CN207388937U - 基于光伏供电的电动汽车充电系统 - Google Patents

基于光伏供电的电动汽车充电系统 Download PDF

Info

Publication number
CN207388937U
CN207388937U CN201721286535.5U CN201721286535U CN207388937U CN 207388937 U CN207388937 U CN 207388937U CN 201721286535 U CN201721286535 U CN 201721286535U CN 207388937 U CN207388937 U CN 207388937U
Authority
CN
China
Prior art keywords
terminal
control unit
power supply
circuit
primary side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201721286535.5U
Other languages
English (en)
Inventor
韩峰
潘三博
蒋赢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI HUANSHENG NEW ENERGY & TECHNOLOGY Co Ltd
Original Assignee
SHANGHAI HUANSHENG NEW ENERGY & TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI HUANSHENG NEW ENERGY & TECHNOLOGY Co Ltd filed Critical SHANGHAI HUANSHENG NEW ENERGY & TECHNOLOGY Co Ltd
Priority to CN201721286535.5U priority Critical patent/CN207388937U/zh
Application granted granted Critical
Publication of CN207388937U publication Critical patent/CN207388937U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本实用新型公开了一种基于光伏供电的电动汽车充电系统,由发射端和接收端两部分组成,包括光伏供电部分、高频逆变电路、初级侧控制单元、蓄电池、LCC‑S型谐振耦合部分、高频整流滤波电路、次级侧控制单元、电池负载。所述光伏供电部分为光伏板和BOOST升压电路串联连接,且通过DSP控制芯片和MPPT控制电路保持最大功率输出;所述次级侧控制单元主控芯片为DSP28335,其通过检测负载电压与已设定的基准值比较来控制开关管,决定可调假负载电阻是否接入电路,从而微调负载阻值大小,提高传输效率。

Description

基于光伏供电的电动汽车充电系统
技术领域
本实用新型涉及电动汽车无线充电,尤其是一种基于光伏供电的电动汽车充电系统。
背景技术
近年来,随着居民收入水平的提高,汽车行业保持着高速增长态势,而现阶段我国面临着石油短缺的严峻形势,因此节能减排、采用新能源技术成为我国亟待发展的方面。电动汽车作为解决这一问题的重要方式问世。但现有的电动汽车使用有线充电,充电时间长,占用空间大,且经常会带来火花、积尘、接触损耗及机械磨损等一系列问题。随着无线电能传输技术的发展,人们越来越青睐用无线电能传输的方式来给设备充电,无线电能传输技术使用安全、方便,且无接触损耗、机械磨损,环境适应能力强,不惧恶劣天气与气候。与现有充电桩相比,将电动汽车的无线充电发射端埋于地表,不但美观,更能有效节省空间。
主流的无线电能传输技术有电磁感应耦合技术、磁耦合谐振技术、电磁辐射技术这三种,其中磁耦合谐振技术传输距离长、效率高、电磁辐射少,更加适合电动汽车的充电任务。传统的磁耦合谐振式系统的耦合谐振拓扑有串串、串并、并串、并并四种,
而本系统采用的LCC-S型补偿方式,综合了S/S和S/P补偿方式的优点,对提高输出效率有良好帮助。研究表明,LCC-S型系统的输出效率对负载变化比较敏感,变动负载大小,将负载大小控制在一个合适范围内将大大提高系统输出效率,提高电动汽车充电质量。为此,本实用新型提出了一种利用可调假负载电路组成的电动汽车充电系统,对提高电动汽车无线充电效率有着实质性的帮助。
此外,电动汽车的充电桩通过电缆从电网中取电,随着电动汽车数量增多,这种充电方式既增加了使用成本,也不利于环保,因此,采用光伏板给无线充电系统供电成为一个良好的选择,有利于环保、降低使用成本,也提高了能源的利用效率。
实用新型内容
本实用新型的目的在于提供一种基于光伏供电的电动汽车充电系统,以解决上述背景技术中提出的问题。
为达上述及其他目的,本实用新型采取如下技术方案:
一种基于光伏供电的电动汽车充电系统,由发射端和接收端两部分组成,所述的发射端包括光伏供电部分、高频逆变电路、初级侧控制单元、备用充电蓄电池、LCC-S型谐振耦合部分、高频整流滤波电路、次级侧控制单元、电池负载;其特征在于:所述的发射端由光伏板和埋地式线圈放置于规定道路旁边,所述的接收端置于电动汽车的车底盘,电动汽车停在固定位置即可实现无线充电功能;所述的光伏供电部分包括光伏板、BOOST升压电路、MPPT控制电路。当有太阳光照射时,光伏板将光能转换为电能供给BOOST升压电路,由BOOST升压电路将电压抬升到一定水平,为保证光伏板高效率的功率输出,由MPPT控制电路控制BOOST升压电路中开关管的导通;所述的LCC-S型谐振耦合部分由发射端的补偿电感、补偿电容、调谐电容、发射线圈和接收端的调谐电容、发射线圈、接收线圈组成,通过改变各电感和电容值,使固有频率达到谐振频率,能量将在发射端和接收端之间进行高效的传输;所述次级侧控制单元主要由DSP控制芯片控制与开关管、可调假负载电阻串联组成,通过控制可调假负载电阻接入与切出电路,控制负载阻值大小,利用LCC-S系统对负载敏感性质,微调负载大小以提高充电效率。所述的假负载电阻为可调电阻,与控制开关串联后再与电池负载并联连接。
所述光伏供电部分由光伏板、BOOST升压电路、MPPT控制电路组成;所述BOOST升压电路包括电感L0、开关管S0、二极管D0及滤波电容C0。电感L0与光伏板的输出连接,滤波电容C0与高频逆变电路和备用蓄电池并联连接;所述MPPT控制电路的输入与初级侧控制单元的输出侧连接,输出与BOOST升压电路的开关管连接。
进一步的,所述高频逆变电路包括开关管S1~S4和二极管D1~D4。所述高频逆变电路的输入与BOOST升压电路的输出连接,输出与LCC-S型谐振耦合部分的初级侧谐振线圈连接;所述二极管D1~D4分别与S1~S4反并联连接。
进一步的,所述控制单元的主控芯片为DSP28335,分别控制高频逆变电路开关管和MPPT控制模块。
进一步的,所述蓄电池为备用充电蓄电池,即有光照但没有需要充电的电动汽车时使用。
进一步的,所述LCC-S型谐振耦合部分由发射端的补偿电感和补偿电容、发射端和接收端的调谐电容、发射线圈和接收线圈组成,通过改变各电感和电容值,使固有频率达到谐振频率,能量将在两端进行高效的传输。所述发射端的补偿电感Lr的输出分别与补偿电容Cr及调谐电容Cp的一段连接;所述补偿电容Cr与调谐电容Cp及发射线圈并联连接;所述调谐电容Cp与发射线圈串联连接;所述接收端的调谐电容与接受线圈串联连接。
进一步的,所述高频整流滤波电路由二极管Di1~Di4、一级滤波电路、二级滤波电路组成。所述高频整流滤波电路输出端与次级侧控制电路的假负载电阻并联连接;所述一级滤波电路为滤波电容C5,与二极管整流输出端并联;所述二级滤波电路为L5、C6组成的滤波电路;
进一步的,所述次级侧控制单元主控芯片为DSP28335,其通过检测负载电压与已设定的基准值比较来控制开关管,决定可调假负载电阻是否接入电路,从而微调负载电阻大小,提高系统传输效率。
本实验新型的有益效果是,电能来自太阳能光伏板,有效的利用了可再生资源,降低了使用成本,有利于环保;能量发射端埋于地下,有效地节省了充电空间;利用LCC-S系统对负载敏感性质,通过控制可调假负载电阻接入与切出电路,微调负载大小以提高充电效率。
附图说明
图1为本实用新型总体原理结构框图。
图2为本实用新型发射端的电路结构图。
图3为本实用新型LCC-S谐振耦合部分电路拓扑。
图4为本实用新型接收端的电路结构图。
具体实施方式
以下结合附图对本实用新型的具体实施例作出进一步的说明。
图1为本实用新型总体原理结构框图。如图所示,本实施例基于光伏供电的电动汽车充电系统,所述无线充电系统,由发射端和接收端两部分组成,包括光伏供电部分、高频逆变电路、初级侧控制单元、备用充电蓄电池、LCC-S型谐振耦合部分、高频整流滤波电路、次级侧控制单元、电池负载。
参照图2,所述的光伏供电部分由光伏板、BOOST升压电路、MPPT控制电路组成;所述BOOST升压电路包括电感L0、开关管S0、二极管D0及滤波电容C0。所述的电感L0与光伏板的输出连接,滤波电容C0与所述的高频逆变电路和备用蓄电池并联连接;所述的MPPT控制电路的输入端与初级侧控制单元的输出侧连接,所述的MPPT控制电路的输出端与BOOST升压电路的开关管连接。所述的初级侧控制单元通过检测光伏板的输出来调控MPPT控制电路,控制升压电路开关管的导通与关断,从而保持光伏板最大功率输出。
所述的高频逆变电路包括开关管S1~S4和二极管D1~D4。所述高频逆变电路采用H桥逆变电路,其输入端与BOOST升压电路的输出端连接,其输出端与四线圈谐振耦合部分的初级侧谐振线圈连接;所述二极管D1~D4分别与开关管S1~S4反并联连接。
所述初级侧控制单元的主控芯片采用DSP28335,分别控制高频逆变电路开关管和MPPT控制模块。控制单元接收光伏板的输出电压电流以调控MPPT控制模块,检测初级侧电流以调控逆变电路开关管。
所述的备用充电蓄电池,即有光照但没有需要充电的电动汽车时使用。
参照图3,所述LCC-S型谐振耦合部分由发射端的补偿电感和补偿电容、发射端和接收端的调谐电容、发射线圈和接收线圈组成,通过改变各电感和电容值,使固有频率达到谐振频率,能量将在发射端和接收端之间进行高效的传输。所述的发射端的补偿电感Lr的输出分别与补偿电容Cr及调谐电容Cp的一端相连;所述补偿电容Cr与调谐电容Cp及发射线圈并联连接;所述的调谐电容Cp与发射线圈串联连接;所述接收端的调谐电容Cs与接受线圈Ls串联连接。
参照图4,所述高频整流滤波电路由二极管Di1~Di4、一级滤波电路、二级滤波电路组成。所述高频整流滤波电路的输出端与次级侧控制电路的假负载电阻R5并联连接;所述一级滤波电路为滤波电容C5与二极管整流输出端并联;所述二级滤波电路由滤波电感L5、滤波电容C6组成;经过两级输出滤波,输出电压波形更加平坦,提高了对负载的充电质量。
所述的次级侧控制单元的主控芯片为DSP28335,其通过检测负载电压与已设定的基准值比较,根据所计算效率值变化来控制开关管,决定可调假负载电阻是否接入电路以及适当调节假负载阻值大小,从而微调负载电阻大小,提高系统传输效率。
所述电池负载为电动汽车的车载蓄电池。

Claims (4)

1.一种基于光伏供电的电动汽车充电系统,由发射端和接收端两部分组成,所述的发射端部分包括直流电源、高频逆变电路、初级侧控制单元、备用充电蓄电池和LCC-S型谐振耦合的发射端,所述的接收端部分包括LCC-S型谐振耦合的接收端、高频整流滤波电路、次级侧控制单元和电池负载;其特征在于:
所述的发射端部分置于规定道路旁边固定位置,所述的接收端部分置于电动汽车的车底盘,电动汽车停靠在固定位置即可实现无线充电功能;
所述的直流电源包括光伏板、BOOST升压电路、MPPT控制电路组成;所述的光伏板的输出端与BOOST升压电路的第一输入端相连,所述的BOOST升压电路的输出端与所述的高频逆变电路的第一输入端和备用充电蓄电池的输入端分别相连,所述的MPPT控制电路的输出端与所述的BOOST升压电路的第二输入端相连;
所述的LCC-S型谐振耦合部分包括发射端和接收端,所述的发射端由补偿电感(Lr)、补偿电容(Cr)、调谐电容(Cp)和发射线圈(Lp)构成,所述的接收端由调谐电容(Cs)与接受线圈(Ls)串联构成,所述的LCC-S型谐振耦合的发射端的输入端与所述的高频逆变电路的输出端相连,所述的初级侧控制单元的第一输入端与所述的调谐电容(Cp)和发射线圈(Lp)的节点相连,所述的初级侧控制单元的第二输入端与所述的高频逆变电路的第二输入端相连;所述的初级侧控制单元的输出端与所述的MPPT控制电路的输入端相连;
所述的接收端的输出端与所述的高频整流滤波电路的输入端相连,该高频整流滤波电路的输出端与所述的电池负载和次级控制单元的假负载电阻相连的两端连接;所述的假负载电阻为可调电阻,与控制开关串联后再与电池负载并联连接;所述的控制开关由次级控制单元的DSP控制芯片控制开通与关断,以调节假负载电阻接入或切出电路。
2.根据权利要求1所述的基于光伏供电的电动汽车充电系统,其特征在于:所述初级侧控制单元为DSP控制芯片,检测光伏板的输出电压电流以通过MPPT控制电路保持最大功率输出;检测初级侧电流变化以改变驱动信号占空比,保持输出功率稳定。
3.根据权利要求1所述的基于光伏供电的电动汽车充电系统,其特征在于:所述的次级控制单元主控芯片为DSP28335,其通过检测负载电压与已设定的基准值比较,根据所计算效率值变化来控制开关管,决定可调假负载电阻是否接入电路以及适当调节假负载阻值大小,从而微调负载电阻大小,提高系统传输效率。
4.根据权利要求1所述的基于光伏供电的电动汽车充电系统,其特征在于:所述的高频整流滤波电路由二极管(Di1~Di4)、一级滤波电路、二级滤波电路组成,所述一级滤波电路为滤波电容(C5)与二极管整流输出端并联;所述二级滤波电路由滤波电感(L5)、滤波电容(C6)组成;所述高频整流滤波电路的输出端与次级侧控制电路的假负载电阻R5和电池负载并联连接;所述的假负载电阻为可调电阻,与控制开关串联后再与电池负载并联连接;经过两级输出滤波,输出电压波形更加平坦,提高了对负载的充电质量。
CN201721286535.5U 2017-09-29 2017-09-29 基于光伏供电的电动汽车充电系统 Active CN207388937U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201721286535.5U CN207388937U (zh) 2017-09-29 2017-09-29 基于光伏供电的电动汽车充电系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201721286535.5U CN207388937U (zh) 2017-09-29 2017-09-29 基于光伏供电的电动汽车充电系统

Publications (1)

Publication Number Publication Date
CN207388937U true CN207388937U (zh) 2018-05-22

Family

ID=62331272

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201721286535.5U Active CN207388937U (zh) 2017-09-29 2017-09-29 基于光伏供电的电动汽车充电系统

Country Status (1)

Country Link
CN (1) CN207388937U (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109088472A (zh) * 2018-08-22 2018-12-25 江苏优为视界科技有限公司 一种基于mppt光伏半导体激光器发光系统
CN109245321A (zh) * 2018-08-30 2019-01-18 电子科技大学 一种功率可调的无线充电装置
CN110134046A (zh) * 2019-05-15 2019-08-16 杭州旗捷科技有限公司 一种耗材芯片、耗材芯片动态功耗调整方法
CN110401266A (zh) * 2019-07-29 2019-11-01 歌尔股份有限公司 无线充电的接收端电路及具有无线充电功能的电子设备
CN111371195A (zh) * 2020-03-17 2020-07-03 江苏方天电力技术有限公司 一种用于lcc-s无线电能传输系统的电力变换电路
CN111525514A (zh) * 2019-02-01 2020-08-11 群光电能科技股份有限公司 具有过温度保护补偿的电源转换器
CN111959302A (zh) * 2020-07-04 2020-11-20 南京工程学院 一种基于分布式能源消纳的电动汽车无线充电优化系统
CN113630003A (zh) * 2021-08-09 2021-11-09 浙江大学 一种基于伪负载调节稳压的能量采集控制系统
CN114243942A (zh) * 2021-12-20 2022-03-25 浙江大学 一种基于能量信息复合调制技术的无线光伏发电系统

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109088472A (zh) * 2018-08-22 2018-12-25 江苏优为视界科技有限公司 一种基于mppt光伏半导体激光器发光系统
CN109245321A (zh) * 2018-08-30 2019-01-18 电子科技大学 一种功率可调的无线充电装置
CN109245321B (zh) * 2018-08-30 2021-12-03 电子科技大学 一种功率可调的无线充电装置
CN111525514A (zh) * 2019-02-01 2020-08-11 群光电能科技股份有限公司 具有过温度保护补偿的电源转换器
CN110134046A (zh) * 2019-05-15 2019-08-16 杭州旗捷科技有限公司 一种耗材芯片、耗材芯片动态功耗调整方法
CN110401266A (zh) * 2019-07-29 2019-11-01 歌尔股份有限公司 无线充电的接收端电路及具有无线充电功能的电子设备
CN111371195A (zh) * 2020-03-17 2020-07-03 江苏方天电力技术有限公司 一种用于lcc-s无线电能传输系统的电力变换电路
CN111959302A (zh) * 2020-07-04 2020-11-20 南京工程学院 一种基于分布式能源消纳的电动汽车无线充电优化系统
CN111959302B (zh) * 2020-07-04 2022-02-18 南京工程学院 一种基于分布式能源消纳的电动汽车无线充电优化系统
CN113630003A (zh) * 2021-08-09 2021-11-09 浙江大学 一种基于伪负载调节稳压的能量采集控制系统
CN114243942A (zh) * 2021-12-20 2022-03-25 浙江大学 一种基于能量信息复合调制技术的无线光伏发电系统

Similar Documents

Publication Publication Date Title
CN207388937U (zh) 基于光伏供电的电动汽车充电系统
CN103580301B (zh) 一种无线电能传输功率控制系统及方法
CN100553398C (zh) 基于单级逆变器的太阳能高压钠灯控制器
CN109895640B (zh) 一种电动汽车无线充电两级控制系统及控制方法
CN203645381U (zh) 一种电动汽车车载充电机系统
CN107618388B (zh) 一种电动汽车无线充电系统
CN103346686B (zh) 一种基于电流互感器谐振取电的直流源
CN204068437U (zh) 一种家用太阳能无线供电系统
CN104779672A (zh) 一种适用于电池性负载的无线充电系统
CN205070621U (zh) 110kV输电线路视频监控装置的无线供电系统
CN108899978B (zh) 基于可调阻抗的高可靠性大工作范围感应取能装置及调控方法
CN112886718B (zh) 一种谐振补偿式电流互感器感应取电系统
CN105743193A (zh) 基于混沌控制技术的双向非接触供电系统
CN109286235B (zh) 一种电力系统监测设备的供电系统
CN201438642U (zh) 新型客车充电器
CN207743705U (zh) 一种基于电流互感器的自动匹配谐振取电直流源
CN201562997U (zh) 电动自行车用快速充电装置
CN107244247A (zh) 一种基于太阳能供电的电动车无线充电系统
CN108023368A (zh) 一种基于电流互感器的自动匹配谐振取电直流源
CN110126648B (zh) 电动汽车无线充电最大电流跟踪的自寻优调谐控制方法
CN201813587U (zh) 一种通用照明led驱动电路
CN202068621U (zh) 一种大功率led高效驱动电源
CN203301209U (zh) 超级电容充电装置
CN103354383B (zh) 超级电容充电装置
CN205632155U (zh) 一种适用于电动汽车的非接触供电装置

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant