CN207266711U - 一种用于人体微创型压力与温度在体实时监测集成系统 - Google Patents
一种用于人体微创型压力与温度在体实时监测集成系统 Download PDFInfo
- Publication number
- CN207266711U CN207266711U CN201621261329.4U CN201621261329U CN207266711U CN 207266711 U CN207266711 U CN 207266711U CN 201621261329 U CN201621261329 U CN 201621261329U CN 207266711 U CN207266711 U CN 207266711U
- Authority
- CN
- China
- Prior art keywords
- pressure
- temperature
- human body
- transmission fibers
- composite sensing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
本实用新型涉及生物医疗技术领域,特指一种用于人体颅内、肾脏、心血管、骨髓、膀胱等器官和部位压力与温度微创型在体实时监测系统,包括柔性光纤F‑P压力与温度复合传感探针、集成解调模块(包括光源、传感信号解调单元、耦合器)、传输光纤、数据采集单元、无线传输模块与计算机等。通过传输光纤将光源导入人体待测部位的光纤F‑P复合传感探针中,同时将传感探针探测到的F‑P复合腔干涉信号光传输回解调单元,通过对该干涉信号光进行解调获得待测压力和温度。本实用新型系统可有效实现人体内器官和局部压力与温度的同时在线监测,以便对病人进行有针对性的治疗和处理,传感探针尺寸小、创伤小、生物相容性好,系统测量精度高,易于与移动物联网技术融合。
Description
技术领域
本实用新型涉及生物医疗技术领域,特指一种用于人体微创型压力与温度在体实时监测集成系统。
背景技术
光纤传感器作为一种新型的传感器件,具有传统传感器无法比拟的优势,如:测量精度高、测量动态范围大、响应速度快、不受电磁干扰、防爆防燃、防腐蚀、易于远距离测量和复用、尺寸小、结构简单、机械强度高等。早期的光纤主要应用于通讯领域,后随着光纤传感技术的发展,光纤光栅传感器、光纤陀螺传感器、光纤法布里-珀罗传感器等逐渐在化工、桥梁、航空、军事等得到广泛的应用,而由特殊材料制成的光纤传感器也在生物医学传感中得到应用,如光纤测氧计、光纤血流计、光纤体温计等。
在临床医学治疗和微创手术过程中,对体内心血管、颅内、脊柱、骨髓、膀胱、肾脏等器官和部位的压力和温度测量具有十分重要的意义。例如颅内压是神经外科临床和科研的重要观测指标。颅腔容纳着脑组织、脑脊液和血液三种内容物,使颅内保持一定的压力,称为颅内压(intracranial pressure,ICP)。颅内压增高(increased intracranialpressure)是神经外科常见临床病理综合征,是颅脑损伤、脑肿瘤、脑出血、脑积水和颅内炎症等所共有征象,颅内压增高会引发脑疝危象,可使病人因呼吸循环衰竭而死亡,因此对颅内压增高及时诊断和正确处理,十分重要;心包穿刺具有穿刺失败和穿孔的高风险。如果可以为心脏病专家提供心包压力频率信号,这样可以更安全地行心包穿刺,并为某些心脏病患者提供重要的治疗方法;肾结石激光微创治疗过程中,由于激光对结石部位进行碎石时会产生较高温度,需要用冷却水进行冲洗冷却,而水压过高又会导致损坏肾脏,因此对激光碎石过程中压力和温度的同时监测可确保相应脏器无损伤。
目前,生物微压传感器已有相关的研究和应用,如公开号为CN103040456A,公开日为2013年04月17日,公开了一种半桥芯片植入式颅压传感器,采用电类敏感芯片,实现颅压监测,但存在以下问题:1)需要将芯片植入颅内,难以实现微创监测;2)所用芯片为电类芯片,若发生漏电等问题会损坏脑内神经单元,导致医疗事故。加拿大FISO公司提出了各类用于人体压力监测的全光纤型F-P压力传感器,可以避免电类芯片带来的问题,但其制作工艺难度较大,同时只能实现人体内压力单值监测,无法测量同时实现温度监测。
实用新型内容
针对以上问题,本实用新型提供了一种用于人体微创型压力与温度在体实时监测集成系统,实现人体体内心血管、颅内、脊柱、骨髓、膀胱、肾脏等器官和部位压力与温度的同时在线监测,使医护人员及时了解情况,以便对病人进行及时的治疗和处理,其具有测量准确,传感探针结构简单、尺寸小、创伤小、相容性好,同时采用全光型探测不会损害神经单元。
为了实现上述目的,本实用新型采用的技术方案如下:
一种用于人体微创型压力与温度在体实时监测集成系统,包括计算机、无线传输模块、数据采集单元、集成解调模块、传输光纤与柔性光纤F-P压力与温度复合传感探针,柔性光纤F-P压力与温度复合传感探针通过传输光纤与集成解调模块对应连接,集成解调模块通过通讯接口与数据采集单元对应连接,数据采集单元与无线传输模块对应连接,无线传输模块与计算机对应设置。
进一步而言,系统通过传输光纤将光源导入人体待测部位的柔性光纤F-P复合传感探针中,同时将传感探针探测到的F-P复合腔干涉信号光传输回解调单元,通过对该干涉信号光进行解调获得待测压力和温度。
进一步而言,所述柔性光纤F-P压力与温度复合传感探针包括光纤F-P压力与温度复合传感敏感片、传输光纤、聚酰亚胺柔性套管等,探针外径为400~500μm,其中光纤F-P压力与温度复合传感敏感片通过粘接剂粘接在聚酰亚胺柔性套管内,传输光纤一端加套圈后通过粘接剂粘接在聚酰亚胺柔性套管内,整体结构尺寸在微米量级,且为全柔性材料,保证探针可方便进入人体待测器官或部位。
进一步而言,光纤F-P压力与温度复合传感敏感片采用单晶硅与玻片键合,压力敏感F-P微腔和温度敏感F-P微腔采用微机电工艺(MEMS)制作成一体化微型结构,外径为200~300μm,其中压力敏感腔腔长为110±10μm,敏感片厚度2~5μm,温度敏感腔腔长为320±10μm。
进一步而言,所述传输光纤前端加工成聚焦的球形结构并镀有增透膜,传输光纤外涂覆聚酰亚胺。
进一步而言,所述集成解调模块包括光源、传感信号解调单元与耦合器,耦合器采用1*2耦合器,耦合器一端连接于光源与传感信号解调单元,耦合器另一端连接于传输光纤。
进一步而言,所述传感信号解调单元将探测到的复合传感干涉光谱信号,通过傅里叶频域运算获得不同腔长对应的频率,并转换为各自的腔长变化,同时获得所测器官和部位的温度和压力值。
进一步而言,所述无线传输模块可将系统测得的数值直接显示于病房的显示监测系统与手术平台,也通过移动互联技术发送到医护人员的手机上实行远程监控。
本实用新型有益效果:
1.光纤F-P压力与温度复合传感探针柔性好、尺寸小、创伤小、生物相容性好,系统测量精度高,易于与移动物联网技术融合,能较好地应用于微创手术中的人体颅内等部位和器官的监测;
2.通过同时实现人体颅内等部位和器官的压力与温度实时监测,为医疗人员提供手术和治疗的重要参考,如在火激光微创碎肾结石治疗过程中,压力和温度的同时在线在体监测可确保脏器无损伤;
3.探测采用纯光监测,对人体没有损害,基本不存在安全隐患;
4.光纤F-P压力与温度复合传感敏感片采用MEMS工艺制备而成,易于实现批量化生产,重复性和一致性好。
附图说明
图1是本实用新型实时监测的光纤F-P压力与温度复合传感测量系统图;
图2是本实用新型实时监测的光纤F-P压力与温度复合传感器结构图。
图3是本实用新型实时监测的集成解调模块具体组成图。
1.计算机;2.无线传输模块;3.数据采集单元;4.集成解调模块;5.传输光纤;6.柔性光纤F-P压力与温度复合传感探针;7.光纤F-P压力与温度复合传感敏感片;8.聚酰亚胺套管;9.光源;10.传感信号解调单元;11.耦合器。
具体实施方式
下面结合附图与实施例对本实用新型的技术方案进行说明。
如图1、图2和图3所示,本实用新型所述一种用于人体微创型压力与温度在体实时监测集成系统,包括计算机1、无线传输模块2、数据采集单元3、集成解调模块4、传输光纤5与柔性光纤F-P压力与温度复合传感探针6,柔性光纤F-P压力与温度复合传感探针6通过传输光纤5与集成解调模块4对应连接,集成解调模块4通过通讯接口与数据采集单元3对应连接,数据采集单元3与无线传输模块2对应连接,无线传输模块2与计算机1对应设置。以上所述构成本实用新型基本结构。
本实用新型采用这样的结构设置,其工作原理:通过柔性光纤F-P压力与温度复合传感探针6对人体内相应部位和器官的压力与温度进行探测,再通过传输光纤5输入将信号输入至集成解调模块4,集成解调模块4通过通讯接口将信号输入至数据采集单元3,数据采集单元3再将采集到的信号传输至无线传输模块2,无线传输模块2再通过无线传输到远程计算机1上,有效实现人体内器官和局部的压力与温度的同时在线监测,以便对病人进行及时的治疗和处理,其传感探针尺寸小、创伤小、生物相容性好,系统测量精度高,易于与移动物联网技术融合。
更具体而言,所述柔性光纤F-P压力与温度复合传感探针6包括包括光纤F-P压力与温度复合传感敏感片7、传输光纤5、聚酰亚胺柔性套管8等,探针外径为400~500μm,其中光纤F-P压力与温度复合传感敏感片7通过粘接剂粘接在聚酰亚胺柔性套管8内,传输光纤5一端加套圈后通过粘接剂粘接在聚酰亚胺柔性套管8内。采用这样的结构设置,整体结构尺寸在微米量级,且为全柔性材料,保证探针可方便进入人体待测器官或部位。
更具体而言,所述光纤F-P压力与温度复合传感敏感片7采用单晶硅与玻片键合,压力敏感F-P微腔和温度敏感F-P微腔采用微机电工艺(MEMS)制作成一体化微型结构,外径为200~300μm,前端为压力敏感腔(如图2所示,端面c与端面d),腔长为110±10μm,敏感膜片厚度为2~5μm,后端设为温度敏感腔(如图2所示,端面b与端面c),腔长为320±10μm。本实用新型所述单晶硅和玻片经刻蚀后由皮秒激光切割再进行抛磨处理,最后进行键合,采用这样的结构设置,可同时实现压力和温度的在体实时监测。
更具体而言,所述传输光纤5前端加工成聚焦的球形结构并镀有增透膜,传输光纤外涂覆聚酰亚胺。采用这样的结构设置,有效避免产生端面a和端面b之间形成F-P腔,并有效实现传感干涉信号的接收。
更具体而言,所述集成解调模块4包括光源9、传感信号解调单元10与耦合器11,耦合器11采用1*2耦合器,耦合器11一端连接于光源9与传感信号解调单元10,耦合器11另一端连接于传输光纤5。采用这样的结构设置,探测采用纯光监测,对人体没有损害,基本不存在安全隐患。
更具体而言,所述传感信号解调单元10将探测到的复合传感干涉光谱信号,通过傅里叶频域运算获得不同腔长对应的频率,并转换为各自的腔长变化,同时获得所测器官和部位的温度和压力值。
更具体而言,所述无线传输模块2可将系统测得的数值直接显示于病房的显示监测系统与手术平台,也通过移动互联技术发送到医护人员的手机上实行远程监控。
上面结合附图对本实用新型的实施例进行了描述,但是本实用新型并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本实用新型的启示下,在不脱离本实用新型宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本实用新型的保护之内。
Claims (6)
1.一种用于人体微创型压力与温度在体实时监测集成系统,其特征在于,包括计算机(1)、无线传输模块(2)、数据采集单元(3)、集成解调模块(4)、传输光纤(5)与柔性光纤F-P压力与温度复合传感探针(6);
所述柔性光纤F-P压力与温度复合传感探针(6)通过传输光纤(5)与集成解调模块(4)对应连接,所述集成解调模块(4)通过通讯接口与数据采集单元(3)对应连接,所述数据采集单元(3)与无线传输模块(2)对应连接,所述无线传输模块(2)与计算机(1)对应设置;
所述传输光纤(5)将光源(9)导入人体待测部位的柔性光纤F-P复合传感探针(6)中,同时将柔性光纤F-P压力与温度复合传感探针(6)探测到的F-P复合腔干涉信号光传输回解调单元,通过对该干涉信号光进行解调获得待测压力和温度;
所述柔性光纤F-P压力与温度复合传感探针(6)包括光纤F-P压力与温度复合传感敏感片(7)、传输光纤(5)、聚酰亚胺柔性套管(8),探针外径为400~500μm,其中光纤F-P压力与温度复合传感敏感片(7)通过粘接剂粘接在聚酰亚胺柔性套管(8)内,传输光纤(5)一端加套圈后通过粘接剂粘接在聚酰亚胺柔性套管(8)内,整体结构尺寸在微米量级,且为全柔性材料,保证探针可方便进入人体待测器官或部位。
2.根据权利要求1所述的一种用于人体微创型压力与温度在体实时监测集成系统,其特征在于,所述光纤F-P压力与温度复合传感敏感片(7)采用单晶硅与玻片键合,压力敏感F-P微腔和温度敏感F-P微腔采用微机电工艺(MEMS)制作成一体化微型结构,外径为200~300μm,其中压力敏感腔腔长为110±10μm,敏感片厚度2~5μm,温度敏感腔腔长为320±10μm,所述光纤F-P压力与温度复合传感敏感片(7)可同时实现微创治疗过程中压力和温度同时监测,确保手术过程对相应器官无损伤。
3.根据权利要求2所述的一种用于人体微创型压力与温度在体实时监测集成系统,其特征在于,所述传输光纤(5)前端加工成聚焦的球形结构并镀有增透膜,传输光纤(5)外涂覆聚酰亚胺。
4.根据权利要求1所述的一种用于人体微创型压力与温度在体实时监测集成系统,其特征在于,所述集成解调模块(4)包括光源(9)、传感信号解调单元(10)与耦合器(11),耦合器(11)采用1*2耦合器,耦合器(11)一端连接于光源(9)与传感信号解调单元(10),耦合器(11)另一端连接于传输光纤(5)。
5.根据权利要求4所述的一种用于人体微创型压力与温度在体实时监测集成系统,其特征在于,所述传感信号解调单元(10)将探测到的复合传感干涉光谱信号,通过傅里叶频域运算获得不同腔长对应的频率,并转换为各自的腔长变化,同时获得所测器官和部位的温度和压力值。
6.根据权利要求1所述的一种用于人体微创型压力与温度在体实时监测集成系统,其特征在于,所述无线传输模块(2)可将系统测得的数值直接显示于病房的显示监测系统与手术平台,也通过移动互联技术发送到医护人员的手机上实行远程监控。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201621261329.4U CN207266711U (zh) | 2016-11-11 | 2016-11-11 | 一种用于人体微创型压力与温度在体实时监测集成系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201621261329.4U CN207266711U (zh) | 2016-11-11 | 2016-11-11 | 一种用于人体微创型压力与温度在体实时监测集成系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN207266711U true CN207266711U (zh) | 2018-04-24 |
Family
ID=61960736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201621261329.4U Active CN207266711U (zh) | 2016-11-11 | 2016-11-11 | 一种用于人体微创型压力与温度在体实时监测集成系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN207266711U (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106618490A (zh) * | 2016-11-11 | 2017-05-10 | 武汉理工大学 | 一种用于人体微创型压力与温度在体实时监测集成系统 |
-
2016
- 2016-11-11 CN CN201621261329.4U patent/CN207266711U/zh active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106618490A (zh) * | 2016-11-11 | 2017-05-10 | 武汉理工大学 | 一种用于人体微创型压力与温度在体实时监测集成系统 |
CN106618490B (zh) * | 2016-11-11 | 2023-08-15 | 武汉理工大学 | 一种用于人体微创型压力与温度在体实时监测集成系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106618490A (zh) | 一种用于人体微创型压力与温度在体实时监测集成系统 | |
Presti et al. | Fiber bragg gratings for medical applications and future challenges: A review | |
Mishra et al. | Fiber grating sensors in medicine: Current and emerging applications | |
JP2023138651A (ja) | マルチモード診断を伴うウェアラブルデバイス | |
US20150374328A1 (en) | Systems, methods and devices for remote fetal and maternal health monitoring | |
Li et al. | Wearable alignment-free microfiber-based sensor chip for precise vital signs monitoring and cardiovascular assessment | |
Silvestri et al. | Optical-fiber measurement systems for medical applications | |
Roriz et al. | Fiber optic intensity-modulated sensors: A review in biomechanics | |
CN107296628A (zh) | 内瘘血栓的实时检测系统、实时检测装置及其血流速度的检测方法 | |
Ourak et al. | Combined oct distance and fbg force sensing cannulation needle for retinal vein cannulation: in vivo animal validation | |
US20130079596A1 (en) | Dynamic surgical fluid sensing | |
CN105832327B (zh) | 一种植入式无线无源颅内压监测系统 | |
Presti et al. | Cardiac monitoring with a smart textile based on polymer-encapsulated FBG: Influence of sensor positioning | |
CN207266711U (zh) | 一种用于人体微创型压力与温度在体实时监测集成系统 | |
Li et al. | Micro-bubble FP cavity and FBG cascade structure-based pressure sensor with temperature self-compensation for minimally invasive surgery | |
Spillman Jr | Fiber optic biosensors | |
Kavitha et al. | Fiber grating sensors and their recent applications in biomedical domain | |
CN206548482U (zh) | 一种用于人体颅内压力与温度实时监测的测量系统 | |
Zhou et al. | Progress in probe-based sensing techniques for in vivo diagnosis | |
Ahmed et al. | Design and Implementation of the Temperature Sensor for Health Care Monitoring Based on Optical Fiber Technology | |
CN104188630B (zh) | 基于血管介入技术的测温装置及测温方法 | |
Mendez | Fiber Bragg grating sensors for biomedical applications | |
Mendez | Specialty optical fibers in biomedical applications: needs & applications | |
CN113440105B (zh) | 一种应用于管腔道压力温度检测的oct探头 | |
Karnik et al. | Recent Advances in Sensor Technology for Biomedical Applications: A Review |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |