CN207408621U - 一种偏振分束器 - Google Patents

一种偏振分束器 Download PDF

Info

Publication number
CN207408621U
CN207408621U CN201721148053.3U CN201721148053U CN207408621U CN 207408621 U CN207408621 U CN 207408621U CN 201721148053 U CN201721148053 U CN 201721148053U CN 207408621 U CN207408621 U CN 207408621U
Authority
CN
China
Prior art keywords
waveguide
polarization beam
mode interfence
beam apparatus
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201721148053.3U
Other languages
English (en)
Inventor
周治平
刘璐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN201721148053.3U priority Critical patent/CN207408621U/zh
Application granted granted Critical
Publication of CN207408621U publication Critical patent/CN207408621U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

本实用新型提供了一种偏振分束器,所述偏振分束器包括输入波导、多模干涉区和两个输出波导,所述多模干涉区的一端与所述输入波导的一端连接,所述多模干涉区的另一端分别与所述两个输出波导的一端连接;所述多模干涉区内设置有光栅,所述光栅沿入射光在所述多模干涉区内的传播方向设置。本实用新型提供的一种偏振分束器,通过在多模干涉区内设置光栅,有效减小了偏振分束器的整体尺寸,使得该偏振分束器易于集成。

Description

一种偏振分束器
技术领域
本实用新型涉及集成光电子器件领域,更具体地,涉及一种偏振分束器。
背景技术
在光纤通信领域中,偏振分束器是非常重要的一个组件。研究人员已经提出了多种偏振分束器的结构,包括多模干涉耦合器(Multimode-Interference coupler,MMIcoupler)、方向耦合器(directional coupler)和光栅耦合器(grating coupler)等。其中多模干涉耦合器的方案因为结构简单、设计方便而被广泛采用。
目前的基于多模干涉耦合器的偏振分束器的一般采用条形波导制成,但由于这种偏振分束器结构中多模干涉区的长度过长,甚至超过130μm,极大的增加了偏振分束器整体的集成难度及成本。
因此,现急需提供一种小尺寸的偏振分束器,以降低偏振分束器的集成难度。
实用新型内容
为克服上述问题或者至少部分地解决上述问题,本实用新型提供了一种偏振分束器。
一方面,本实用新型提供了一种偏振分束器,所述偏振分束器包括输入波导、多模干涉区和两个输出波导,所述多模干涉区的一端与所述输入波导的一端连接,所述多模干涉区的另一端分别与所述两个输出波导的一端连接;
所述多模干涉区内设置有光栅,所述光栅沿入射光在所述多模干涉区内的传播方向设置,所述光栅根据所述入射光的性质设计得到。
优选地,所述多模干涉区为多模光波导。
优选地,所述光栅的总长度与所述多模光波导的长度相同。
优选地,所述入射光中包括两种不同偏振的光,所述两种不同偏振的光在所述多模光波导内的拍长比为LA:LB=(p+q):p,其中,p为正整数,q为奇数,LA和LB分别为两种不同偏振的光在所述多模光波导内的拍长。
优选地,所述多模干涉区的长度为Lm=pLA=(p+q)LB,其中,Lm为所述多模干涉区的长度。
优选地,所述光栅的光栅周期长度小于所述多模干涉区内传播的入射光的波长。
优选地,所述输入波导与所述多模干涉区之间设置有第一宽度渐变区,所述输出波导与所述多模干涉区之间设置有第二宽度渐变区。
优选地,所述输入波导、所述多模光波导和所述输出波导的波导类型相同,所述波导类型为沟道波导、脊波导或条形波导。
优选地,所述输入波导、所述多模光波导和所述输出波导的材料为电介质、半导体或有机物中的一种或多种。
本实用新型提供的偏振分束器,通过在多模干涉区内设置光栅,缩短了偏振分束器的长度。在具体应用中,可根据实际的加工条件适当的减小多模干涉区的长度,可进一步减小偏振分束器的整体尺寸,使得该偏振分束器易于集成。
附图说明
为了更清楚地说明本实用新型实施例的技术方案,下面将对各实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述的附图是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本实用新型实施例提供的偏振分束器的结构示意图;
图2为本实用新型实施例提供的偏振分束器的结构示意图;
图3为本实用新型实施例提供的从偏振分束器的输入波导输入TE偏振光得到的多模干涉区的电场幅度分布示意图;
图4为本实用新型实施例提供的从偏振分束器的输入波导输入TM偏振光得到的多模干涉区的电场幅度分布示意图。
具体实施方式
下面结合附图和实施例,对本实用新型的具体实施方式作进一步详细描述。以下实施例用于说明本实用新型,但不用来限制本实用新型的范围。
如图1所示,本实用新型一实施例提供了一种偏振分束器,所述偏振分束器包括输入波导11、多模干涉区12和两个输出波导。所述多模干涉区12的一端与所述输入波导11的一端连接,所述多模干涉区12的另一端分别与所述两个输出波导的一端连接。
所述多模干涉区12内设置有光栅13,所述光栅13沿入射光在所述多模干涉区内的传播方向设置,用于缩短所述多模干涉区12的长度。
具体地,本实用新型所提供的偏振分束器(Polarization Beam Splitter,PBS)是一种将一束混合有两种不同偏振的入射光按偏振态进行光束分离的光学元件。
本实施例中,以入射光内存在TE和TM这两种不同偏振的光为例,相应地,需要偏振分束器具有两个输出波导,两个输出波导分别为第一输出波导14和第二输出波导15。在偏振分束器进行偏振分束时,输入波导11没有与多模干涉区12连接的一端为偏振分束器的光输入端,第一输出波导14和第二输出波导15没有与多模干涉区12连接的一端为偏振分束器的两个光输出端。两种不同偏振的光经偏振分束器的光输入端输入至多模干涉区12内,进入多模干涉区12后分别经第一输出波导14和第二输出波导15输出。两种不同偏振的光经偏振分束器的光输入端输入至多模干涉区12后,由原来的单模变为多模,并发生多模干涉效应,形成自成像效应,可在多模干涉区12内形成像点。其中,输入波导11与多模干涉区12相连接的一端与第一个单自镜像点(first single self-image)之间的水平距离即为对应偏振的光的拍长。
在多模干涉区12内设置有光栅13,根据光栅13对多模干涉区等效折射率的调控作用,使得两种不同偏振的光的拍长均缩短,进而缩短多模干涉区12的长度。这里,由于在多模干涉区12内加入了光栅13,使多模干涉区12的内部结构发生变化,进而影响了多模干涉区12的等效折射率。也就是说,可以通过改变光栅13的结构参数实现对多模干涉区12的等效折射率的调控。
本实施例提供的一种偏振分束器,通过在多模干涉区内设置光栅,缩短了偏振分束器的长度。在具体应用中,可根据实际的加工条件适当的减小多模干涉区的长度,可进一步减小偏振分束器的整体尺寸,使得该偏振分束器易于集成。
在上述实施例的基础上,所述多模干涉区具体可为多模光波导。在多模光波导中可以支持至少2种模式的光发生干涉作用。
在上述实施例的基础上,所述光栅的总长度与所述多模光波导的长度相同。通过将光栅的总长度与所述多模光波导的长度设置成相同,可以直接将多模光波导的长度作为光栅的总长度,使光栅充分利用的同时,可将多模干涉区的长度设置得最小。
在上述实施例的基础上,所述入射光内包含两种不同偏振的光,所述两种不同偏振的光在所述多模光波导内的拍长比为LA:LB=(p+q):p,其中,p为正整数,q为奇数,LA和LB分别为两种不同偏振的光在所述多模光波导内的拍长。
在上述实施例的基础上,光栅的总长度即多模干涉区的长度为Lm=pLA=(p+q)LB
作为优选方案,令q=1,则Lm=pLA=(p+1)LB,LA:LB=(p+1):p。
在具体应用中,可根据实际的加工条件以及需要分离的两种不同偏振的光的拍长满足(p+1):p的比例关系来确定光栅的结构参数。如图2所示,光栅周期长度为Λ,光栅槽宽为a,光栅宽度为ws
为进一步的说明本方案,本实用新型还提供了一种偏振分束器的应用实例,入射光由TE偏振光和TM偏振光构成。
参见图2,以偏振分束器的外部包层材料为二氧化硅的绝缘体上硅(Silicon-On-Insulator,SOI)材料为例,通过时域差分方法(Finite Difference Time Domain,FDTD)数值仿真示出了偏振分束器结构中光的电场幅度分布情况。
如图3所示,在所述偏振分束器进行偏振分束时,TE偏振光从偏振分束器的输入波导11入射,经过多模干涉区12,从第一输出波导14输出。如图4所示,TM偏振的光信号从偏振分束器的输入波导11入射到偏振分束器中,经过多模干涉区12,从第二输出波导15输出。TE偏振光的拍长LTE和TM偏振光的拍长LTM满足4:3的比例关系,此时取多模干涉区的长度为Lm=3×LTE=4×LTM,通过设置光栅的结构参数,使TM偏振光和TE偏振光分别从第一输出波导14和第二输出波导15输出,实现偏振分束功能。
多模干涉区12中,波导中间位置分布有预设数量的光栅结构。输入波导11与多模干涉区12之间设置有第一宽度渐变区,第一输出波导14与多模干涉区12之间,以及第二输出波导15与多模干涉区12之间设置有第二宽度渐变区,第一宽度渐变区和第二宽度渐变区的长度相同,均为Lt,即输入波导11的宽度从w渐变为wt,第一输出波导14和第二输出波导15的宽度均从wt变为w,以减少模式转换损耗。
仿真过程中采用的结构参数为:SOI的顶硅厚度为220nm;输入波导、第一输出波导14和第二输出波导15的宽度相同,均为w=450nm;Lt为5μm,wt为0.9μm;多模干涉区12的宽度wm为2μm,多模干涉区12的长度Lm为42μm;光栅的周期Λ为180nm,光栅槽宽a为60nm,光栅宽度ws为60nm。整个多模干涉区包含233个光栅周期。
该应用实例中,通过设置上述光栅的结构参数,使TE偏振光的拍长为10.80μm,TM偏振光的拍长为14.46μm,满足4:3的关系,即p=3,q=1。通过拍长的关系计算得到的多模干涉区的长度Lm为14.46×3≈10.80×4≈43.4μm,基本与设定的多模干涉区12的长度一致。而没有光栅结构,其他参数相同时,TE的拍长为27.95μm,TM的拍长为29.5μm,基本满足18:19的关系,p=18,q=1。整个多模干涉区的长度大约为500μm。可以看出光栅结构的引入使得多模干涉区12内的偏振光的拍长减小,并且p的取值更小,所以器件长度更短。
并且仿真得到的偏振分束器在波长1550nm处,TE偏振光和TM偏振光输入时,两个输出波导之间的消光比分别达到13.71dB和13.00dB。此时的插入损耗分别为0.52dB和0.59dB,满足集成光电子系统的应用。
从上述描述可知,本实用新型的应用实例提供的偏振分束器,利用光栅对波导偏振等效折射率的调控作用,使得TE偏振光的拍长LTE和TM偏振光的拍长LTM满足4:3的比例关系。取多模干涉区的长度Lm=3×LTE=4×LTM时,TM偏振光和TE偏振光分别从第一输出波导14和第二输出波导15输出,从而实现偏振分束。本设计具有器件尺寸小,损耗小,消光比高的特点,在集成光电子领域具有很高的应用价值。
在上述实施例的基础上,所述光栅的光栅周期长度小于所述多模干涉区内传播的入射光的波长。光栅周期长度可根据需要进行设置。在本实施例中,所提供的光栅实际上是亚波长光栅,这种光栅的光栅周期长度Λ与工作波长λ相当,或小于工作波长λ,工作波长λ也就是指多模干涉区内传播的入射光的波长λ。
在上述实施例的基础上,由于光栅的光栅周期长度小于入射光的波长,而光栅的总长度又与多模干涉区的长度相同,所以此时在多模干涉区内存在多个光栅周期,具体光栅周期的个数可通过光栅的总长度与光栅周期长度相除得到。
在上述实施例的基础上,所述输入波导与所述多模干涉区之间设置有第一宽度渐变区,所述输出波导与所述多模干涉区之间设置有第二宽度渐变区。
具体地,本实用新型中,为了方便与其他器件互连,采用输入波导和两个输出波导为长度相同、宽度相同的单模光波导。由于偏振分束器的输入波导和输出波导均为单模光波导,而偏振分束器中的多模干涉区实际上是一种多模光波导,而且,输入波导和输出波导的宽度相同,均小于多模光波导的宽度。如此,在单模的输入波导或输出波导和多模光波导连接时,若直接将宽度较小的输入波导或输出波导与宽度较大的多模光波导进行连接,则会导致连接时产生的损耗变大,所以本实用新型在宽度较小的输入波导或输出波导与宽度较大的多模光波导之间,分别采用第一宽度渐变区和第二宽度渐变区进行连接,可大大降低连接时产生的损耗。
第一宽度渐变区由小宽度逐渐变为大宽度,用于连接输入波导和多模干涉区,第二宽度渐变区由大宽度逐渐变为小宽度,用于连接多模干涉区和输出波导,每一个输出波导均对应着一个第二宽度渐变区。
在上述实施例的基础上,所述输入波导、所述多模光波导和所述输出波导的波导类型相同,所述波导类型包括沟道波导、脊波导或条形波导。
在上述实施例的基础上,所述输入波导、所述多模光波导和所述输出波导的材料为电介质、半导体或有机物。其中,电介质可以为二氧化硅、二氧化钛或氧化镓,半导体可以为硅、锗、氮化硅或三五族化合物。这里的三五族化合物可以为磷化铟或氮化镓。
最后,本实用新型仅为较佳的实施方案,并非用于限定本实用新型的保护范围。凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。

Claims (7)

1.一种偏振分束器,其特征在于,所述偏振分束器包括输入波导、多模干涉区和两个输出波导,所述多模干涉区的一端与所述输入波导的一端连接,所述多模干涉区的另一端分别与所述两个输出波导的一端连接;
所述多模干涉区内设置有光栅,所述光栅沿入射光在所述多模干涉区内的传播方向设置,所述光栅根据所述入射光的性质设计得到;
其中,所述多模干涉区为多模光波导;
所述入射光中包括两种不同偏振的光,所述两种不同偏振的光在所述多模光波导内的拍长比为LA:LB=(p+q):p,其中,p为正整数,q为奇数,LA和LB分别为两种不同偏振的光在所述多模光波导内的拍长。
2.根据权利要求1所述的偏振分束器,其特征在于,所述光栅的总长度与所述多模光波导的长度相同。
3.根据权利要求1所述的偏振分束器,其特征在于,所述多模干涉区的长度为Lm=pLA=(p+q)LB,其中,Lm为所述多模干涉区的长度。
4.根据权利要求1-3中任一项所述的偏振分束器,其特征在于,所述光栅的光栅周期长度小于所述多模干涉区内传播的入射光的波长。
5.根据权利要求1-3中任一项所述的偏振分束器,其特征在于,所述输入波导与所述多模干涉区之间设置有第一宽度渐变区,所述输出波导与所述多模干涉区之间设置有第二宽度渐变区。
6.根据权利要求1-3中任一项所述的偏振分束器,其特征在于,所述输入波导、所述多模光波导和所述输出波导的波导类型相同,所述波导类型为沟道波导、脊波导或条形波导。
7.根据权利要求6所述的偏振分束器,其特征在于,所述输入波导、所述多模光波导和所述输出波导的材料为电介质、半导体或有机物中的一种或多种。
CN201721148053.3U 2017-09-07 2017-09-07 一种偏振分束器 Active CN207408621U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201721148053.3U CN207408621U (zh) 2017-09-07 2017-09-07 一种偏振分束器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201721148053.3U CN207408621U (zh) 2017-09-07 2017-09-07 一种偏振分束器

Publications (1)

Publication Number Publication Date
CN207408621U true CN207408621U (zh) 2018-05-25

Family

ID=62405795

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201721148053.3U Active CN207408621U (zh) 2017-09-07 2017-09-07 一种偏振分束器

Country Status (1)

Country Link
CN (1) CN207408621U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107450126A (zh) * 2017-09-07 2017-12-08 北京大学 一种偏振分束器及其设计方法
CN114675373A (zh) * 2022-03-29 2022-06-28 东南大学 基于厚Si3N4材料的低插入损耗、大带宽紧凑型多模干涉耦合器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107450126A (zh) * 2017-09-07 2017-12-08 北京大学 一种偏振分束器及其设计方法
CN114675373A (zh) * 2022-03-29 2022-06-28 东南大学 基于厚Si3N4材料的低插入损耗、大带宽紧凑型多模干涉耦合器
CN114675373B (zh) * 2022-03-29 2024-03-08 东南大学 基于厚Si3N4材料的低插入损耗、大带宽紧凑型多模干涉耦合器

Similar Documents

Publication Publication Date Title
CN107450126A (zh) 一种偏振分束器及其设计方法
US9453962B2 (en) Beam combiner
CN107092056B (zh) 一种波分复用/解复用器及其制作方法
US20160246009A1 (en) Photonic Chip Surface Grating Coupler (SGC)-Based Optical Splitter and Optical Combiner
Xiao et al. Ultracompact polarization-insensitive power splitter using subwavelength gratings
KR20050088074A (ko) 구조적 키랄성에 기초한 광집적 편광 컨버터
CN207408621U (zh) 一种偏振分束器
CN108508539A (zh) 基于锥形非对称定向耦合器的硅基波分复用器
CN111999957B (zh) 基于锗锑碲化合物相变材料辅助的偏振不敏感光开关
JP2002162654A (ja) 可変光減衰器が結合されたデジタル熱光学スイッチ
Suzuki et al. Polarization-diversity 4× 4 Si-wire optical switch
Purnamaningsih et al. A SIMPLE THREE BRANCH OPTICAL POWER SPLITTER DESIGN BASED ON III-NITRIDE SEMICONDUCTOR FOR OPTICAL TELECOMMUNICATION.
Prajzler et al. Design and modeling of symmetric three branch polymer planar optical power dividers
CN115128880A (zh) 一种基于soi材料制备的双注入微环型可重构多频谱响应单元
Zhou et al. Broadband 4× 4 non-blocking optical switch fabric based on Mach-Zehnder interferometers
Malka et al. Design of a 1× 4 silicon wavelength demultiplexer based on multimode interference in a slot waveguide structures
CN108710175B (zh) 一种基于多模干涉耦合器的光开关、制作方法和光电子器件
CN103631035A (zh) 多模干涉马赫-曾德尔型双控全光开关
CN203616542U (zh) 多模干涉马赫-曾德尔型双控全光开关
Kim et al. Low-crosstalk waveguide crossing based on 1× 1 MMI structure of silicon-wire waveguide
Wu et al. Polarization beam splitter for silicon-based cross-slot waveguides using an asymmetrical evanescent coupling system
Wang et al. Compact polarization beam splitter based on a 3-waveguide directional coupler with broad bandwidth performance
Le et al. Multimode waveguides on an SOI platform for arbitrary power splitting ratio couplers
Ma et al. A compact silicon-on-Insulator MMI-based polarization splitter
Chen et al. Ultra-broadband and compact 2$\times $2 3-dB silicon adiabatic coupler based on supermode-injected adjoint shape optimization

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant