涉及一种分布式光纤带及分布式光纤传感管网监测装置。
背景技术
管网监测系统,是一个以管网、相邻地质结构、管网环境变量等为监测对象,应用现代传感技术、通信网络技术优化组合的结构监测体系,实时监测地下管网在各种环境因素下的结构响应以及地质变化,并能有效地提供管网管理的科学依据,显著提高管网的整体管理水平,从而能够最大限度地确保安全运营、预诊危害和延长使用寿命。
一些重大工程的实施,如南水北调、西气东输、中俄、中亚、中缅和海上的四大能源通道的建设,在全国范围内铺设了数万公里的输油、输气和输水管道,这些管道要求连续性操作,一旦出现管线故障,将带来巨大的经济损失、环境破坏以及潜在的危险。管道大多深埋地下或海底,导致管道监控的实时性和效率较低。
管道安全事故一般表现为三种形式:自然环境和地质灾害导致的管线破损;人为施工和破坏;管线服役时间较长,管道被腐蚀出现的破损和泄露。输油、输气和输水管道目前存在的安全问题和关注点分别是:输油管道,受外力发生断裂;输气管道,气体泄露或地质灾害造成事故;输水管道,城市区域市政施工人为破坏。
目前,管道安全监测常采用人工巡检、声学检测、软件分析等方法,这些方都存在着一些问题和缺点:
(1)人工巡检,成本较低具有不能实时监测、效率低容易发生人为疏忽造成遗漏的问题,存在安全隐患;
(2)声学检测,成本较高,可以实时监测所有的情况,但是沿管线需要安装很多的声学传感器并且维护困难;
(3)软件分析,可以检测泄露和定位,但是无法检测破损,成本高,国内应用少,维护不便。
实用新型内容
本实用新型提出一种分布式光纤带及分布式光纤传感管网监测装置,以解决现有技术中难以实现实时监测管线破损准确定位的问题。
本实用新型的技术方案是这样实现的:
一种分布式光纤带,包括:外护套、包覆层、填充物、温度感测光纤和振动监测光纤,外护套的内部设有至少一层填充物,每层填充物中埋有相互不接触的至少一根温度感测光纤和至少一根振动监测光纤,每层填充物的外围设有包覆层;填充物为与空气或水接触会释放热量的物质。
作为本实用新型的进一步改进,包覆层的内部设有多个栅格,栅格内填有填充物,每根温度感测光纤和振动监测光纤贯穿栅格且位于不同的栅格内。
作为本实用新型的进一步改进,与空气接触会释放热量的物质,包括与空气中水份或氧气接触会释放热量的物质。
作为本实用新型的进一步改进,与空气中水份或水接触会释放热量的物质中含有碳酸钙粉末。
作为本实用新型的进一步改进,光纤带的内部设有三层填充物,每层之间相互密闭绝缘。
作为本实用新型的进一步改进,位于最外层填充物A为与空气中水份或水接触会释放热量的物质,位于中间层填充物B为与空气中氧气接触会释放热量的物质,位于最内层填充物C与填充物A相同。
作为本实用新型的进一步改进,温度感测光纤和振动监测光纤均为分布式光纤,振动监测光纤为两芯单模光纤。
本实用新型还涉及一种分布式光纤传感管网监测装置,包括:光纤带,包括:外护套、包覆层、填充物、温度感测光纤和振动监测光纤,外护套的内部设有至少一层填充物,每层填充物中埋有相互不接触的至少一根温度感测光纤和至少一根振动监测光纤,每层填充物的外围设有包覆层;填充物为与空气或水接触会释放热量的物质;布里渊光时域反射计,与温度感测光纤连接;发出相干波的相干激光器和光检测器,分别与振动监测光纤连接,相干激光器位于光纤带的一端;监视终端,分别与布里渊光时域反射计、相干激光器、光检测器电连接。
作为本实用新型的进一步改进,与空气接触会释放热量的物质,包括与空气中水份或氧气接触会释放热量的物质;与空气中水份或水接触会释放热量的物质中含有碳酸钙粉末。
作为本实用新型的进一步改进,光纤带的内部设有三层填充物,每层之间相互密闭绝缘。
本实用新型的有益效果如下:
本实用新型分布式光纤带及分布式光纤传感管网监测装置,光纤带采用分层结构,结合有特殊检测功能的填充物,且耐高温、耐腐蚀、抗拉、具有极高的环境适应性,监测装置能更快更好的监测到管线是否受到外力破损,能迅速准确的判断出发生故障的实际位置和灾害程度,很大程度提高了管线监测的可靠性和及时性。
附图说明
为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是实施例中分布式光纤带的结构示意图;
图2是图1所示视图中A-A的剖视图;
图3是图1所示视图中B-B的剖视图;
图4是实施例中三层分布式光纤带的结构示意图;
图5是图4所示视图中C-C的剖视图。
具体实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
如图1和2所示,为实施例中分布式光纤带的结构示意图。
说明性实施例中的分布式光纤带,包括:外护套1、包覆层2、填充物3、温度感测光纤4和振动监测光纤5,外护套1的内部设有至少一层填充物3,每层填充物3中埋有相互不接触的至少一根温度感测光纤4和至少一根振动监测光纤5,每层填充物3的外围设有包覆层2;填充物3为与空气或水接触会释放热量的物质。
优选地,实施例中温度感测光纤4和振动监测光纤5均为分布式光纤,更优选地,振动监测光纤5为两芯单模光纤。实施例中,根据实际需要,每一层填充物3内部可预埋多根分布式光纤。
如图1和3所示,为实施例中单层填充物的结构示意图。
实施例中,包覆层2的内部设有多个栅格,栅格内填有填充物3,每根温度感测光纤4和振动监测光纤5贯穿栅格且位于不同的栅格内,以增强光纤带的韧性和光纤、填充物的稳定性。
实施例中,与空气接触会释放热量的物质,包括与空气中水份或氧气接触会释放热量的物质。根据实际情况的需要,遇到水份会释放热量的物质,例如含一定比例碳酸钙的粉末,碳酸钙遇水会放出大量的热量,当光纤带受到外力致使其破损时,可检测到破损处碳酸钙遇到空气中的水分释放热量,破损点处温度急速上升;遇空气发生放热反应的物质,例如由铁、活性炭、无机盐、水等合成的聚合物,遇到空气中的氧气会释放热量,可持续一定时间释放50℃以上热量,当光纤带被刺破时,可检测到破损处温度迅速上升。
如图4和5所示,为实施例中三层分布式光纤带的结构示意图。
为检测出破坏部位的破坏程度,实施例中,光纤带的内部设有三层填充物3,每层之间相互密闭绝缘。根据不同的地理环境,三层填充物可随机选择成分:在水下,光纤带的外层优先用与空气中水份或水接触会释放热量的物质;土层中,光纤带的外层优先用与空气中氧气接触会释放热量的物质。优选地,位于最外层填充物A为与空气中水份或水接触会释放热量的物质,位于中间层填充物B为与空气中氧气接触会释放热量的物质,位于最内层填充物C与填充物A相同。
本实用新型还涉及基于上述实施例中分布式光纤带的分布式光纤传感管网监测装置,包括:上述光纤带、布里渊光时域反射计、发出相干波的相干激光器和光检测器、以及监视终端;其中,光纤带包括:外护套1、包覆层2、填充物3、温度感测光纤4和振动监测光纤5,外护套1的内部设有至少一层填充物3,每层填充物3中埋有相互不接触的至少一根温度感测光纤4和至少一根振动监测光纤5,每层填充物3的外围设有包覆层2;填充物3为与空气或水接触会释放热量的物质;布里渊光时域反射计与温度感测光纤连接;相干激光器和光检测器分别与振动监测光纤连接,相干激光器位于光纤带的一端;监视终端分别与布里渊光时域反射计、相干激光器、光检测器电连接。
上述实施例中的分布式光纤传感管网监测装置,采用分布式光纤应变技术,利用布里渊散射原理完成温度监测。布里渊散射是光在光纤中传输过程中发生的一种非线性效应,光信号在传输时产生传输损耗,利用这种效应对光纤进行测量。光在光纤中传播时,在反方向会产生散射光,包括瑞利散射、布里渊散射和拉曼散射。布里渊散射同时受应变和温度的影响,当光纤沿线的温度发生变化或者存在轴向应变时,光纤中的背向布里渊散射光的频率将发生漂移,频率的漂移量与光纤应变和温度的变化呈良好的线性关系,因此通过测量光纤中的背向自然布里渊散射光的频率漂移量就可以得到光纤沿线温度和应变的分布信息。布里渊光时域反射计(BOTDA)就是通过检测光纤中反向散射的自发布里渊散射光来实施监测的。一定频率的光自光纤的一端入射,入射的脉冲光与光纤中的声学声子发生相互作用后产生布里渊散射,其中的背向布里渊散射光沿光纤原路返回到脉冲光的入射端,进入BOTDA的受光部和信号处理单元,经过一系列复杂的信号处理可以得到光纤沿线的布里渊背散光的功率分布。此种测量精度高,定位精度在1-8米左右,应变精度50微应变,温度0.5度。此种监测应用于长距离监测应力应变、温度,通过对数据分析,可提前预知灾害的发生,且在灾害发生时进行报警。同时,利用干涉原理,振动监测光纤通常采用两芯单模光纤来实现,用相干激光器向其发射一束激光,若光纤没有受到外界的扰动,则光检测器将不对反射波产生报警信号;如果光纤受到外界侵扰,如:运动、声波和触动,则光的波形改变,并产生干涉图像,光检测器可检测到这一波形变化,而且通过软件可以分辩出事件的真实情况。相干激光器发射是连续波激光束,光纤传感器的频率响应范围从10Hz至500KHz。这项技术可以用来检测动态应变,而响应时间在毫秒级。振动监测光纤可以对外部入侵事件进行定位,实现远距离安全保障系统的定位报警功能。激光器向光纤带发射激光,通过布里渊光时域反射计和光检测器将信息返回监视终端的计算机中,通过计算机或人工,根据现场情况进行分析和运算,确定事故报警和定位,其适用于长距离周界、管线和骨干光缆的安全监控。
安装时,首先将光纤带缠绕到所需监测的管线上,或者将光纤带紧贴管道壁,并且拉紧固定,使之能够随管道形变而受相应的力,然后连接好监测终端和激光器。当管道受外力破损时,会对光纤带产生破坏,当光纤带第一层破裂时,内部填充物A将与空气中的水份作用释放热量,第一层光纤检测到温度的变化,传回监测终端,进行报警;同理当光纤带第二层破损后,第二层填充物B遇到空气中的氧气也释放大量热量,改变周围温度;当光纤带第三层破损后,第三层填充物C遇到空气中的水份也释放大量热量,改变周围温度。监测终端为现有技术,可采用戴尔服务器以及相应的上位机软件,将温度及振动数据采集并显示出来。应用布里渊原理的分布式光纤应变温度监测技术来检测管道和地质结构内的应力应变及温度,根据监测到的数据,分析每层温度改变的先后顺序和震动数据可清晰判定管道破裂、泄露的位置以及受力方向,对管道破裂、泄漏以及地址灾害等预警。
上述实施例中的分布式光纤传感管网监测装置,采用分层结构,结合有特殊检测功能的填充物,能更快更好的监测到管线是否受到外力破损,能迅速准确的判断出发生故障的实际位置和灾害程度,很大程度提高了管线监测的可靠性和及时性;本装置可长距离的进行全程检测,如监测距离超出每套光纤传感器的可监测范围,可采用级联的方式构成长距离监测系统,将各分段监测信号传送给中央控制室,进行集中统一管理。实施例中的分布式光纤传感管网监测装置,利用光缆作为探测工具,由BOTDA系统和震动监测系统这两套设备组成的分布式光纤传感监测系统,可实时的不间断的监测传输管道以及管道周边地质结构,具有预警功能,可防止人为破坏,检测应力应变、温度、穿孔泄漏、地层震动及山体滑坡等现象,并能确定事故地点,为及时制止破坏、检修、抢修工作指示方位和目标,为确保管道传输安全提供了保障。使用该系统可完全改变过去在管理方面的被动状况,对掌握和控制管道安全运转情况,及时判断管道故障和外来破坏发生的时间、地点有着重大意义。
以上所述仅为本实用新型的较佳实施例而已,并不用以限制本实用新型,凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。
Claims (10)
1.一种分布式光纤带,其特征在于,包括:外护套、包覆层、填充物、温度感测光纤和振动监测光纤,所述外护套的内部设有至少一层所述填充物,每层所述填充物中埋有相互不接触的至少一根温度感测光纤和至少一根振动监测光纤,每层所述填充物的外围设有所述包覆层;所述填充物为与空气或水接触会释放热量的物质。
2.根据权利要求1所述的分布式光纤带,其特征在于,所述包覆层的内部设有多个栅格,所述栅格内填有填充物,每根所述温度感测光纤和所述振动监测光纤贯穿所述栅格且位于不同的栅格内。
3.根据权利要求1或2所述的分布式光纤带,其特征在于,所述与空气接触会释放热量的物质,包括与空气中水份或氧气接触会释放热量的物质。
4.根据权利要求3所述的分布式光纤带,其特征在于,所述与空气中水份或水接触会释放热量的物质中含有碳酸钙粉末。
5.根据权利要求1或2所述的分布式光纤带,其特征在于,所述光纤带的内部设有三层所述填充物,每层之间相互密闭绝缘。
6.根据权利要求5所述的分布式光纤带,其特征在于,位于最外层填充物A为与空气中水份或水接触会释放热量的物质,位于中间层填充物B为与空气中氧气接触会释放热量的物质,位于最内层填充物C与所述填充物A相同。
7.根据权利要求1所述的分布式光纤带,其特征在于,所述温度感测光纤和所述振动监测光纤均为分布式光纤,所述振动监测光纤为两芯单模光纤。
8.一种分布式光纤传感管网监测装置,其特征在于,包括:
光纤带,包括:外护套、包覆层、填充物、温度感测光纤和振动监测光纤,所述外护套的内部设有至少一层所述填充物,每层所述填充物中埋有相互不接触的至少一根温度感测光纤和至少一根振动监测光纤,每层所述填充物的外围设有所述包覆层;所述填充物为与空气或水接触会释放热量的物质;
布里渊光时域反射计,与所述温度感测光纤连接;
发出相干波的相干激光器和光检测器,分别与所述振动监测光纤连接,所述相干激光器位于所述光纤带的一端;
监视终端,分别与所述布里渊光时域反射计、所述相干激光器、所述光检测器电连接。
9.根据权利要求8所述的分布式光纤传感管网监测装置,其特征在于,所述与空气接触会释放热量的物质,包括与空气中水份或氧气接触会释放热量的物质;所述与空气中水份或水接触会释放热量的物质中含有碳酸钙粉末。
10.根据权利要求8或9所述的分布式光纤传感管网监测装置,其特征在于,所述光纤带的内部设有三层所述填充物,每层之间相互密闭绝缘。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201720097185.1U CN207421795U (zh) | 2017-01-25 | 2017-01-25 | 分布式光纤带及分布式光纤传感管网监测装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201720097185.1U CN207421795U (zh) | 2017-01-25 | 2017-01-25 | 分布式光纤带及分布式光纤传感管网监测装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN207421795U true CN207421795U (zh) | 2018-05-29 |
Family
ID=62398355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201720097185.1U Withdrawn - After Issue CN207421795U (zh) | 2017-01-25 | 2017-01-25 | 分布式光纤带及分布式光纤传感管网监测装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN207421795U (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106764454A (zh) * | 2017-01-25 | 2017-05-31 | 山西科达自控股份有限公司 | 分布式光纤带及分布式光纤传感管网监测装置 |
-
2017
- 2017-01-25 CN CN201720097185.1U patent/CN207421795U/zh not_active Withdrawn - After Issue
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106764454A (zh) * | 2017-01-25 | 2017-05-31 | 山西科达自控股份有限公司 | 分布式光纤带及分布式光纤传感管网监测装置 |
CN106764454B (zh) * | 2017-01-25 | 2020-06-23 | 山西科达自控股份有限公司 | 分布式光纤带及分布式光纤传感管网监测装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rajeev et al. | Distributed optical fibre sensors and their applications in pipeline monitoring | |
CN105805556B (zh) | 一种分布式光纤泄漏监测系统 | |
CN100487386C (zh) | 基于复合光纤装置的多参数检测仪 | |
CN205785299U (zh) | 一种管廊状态监测系统 | |
CN207095615U (zh) | 基于光纤光栅的隧道监测系统 | |
CN205177152U (zh) | 塔架基础结构监测系统 | |
CN203868702U (zh) | 基于光纤光栅传感器的地下管道泄漏预警系统 | |
CN204678066U (zh) | 光纤分布式热力管网监测系统 | |
CN206113994U (zh) | 一种综合管廊的监测装置 | |
CN101788352B (zh) | 复合光纤检测模块与装置 | |
CN103700221A (zh) | 一种油气管道山洪灾害监测方法 | |
CN105135219A (zh) | 油气管道监控系统 | |
CN213065588U (zh) | 管道泄漏检测系统 | |
CN103939748A (zh) | 基于光纤光栅传感器的地下管道泄漏预警系统及其方法 | |
CN113864659A (zh) | 一种预应力钢筒混凝土管道在线监测系统和实时预警方法 | |
CN109238532A (zh) | 基于光纤布里渊散射光的管道受力状态分析方法及系统 | |
CN106764454A (zh) | 分布式光纤带及分布式光纤传感管网监测装置 | |
CN104599419B (zh) | 基于光纤传感器的管道安防系统定位调试方法 | |
CN105114817A (zh) | 基于光纤的油气管道监控系统 | |
CN205001865U (zh) | 基于光纤的油气管道监控系统 | |
CN107304673A (zh) | 油气井监测管柱 | |
Zrelli | Simultaneous monitoring of temperature, pressure, and strain through Brillouin sensors and a hybrid BOTDA/FBG for disasters detection systems | |
CN207421795U (zh) | 分布式光纤带及分布式光纤传感管网监测装置 | |
CN105627943A (zh) | 一种具有抑振功能的海管分布式结构安全监测装置及其监测方法 | |
CN211147738U (zh) | 一种分布式光纤洞库裂隙水监测预警系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
AV01 | Patent right actively abandoned | ||
AV01 | Patent right actively abandoned | ||
AV01 | Patent right actively abandoned |
Granted publication date: 20180529 Effective date of abandoning: 20200623 |
|
AV01 | Patent right actively abandoned |
Granted publication date: 20180529 Effective date of abandoning: 20200623 |