CN206835057U - 一种数控衰减器 - Google Patents

一种数控衰减器 Download PDF

Info

Publication number
CN206835057U
CN206835057U CN201720655384.XU CN201720655384U CN206835057U CN 206835057 U CN206835057 U CN 206835057U CN 201720655384 U CN201720655384 U CN 201720655384U CN 206835057 U CN206835057 U CN 206835057U
Authority
CN
China
Prior art keywords
control
attenuation
attenuation units
voltage
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201720655384.XU
Other languages
English (en)
Inventor
袁野
周军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHENGDU CORPRO TECHNOLOGY Co Ltd
Original Assignee
CHENGDU CORPRO TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHENGDU CORPRO TECHNOLOGY Co Ltd filed Critical CHENGDU CORPRO TECHNOLOGY Co Ltd
Priority to CN201720655384.XU priority Critical patent/CN206835057U/zh
Application granted granted Critical
Publication of CN206835057U publication Critical patent/CN206835057U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Networks Using Active Elements (AREA)

Abstract

本实用新型公开了一种数控衰减器,涉及信号衰减控制领域,它包括干个依次级联的衰减单元组成,每个衰减单元均设有输入端、输出端和控制端,第一的衰减单元的输入端与输入信号连接,第一个衰减单元的输出端与其后的衰减单元的输入端连接,以此类推,最后一个衰减单元的输出端是整个衰减器的输出端,每个衰减单元的控制端均与控制信号连接。衰减器采用多位数控步进方式,每个衰减单元采用切换网络的方式控制衰减量,具有衰减范围大,附加相移小和适用范围广的特点。

Description

一种数控衰减器
技术领域
本实用新型涉及信号衰减控制领域,尤其是一种数控衰减器。
背景技术
高性能的定向通信系统和相控阵雷达系统在现代战争中的应用是至关重要的。而位于收发链路中具有幅相控制功能的多功能收发芯片,是实现高精确度定向通信系统和雷达系统的关键部件。整机系统的发射信号的功率和波束方向性都是通过调整系统中多个信号通道中各自通道的特定的信号幅度和相位,经过功率合成的方式来实现的。
而衰减器作为多功能收发芯片的重要组成部分,对信号幅度的精确控制起到了至关重要的作用;主流的数控衰减器实现工艺包括砷化镓(GaAs)和互补金属氧化物半导体(CMOS)。而基于硅基的CMOS工艺正在以低成本和高集成度的优势成为研究的热点。
多功能芯片应用环境多种多样,温度变化剧烈,因此保证衰减器在不同温度下衰减量的恒定是非常重要的。而步进数控衰减器中的各类器件尤其是MOSFET和电阻的性能受温度影响很大,难以在较宽的温度范围内实现恒定的衰减量。
目前国内外的论文与专利极少提及关于衰减器的衰减量温度补偿方面的技术。大量专利和文献均讨论如何利用衰减器的衰减量随温度的变化来补偿系统链路中增益的波动,而对衰减器本身衰减量随温度的波动并没有采取补偿措施,也并没有搜索到相关的论文与专利。发表在《IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES》上的题为“Amplitude/Phase Temperature Compensation Attenuators With Variable-Q FETResonators”的文章和《1990 IEEE MTT-S Digest》上的题为“A Temperature-CompensatedLinearizing Technique for MMIC Attenuators Utilizing GaAs MESEFTS as Voltage-Variable Resistors”的文章, 都描述了一种衰减量随温度变化的步进式衰减器,作者通过提供随温度变化的栅极电压,改变衰减单元中晶体管的导通电阻,达到改变衰减量的目的。美国专利申请号为US7521980B2中公开了一种不随温度与工艺变化的压控衰减器电路;该电路的衰减器部分为简单的电阻分压电路,固定电阻与作为可变电阻场效应管串联,场效应管两端电压作为衰减器输出,场效应管栅极连接可变控制信号;为消除工艺偏差对温度的影响,该专利引入带隙基准电压源与运算放大电路产生与工艺无关且不受温度影响的栅极控制电压信号,该控制信号只与运算放大电路的输入参考电压和输入控制电压的比值有关。 美国专利申请号为US8988127B2中公开了一种补偿衰减量和链路增益的衰减器电路,包括由场效应管构成的衰减网络和温度补偿电路,其结构示意图如图1所示。该专利声称,温度补偿电路的输出可变电压随温度改变,该输出电压连接衰减器中场效应管的栅极,控制不同温度下场效应管的导通电阻,从而达到补偿环境温度给衰减量带来变化的目的。
上述论文与专利均通过栅极来调控nMOS开关管的开关电压,源漏极直流电压一般与地相同。这种栅极控制电路通常需要额外提供一个比nMOS开关管标称工作电压更高的电源电压来实现栅极温控电路。
而本实用新型公开的衰减装置则将温度补偿控制电压与控制场效应管通断的电压分开,栅极只用作导通与关断的控制,而将温度补偿的正电压加在源极和漏极,这个电压足够小于开关NMOS管的标称电压,源漏极温控电路一般用相应nMOS管标称电压源就可以,从而不需要额外提供一个比nMOS开关管标称工作电压更高的电源电压。由于这种偏置在体源和体漏之间提供了反偏电压,该方法还提高了开关nMOS管的线性度。该衰减装置的温度补偿电源中的温敏电阻将温度变化转化为电压变化直接供给衰减器的控制端。衰减器采用多位数控步进方式,每个衰减单元采用切换网络的方式控制衰减量,衰减范围大,附加相移小,适用范围广。
发明内容
本实用新型的目的在于克服现有技术的不足,提供一种数控衰减器,解决了现有技术中采用连续可调电压来提供控制信号带来的不便和将控制功能全部交给场效应管的栅极带来的不便的问题。
本实用新型的目的是通过以下技术方案来实现的:一种数控衰减器,它包括干个依次级联的衰减单元组成,每个衰减单元均设有输入端、输出端和控制端,第一的衰减单元的输入端与输入信号连接,第一个衰减单元的输出端与其后的衰减单元的输入端连接,以此类推,最后一个衰减单元的输出端是整个衰减器的输出端,每个衰减单元的控制端均来自温度补偿电压源的控制信号连接。
进一步限定,所述的衰减单元主要由一个或多个衰减支路和一个或多个控制开关组成。
进一步限定,所述的控制开关为MOS场效应管。
进一步限定,所述的温度补偿电压源输出的控制电压与场效应管的源极和漏极连接,栅极电压VG控制场效应管的通断,源极与漏极之间通过高电阻相连并受温度补偿控制电压VCTRL的控制,因温度补偿控制电压VCTRL随温度变化,栅极与源极之间的电压差VGS=VG-VCTRL也随温度而变化,且栅极与源极之间的电压差VGS与温度的关系可确保在开关场效应管导通时,导通电阻在不同环境温度下保持恒定。
进一步限定,所述的衰减单元为由串联控制开关、并联控制开关和三个衰减支路构成的改进型T型衰减网络,其中,所述的并联控制开关和一个衰减支路位于对地支路中,其余两个衰减支路位于T型网络的两臂支路中,所述的串联控制开关跨接在衰减单元的输入输出端。
进一步限定,所述的衰减单元为由串联控制开关、并联控制开关和三个衰减支路构成的Pi型衰减网络,所述的Pi型衰减网络包括两个对地支路,每个对地支路由一个并联控制开关和一个衰减支路构成,另一个衰减支路位于信号直通支路,所述的串联控制开关跨接在衰减单元的输入输出端。
本实用新型的有益效果是:
1、温度补偿电压源中的温敏电阻将温度变化转化为电压变化直接供给衰减器的控制端,其结构简单、容易实现。
2、衰减器采用多位数控步进方式,每个衰减单元采用切换网络的方式控制衰减量,具有衰减范围大,附加相移小和适用范围广的特点。
3、每个衰减单元中的场效应管的栅极只用作导通与关断的控制,而将温度补偿的电压加在源极和漏极,使得控制方式更加灵活,解决了采用连续可调电压来提供控制信号带来的不便和将控制功能全部交给场效应管的栅极带来的不便的问题。
附图说明
图1为背景技术电路结构示意图;
图2为数控式步进衰减器结构图;
图3为简化T型结构示意图;
图4为T型结构示意图;
图5为Pi型结构示意图;
图6为数控式步进衰减器实施例结构图。
具体实施方式
下面结合附图进一步详细描述本实用新型的技术方案,但本实用新型的保护范围不局限于以下所述。
如图2所示,一种数控衰减器,它包括干个依次级联的衰减单元组成,每个衰减单元均设有输入端、输出端和控制端,第一的衰减单元的输入端与输入信号连接,第一个衰减单元的输出端与其后的衰减单元的输入端连接,以此类推,最后一个衰减单元的输出端是整个衰减器的输出端,每个衰减单元的控制端均来自温度补偿电压源的控制信号连接。
所述的衰减单元主要由一个或多个衰减支路和一个或多个控制开关组成。
所述的控制开关为MOS场效应管。
所述的温度补偿电压源输出的控制电压与场效应管的源极和漏极连接,栅极电压VG控制场效应管的通断,源极与漏极之间通过高电阻相连并受温度补偿控制电压VCTRL的控制,因温度补偿控制电压VCTRL随温度变化,栅极与源极之间的电压差VGS=VG-VCTRL也随温度而变化,且栅极与源极之间的电压差VGS与温度的关系可确保在开关场效应管导通时,导通电阻在不同环境温度下保持恒定。
所述的衰减单元为由串联控制开关、并联控制开关和三个衰减支路构成的改进型T型衰减网络,其中,所述的并联控制开关和一个衰减支路位于对地支路中,其余两个衰减支路位于T型网络的两臂支路中,所述的串联控制开关跨接在衰减单元的输入输出端。
所述的衰减单元为由串联控制开关、并联控制开关和三个衰减支路构成的Pi型衰减网络,所述的Pi型衰减网络包括两个对地支路,每个对地支路由一个并联控制开关和一个衰减支路构成,另一个衰减支路位于信号直通支路,所述的串联控制开关跨接在衰减单元的输入输出端。
如图3所示,所述的简化T型结构包括场效应管和衰减支路,所述的场效应管的源极和漏极均与外联的控制电压VCTRL连接,所述的场效应管的源极和漏极还与衰减支路连接,可适用于衰减量小的单元。
如图4所示,所述的T型结构包括简化T型结构和衰减支路,所述的简化T型结构中的场效应管的源极和漏极均与外联的控制电压VCTRL连接,所述的源极还与由第一衰减支路和第二衰减支路并联而成的衰减支路串联,可提供比简化T型结构更大的衰减量。
如图5所示,所述的Pi型结构包括串联的场效应管MS、并联的场效应管MP和衰减支路;所述的串联的场效应管MS和并联的场效应管MP的源极和漏极均与外联的控制电压VCTRL连接,所述的源极和漏极还与衰减支路连接,其具有两个并联的衰减支路,因此多用于衰减量大的单元。
所述的衰减支路为电阻和场效应管中的一种或者两种构成的对信号起衰减作用的电路结构。
优选地,以n型MOS场效应管(nMOS管)为例,nMOS管栅极电压VG作为通断控制,其直流控制电压在0V到VDD之间切换;源极与漏极之间通过高电阻连接,并同时接到外联的温度补偿电压源的输出控制端电压VCTRL,因此源极和漏极之间的直流电位差VDS为0,可确保nMOS管在导通时工作在线性区,且导通电阻由栅极与漏极之间的电压差VGS=VG- VCTRL控制,当栅极与漏极之间的电压差VGS大于开启电压时,nMOS管导通;当栅极与漏极之间的电压差VGS小与开启电压时,nMOS管关断;当串联nMOS管MS导通、并联nMOS管MP关断时,衰减单元电路等效为参考态网络并处于参考态,此时该单元电路的插入损耗为ILref,传输相位为φref;当串联nMOS管MS关断、并联nMOS管MP导通时,衰减单元电路等效为衰减态网络并处于衰减态,此时该单元电路的插入损耗为ILatt, 传输相位为φatt,于是该衰减单元电路产生的衰减量A=ILref-ILatt,带来的附加相移Φ=φattref。同时nMOS管的寄生参数不能够忽略,主要为导通电阻与寄生电容;其中导通电阻微参考态网络插入损耗的主要来源,同时在衰减态网络中也起到一定衰减信号的作用;寄生电容则是附加相移的主要来源;nMOS管导通时的导通电阻会受到栅极与漏极之间的电压差VGS控制,对于同样尺寸的nMOS管,当VGS在开启电压与击穿电压之间变化时,VGS越大导通电阻越小,VGS越小则导通电阻越大。
多个衰减单元电路级联之后,每个衰减单元的控制端连接到一起并与控制电压VCTRL连接,而各个单元的栅极电压VG相对独立,可单独在参考态与衰减态两种工作状态之间切换;整个数控式步进衰减器便可以和设定好的最小衰减步进在设定好的衰减范围内对输入信号进行衰减;nMOS管引入的寄生电容会带来较大的附加相移Ф,因此,在涉及衰减支路的时候,可以采取一定的措施,如引入低通网络等,补偿寄生参数带来的附加相移。
如图6所示,优选地,所述的数控衰减器为工作在19~24GHz的六位数控式步进衰减器,分辨率(最小衰减步进)为0.5dB,衰减范围0~31.5dB;该数控式衰减器的六个衰减单元分别为0.5dB、1dB、2dB、4dB、8dB、和16dB,其中0.5dB和1dB采用与图3类似的简化T型结构,1dB和2dB采用与图4类似的T型结构,8dB和16dB采用与图5类似的Pi型结构;将六个衰减单元电路按照一定的顺序级联在一起构成六位数控式步进衰减器;各个单元的栅极电压VG独立控制,当VG在0V与VDD之间切换时,该单元在参考态与衰减态两种工作状态之间切换。六个单元依次切换,便可以得到26=64种状态。由于大部分情况下电源电压固定,连续可调的电压较难提供,故该实施例的数控式的方法简单易行。
将n型MOS场效应管(nMOS管)作为切换网络的开关器件,而nMOS管的沟道特性会随着温度的改变产生很大的变化,导通电阻会随着外界环境温度的升高而增大;温度补偿电压源内包含PTAT电流源、运算放大器以及电阻分压网络能够将温度变化通过特定的传输函数转换为输出控制电压;在衰减单元电路中,该控制电压作为nMOS管源极S和漏极D的直流偏置,此时栅极与漏极之间的电压差VGS=VG-由于温度补偿电压源的作用也会随着外界环境温度而变化,从前面的讨论可知,nMOS管的导通电阻不但受到温度影响,还会受到栅极与漏极之间的电压差VGS的影响,而温度补偿电压源内特定的传输函数将温度转换为输出控制电压,继而通过改变栅极与漏极之间的电压差VGS的方式将温度对nMOS管的影响消除,使得导通电阻与寄生电容均保持恒定。
以上所述仅是本实用新型的优选实施方式,应当理解本实用新型并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本实用新型的精神和范围,则都应在本实用新型所附权利要求的保护范围内。

Claims (6)

1.一种数控衰减器,其特征在于:它包括干个依次级联的衰减单元组成,每个衰减单元均设有输入端、输出端和控制端,第一的衰减单元的输入端与输入信号连接,第一个衰减单元的输出端与其后的衰减单元的输入端连接,以此类推,最后一个衰减单元的输出端是整个衰减器的输出端,每个衰减单元的控制端均来自温度补偿电压源的控制信号连接。
2.根据权利要求1所述的一种数控衰减器,其特征在于:所述的衰减单元主要由一个或多个衰减支路和一个或多个控制开关组成。
3.根据权利要求2所述的一种数控衰减器,其特征在于:所述的控制开关为MOS场效应管。
4.根据权利要求1所述的一种数控衰减器,其特征在于:所述的温度补偿电压源输出的控制电压与场效应管的源极和漏极连接,栅极电压VG控制场效应管的通断,源极与漏极之间通过高电阻相连并受温度补偿控制电压VCTRL的控制,因温度补偿控制电压VCTRL随温度变化,栅极与源极之间的电压差VGS=VG-VCTRL也随温度而变化,且栅极与源极之间的电压差VGS与温度的关系可确保在开关场效应管导通时,导通电阻在不同环境温度下保持恒定。
5.根据权利要求1所述的一种数控衰减器,其特征在于:所述的衰减单元为由串联控制开关、并联控制开关和三个衰减支路构成的改进型T型衰减网络,其中,所述的并联控制开关和一个衰减支路位于对地支路中,其余两个衰减支路位于T型网络的两臂支路中,所述的串联控制开关跨接在衰减单元的输入输出端。
6.根据权利要求1所述的一种数控衰减器,其特征在于:所述的衰减单元为由串联控制开关、并联控制开关和三个衰减支路构成的Pi型衰减网络,所述的Pi型衰减网络包括两个对地支路,每个对地支路由一个并联控制开关和一个衰减支路构成,另一个衰减支路位于信号直通支路,所述的串联控制开关跨接在衰减单元的输入输出端。
CN201720655384.XU 2017-06-07 2017-06-07 一种数控衰减器 Expired - Fee Related CN206835057U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201720655384.XU CN206835057U (zh) 2017-06-07 2017-06-07 一种数控衰减器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201720655384.XU CN206835057U (zh) 2017-06-07 2017-06-07 一种数控衰减器

Publications (1)

Publication Number Publication Date
CN206835057U true CN206835057U (zh) 2018-01-02

Family

ID=60772586

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201720655384.XU Expired - Fee Related CN206835057U (zh) 2017-06-07 2017-06-07 一种数控衰减器

Country Status (1)

Country Link
CN (1) CN206835057U (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109239673A (zh) * 2018-09-29 2019-01-18 扬州海科电子科技有限公司 一种6-18GHz的幅相控制多功能芯片
CN109273812A (zh) * 2018-08-30 2019-01-25 陈亮 一种小型化程控步进衰减器
CN109474256A (zh) * 2018-10-15 2019-03-15 成都信息工程大学 一种射频信号精密步进衰减方法及衰减电路
CN110224686A (zh) * 2019-06-27 2019-09-10 伍晶 一种开关式数控衰减器
CN110830001A (zh) * 2019-11-20 2020-02-21 南京汇君半导体科技有限公司 一种超宽带衰减器
CN111464145A (zh) * 2020-04-07 2020-07-28 成都仕芯半导体有限公司 一种数字步进衰减器
CN113114162A (zh) * 2021-03-24 2021-07-13 中国电子科技集团公司第三十八研究所 一种用于cmos宽带幅相多功能芯片的衰减器电路
CN114584107A (zh) * 2022-05-07 2022-06-03 深圳市鼎阳科技股份有限公司 基于π型衰减网络的可变衰减装置和可变衰减器
CN115913173A (zh) * 2023-02-07 2023-04-04 成都明夷电子科技有限公司 一种消除切换过冲的衰减器及方法
CN116505912A (zh) * 2023-06-26 2023-07-28 中科海高(成都)电子技术有限公司 全正电控制低附加相移衰减器

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109273812A (zh) * 2018-08-30 2019-01-25 陈亮 一种小型化程控步进衰减器
CN109239673A (zh) * 2018-09-29 2019-01-18 扬州海科电子科技有限公司 一种6-18GHz的幅相控制多功能芯片
CN109474256A (zh) * 2018-10-15 2019-03-15 成都信息工程大学 一种射频信号精密步进衰减方法及衰减电路
CN110224686A (zh) * 2019-06-27 2019-09-10 伍晶 一种开关式数控衰减器
CN110830001A (zh) * 2019-11-20 2020-02-21 南京汇君半导体科技有限公司 一种超宽带衰减器
CN111464145A (zh) * 2020-04-07 2020-07-28 成都仕芯半导体有限公司 一种数字步进衰减器
CN113114162A (zh) * 2021-03-24 2021-07-13 中国电子科技集团公司第三十八研究所 一种用于cmos宽带幅相多功能芯片的衰减器电路
CN114584107A (zh) * 2022-05-07 2022-06-03 深圳市鼎阳科技股份有限公司 基于π型衰减网络的可变衰减装置和可变衰减器
CN114584107B (zh) * 2022-05-07 2022-08-16 深圳市鼎阳科技股份有限公司 基于π型衰减网络的可变衰减装置和可变衰减器
CN115913173A (zh) * 2023-02-07 2023-04-04 成都明夷电子科技有限公司 一种消除切换过冲的衰减器及方法
CN116505912A (zh) * 2023-06-26 2023-07-28 中科海高(成都)电子技术有限公司 全正电控制低附加相移衰减器
CN116505912B (zh) * 2023-06-26 2023-09-19 中科海高(成都)电子技术有限公司 全正电控制低附加相移衰减器

Similar Documents

Publication Publication Date Title
CN206835057U (zh) 一种数控衰减器
CN107238819A (zh) 一种具有温度补偿功能的信号幅度控制装置
US7205817B1 (en) Analog control integrated FET based variable attenuators
CN100502230C (zh) 有源偏置电路
US5461265A (en) High-frequency variable impedance circuit having improved linearity of operating characteristics
CA1238692A (en) Field-effect transistor current switching circuit
JP2002524957A (ja) 定ゲートドライブmosアナログスイッチ
CN111884642B (zh) 一种单片吸收式单刀单掷开关芯片
US7368971B2 (en) High power, high frequency switch circuits using strings of power transistors
US4010425A (en) Current mirror amplifier
CN106774572B (zh) 米勒补偿电路及电子电路
CN207301314U (zh) 一种具有温度补偿功能的信号幅度控制装置
CN103269233B (zh) 一种收发一体多功能电路
TW200412714A (en) Radio frequency power amplifier active self-bias compensation circuit
CN111682861B (zh) 新型高线性度温补衰减器
CN207408851U (zh) 一种可实现温度补偿的电压源电路
CN115242217B (zh) 一种基于fet开关管芯的超宽带温补压控衰减器芯片
CN103346794B (zh) 数模转换器
KR100375520B1 (ko) 선형화기
CN108832921A (zh) 一种消除衬底偏置效应的模拟开关控制电路
CN115208374A (zh) 一种宽阈值的mmic正电压控制单刀双掷开关
RU2411633C1 (ru) Многофункциональное устройство свч
RU2401491C1 (ru) Аттенюатор свч с непрерывным управлением
CN112327029A (zh) 一种基于双阻抗变换网络的示波器模拟通道装置
CN209571994U (zh) 一种应用于5g基带的超宽带放大器

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180102

Termination date: 20190607

CF01 Termination of patent right due to non-payment of annual fee