CN206724385U - 基于低谷电蓄能的中央空调系统 - Google Patents

基于低谷电蓄能的中央空调系统 Download PDF

Info

Publication number
CN206724385U
CN206724385U CN201720517508.8U CN201720517508U CN206724385U CN 206724385 U CN206724385 U CN 206724385U CN 201720517508 U CN201720517508 U CN 201720517508U CN 206724385 U CN206724385 U CN 206724385U
Authority
CN
China
Prior art keywords
absorbent solution
heat exchanger
working medium
water
heating agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201720517508.8U
Other languages
English (en)
Inventor
苏庆泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Lianliyuan Technology Co Ltd
Original Assignee
Beijing Lianliyuan Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Lianliyuan Technology Co Ltd filed Critical Beijing Lianliyuan Technology Co Ltd
Priority to CN201720517508.8U priority Critical patent/CN206724385U/zh
Application granted granted Critical
Publication of CN206724385U publication Critical patent/CN206724385U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

本实用新型公开了一种基于低谷电蓄能的中央空调系统,包括吸收式热泵子系统和中央空调子系统,吸收式热泵子系统对低谷电进行储能,并以吸收式热泵子系统的供能过程通过中央空调子系统进行供冷或供热。本实用新型运行成本低。

Description

基于低谷电蓄能的中央空调系统
技术领域
本实用新型涉及热能工程技术领域,特别涉及一种基于低谷电蓄能的中央空调系统。
背景技术
近年来,全国各地尤其是北方地区的冬季雾霾频发,其主要原因之一是供暖燃煤锅炉的颗粒物、SOx以及NOx的排放。为此,各地目前正在大力推广煤改气、煤改电。可是,燃气锅炉仍然存在NOX排放的问题;电供暖具有清洁的优点,但却存在运行成本过高的问题。另一方面,随着国民经济的发展,电力系统中的电力负荷峰谷差不断增大,尤其是近年来随着风力发电、光伏发电等可再生能源发电的装机容量大幅增长,由于电网无法消纳其所发电力而产生严重的“弃风”、“弃光”现象。因此,通过大规模利用低谷电来实现电网的“移峰填谷”是一个紧迫的课题。由此可见,利用廉价的低谷电来实现冬季供暖,进而实现夏季供冷和全年供热水是一个既环保又经济的、较理想的技术路线。
对于低谷电的利用技术,高密度的蓄能是关键所在。在建筑节能领域,低谷电冰蓄冷中央空调是一种得到广泛应用的低谷电利用技术。其特点是,在夜间低谷电时段运行压缩式热泵进行制冰,而在峰电时段通过融冰来向用户提供冷量,从而实现“移峰填谷”。可是,低谷电冰蓄冷空调技术存在三个方面的不足,一是由于制冰需要一定的过冷度,通常将压缩式热泵的蒸发温度控制在零下5℃左右,而实际的供冷温度只需零上7℃左右,因而制冷COP较低;二是水与冰之间的相变潜热较小(334.5kJ/kg),再加上由于冰的热传导性不佳而不能将蓄冰槽中的水全部转化为冰,通常将水的转化率控制在50%左右,因而蓄能密度较低;三是低谷电冰蓄冷中央空调一年四季中只有夏季工作,其他三个季度处于休眠状态,设备运行率极低,因而其“移峰填谷”的作用有限,经济性也较差。
实用新型内容
有鉴于此,本实用新型实施例提供一种基于低谷电蓄能的中央空调系统,主要目的是提高使用低谷电进行储能的能力,从而显著提高其“移峰填谷”的作用,并以低价的低谷电部分或全部代替高价的峰电和尖峰电来改善其经济性。
为达到上述目的,本实用新型主要提供如下技术方案:
第一方面,本实用新型提供了一种基于低谷电蓄能的中央空调系统,包括吸收式热泵子系统、蒸气压缩式热泵子系统和中央空调子系统,所述吸收式热泵子系统包括:
吸收溶液腔室,由上下两部分组成,上部为吸收溶液喷淋腔室,下部为吸收溶液承接室;
第一吸收溶液喷淋装置,设于所述吸收溶液喷淋腔室,吸收溶液通过所述第一吸收溶液喷淋装置在吸收溶液喷淋腔室内喷淋并闪蒸产生工质蒸气,蒸发浓缩后的吸收溶液落到所述吸收溶液承接室内;
第一吸收溶液喷淋管道,设于所述吸收溶液腔室外部,吸收溶液承接室与第一吸收溶液喷淋装置通过第一吸收溶液喷淋管道连接;
第一吸收溶液喷淋泵,设于所述第一吸收溶液喷淋管道上,将吸收溶液承接室内的吸收溶液通过吸收溶液喷淋管道输送至第一吸收溶液喷淋装置进行喷淋;
第一吸收溶液换热器,设于所述吸收溶液喷淋管道上,所述第一吸收溶液换热器的冷流体侧与吸收溶液喷淋管道连接,流经第一吸收溶液换热器的热流体侧的发生热媒加热流经冷流体侧的吸收溶液;
工质腔室,所述工质腔室通过工质蒸气通道连通吸收溶液喷淋腔室;
第一工质换热器,设于工质腔室内,流经第一工质换热器的热媒与喷淋的工质换热;
冷凝工质接收器,设于所述工质腔室的下部,所述冷凝工质接收器用于承接冷凝工质;
冷凝工质储罐,用于储存冷凝工质,所述冷凝工质储罐与所述的冷凝工质接收器通过第一冷凝工质管道连接,所述冷凝工质接收器承接的冷凝工质通过第一冷凝工质管道输送至所述冷凝工质储罐;
冷凝工质喷淋装置,设于所述工质腔室内第一工质换热器的上方,所述冷凝工质喷淋装置通过冷凝工质喷淋管道与所述冷凝工质储罐连接,所述冷凝工质喷淋装置将所述冷凝工质储罐内的冷凝工质在工质腔室内喷淋;
冷凝工质喷淋泵,设于冷凝工质喷淋管道上,用于将冷凝工质储罐内的冷凝工质输送至冷凝工质喷淋装置进行喷淋;
第二工质换热器,设于冷凝工质喷淋管道上或设于所述工质腔室内冷凝工质喷淋装置的下方,流经第二工质换热器的蒸发热媒为冷凝工质储罐内的冷凝工质在工质腔室内蒸发提供所需热量;
第二吸收溶液喷淋装置,设于所述吸收溶液喷淋腔室,吸收溶液通过所述第二吸收溶液喷淋装置在吸收溶液喷淋腔室内喷淋并吸收工质腔室内蒸发产生的工质蒸气而稀释,稀释后的吸收溶液落到所述吸收溶液承接室内;
第二吸收溶液喷淋管道,设于所述吸收溶液腔室外部,吸收溶液承接室与第二吸收溶液喷淋装置通过第二吸收溶液喷淋管道连接,吸收溶液腔室内吸收溶液通过第二吸收溶液喷淋管道输送至第二吸收溶液喷淋装置进行喷淋;
第二吸收溶液换热器,设于吸收溶液喷淋腔室内第二吸收溶液喷淋装置的下方或设于第二吸收溶液喷淋管道上,所述吸收溶液承接室内的吸收溶液输送至吸收溶液喷淋腔室内进行喷淋吸收工质腔室产生的工质蒸气时,所述吸收溶液在输送过程中流经设于吸收溶液腔室外的第二吸收溶液换热器的热流体侧,向流经第二吸收溶液换热器的冷流体侧的吸收热媒释放吸收热而降温,或吸收溶液喷淋在设于吸收溶液喷淋腔室内的第二吸收溶液换热器的表面,向流经第二吸收溶液换热器的吸收热媒释放吸收热而降温;
所述中央空调子系统包括分水器、与分水器连接的室内机、与室内机连接的集水器和与集水器连接的冷水机组/冷热水机组,其中
所述第二吸收溶液换热器与所述冷水机组/冷热水机组并联或串联形成供暖机组,所述供暖机组的入口连接集水器,所述供暖机组的出口连接分水器;和/或
所述第二工质换热器与所述冷水机组/冷热水机组并联或串联形成供冷机组,所述供冷机组的入口连接集水器,所述供冷机组的出口连接分水器;
所述冷水机组/冷热水机组既与第二吸收溶液换热器串联或并联,又与第二工质换热器串联或并联时,通过阀门控制所述第二吸收溶液换热器与所述冷水机组/冷热水机组并联或串联形成供暖机组,或所述第二工质换热器与所述冷水机组/冷热水机组并联或串联形成供冷机组;
所述蒸气压缩式热泵子系统包括第一蒸气压缩式热泵子系统和第二蒸气压缩式热泵子系统,其中
第一压缩机、第一膨胀阀、第一吸收溶液换热器和第一工质换热器构成第一蒸气压缩式热泵子系统,所述第一吸收溶液换热器作为第一蒸气压缩式热泵子系统的压缩式热泵冷凝器与第一压缩机出口连接,所述第一工质换热器作为第一蒸气压缩式热泵子系统的压缩式热泵蒸发器与第一压缩机的入口连接,第一膨胀阀设于所述第一吸收溶液换热器和所述第一工质换热器之间,所述第一蒸气压缩式热泵子系统内循环的制冷剂经过第一压缩机后,作为发生热媒流经所述第一吸收溶液换热器的热流体侧,然后经过第一膨胀阀后作为冷凝热媒输入第一工质换热器,流经第一工质换热器后输入第一压缩机完成一次循环;
第一工质换热器作为所述第二蒸气压缩式热泵子系统的冷凝器,所述第二蒸气压缩式热泵子系统与所述第一蒸气压缩式热泵子系统共用第一压缩机,第一压缩机、第二膨胀阀、第二蒸发器和第一工质换热器构成第二蒸气压缩式热泵子系统,通过阀门控制制冷剂在第二蒸气压缩式热泵子系统内循环,实现第二蒸气压缩式热泵子系统工作,冷凝工质从流经所述第一工质换热器的制冷剂吸收热量而蒸发,或控制制冷剂在第一蒸气压缩式热泵子系统内循环,实现第一蒸气压缩式热泵子系统工作。
作为优选,所述中央空调子系统为供暖中央空调子系统,所述冷水机组/冷热水机组为热水机组,所述分水器与所述第二吸收溶液换热器的吸收热媒出口连接,所述集水器与热水机组的入口连接,热水机组的出口与所述第二吸收溶液换热器的吸收热媒入口连接,流经第二吸收溶液换热器的吸收热媒输送至分水器,分水器内的吸收热媒输送至室内机进行供暖,经室内机供暖后的吸收热媒汇集至集水器,集水器内的吸收热媒输送至热水机组,最后返回第二吸收溶液换热器;和/或
所述中央空调子系统为供冷中央空调子系统,所述冷水机组/冷热水机组为冷水机组,所述分水器与所述第二工质换热器的蒸发热媒出口连接,所述集水器与冷水机组的入口连接,冷水机组的出口与所述第二工质换热器的蒸发热媒入口连接,流经第二工质换热器的蒸发热媒输送至分水器,分水器内的蒸发热媒输送至室内机进行供冷,经室内机供冷后的蒸发热媒汇集至集水器,集水器内的蒸发热媒输送至冷水机组,最后返回第二工质换热器;或
所述中央空调子系统为冷暖中央空调子系统,所述冷水机组/冷热水机组为冷热水机组,所述分水器与所述第二吸收溶液换热器的吸收热媒出口和所述第二工质换热器的蒸发热媒出口分别连接,所述集水器与冷热水机组的入口连接,冷热水机组的出口与所述第二吸收溶液换热器的吸收热媒入口和所述第二工质换热器的蒸发热媒入口分别连接,通过阀门控制冷暖中央空调子系统与所述第二工质换热器之间形成循环回路进行供冷,通过阀门控制冷暖中央空调子系统与所述第二吸收溶液换热器之间形成循环回路进行供暖。对于供暖,所述室内机可以采用风机盘管、暖气片或者地板辐射采暖时的加热管等;对于供冷,室内机可以采用风机盘管等。
作为优选,所述吸收溶液承接室的下部还设有用于过滤和承载吸收剂结晶的孔板。
作为优选,所述孔板为至少两个,每一孔板的外缘部与吸收溶液承接室的内壁之间具有一个开口,相邻两孔板与吸收溶液承接室的内壁之间的开口相对设置。
作为优选,所述第一工质换热器的出口和第一压缩机入口之间串联设有第五三通阀和第六三通阀,第五三通阀还连接第二膨胀阀,第二膨胀阀连接第二蒸发器,第二蒸发器连接至第六三通阀,第一压缩机出口与第一吸收溶液换热器之间设有第七三通阀,第七三通阀还与第一工质换热器的入口连接,通过第五三通阀、第六三通阀和第七三通阀控制制冷剂在第二蒸气压缩式热泵子系统内循环或者在第一蒸气压缩式热泵子系统内循环。
作为优选,所述第一吸收溶液换热器和第一膨胀阀之间设有过冷器,所述第一压缩机入口一端或出口一端设有温度传感器,所述第一蒸气压缩式热泵子系统内循环的制冷剂循环时,流经所述第一吸收溶液换热器的热流体侧后,先流经所述过冷器的热流体侧,然后经过第一膨胀阀输入第一工质换热器,流经过冷器冷流体侧的冷却热媒吸收制冷剂的热量。
作为优选,还包括热水供给子系统,所述热水供给子系统包括冷却热媒储罐,所述过冷器通过管道与冷却热媒储罐连接,所述冷却热媒在过冷器和冷却热媒储罐之间循环,所述冷却热媒为水,所述冷却热媒储罐还连接热水供应管道和补水管道。
作为优选,第二蒸气压缩式热泵子系统为空气源热泵系统或者水源热泵系统或者地源热泵系统,当第二蒸气压缩式热泵子系统为空气源热泵系统时,流经第二蒸气压缩式热泵子系统蒸发器的制冷剂从大气吸收热量而蒸发,当第二蒸气压缩式热泵子系统为水源热泵系统或者地源热泵系统时,流经第二蒸气压缩式热泵子系统蒸发器的制冷剂从水吸收热量而蒸发。
作为优选,所述第二吸收溶液换热器连接所述冷却热媒储罐,所述第二吸收溶液换热器和所述冷却热媒储罐之间形成循环回路,所述第二吸收溶液换热器和所述冷却热媒储罐之间的循环回路上设有控制循环回路通断的阀门。
作为优选,第二吸收溶液换热器与冷却塔或者空冷器连接,吸收热媒在第二吸收溶液换热器与冷却塔或者空冷器之间循环,从而将在第二吸收溶液换热器吸收的吸收热在冷却塔或者空冷器释放;当第二吸收溶液换热器还连接中央空调子系统时,通过设置阀门控制第二吸收溶液换热器与冷却塔或者空冷器之间形成循环回路或第二吸收溶液换热器与中央空调子系统之间形成循环回路。
作为优选,所述冷却热媒为自来水、供热回水或者冷却水,通过使用自来水作为冷却热媒可向用户提供生活热水,而通过使用供热回水作为冷却热媒可在低谷电蓄能时段向用户供暖。
作为优选,所述的工质为水;所述的吸收剂为LiBr,LiNO3,LiCl和CaCl2中的任一种或两种以上的混合物;所述的第一以及第一蒸气压缩式热泵子系统的制冷剂为R22、R134a、R407、R410、R600a或R450A等。
本实用新型与现有技术相比具有如下明显的优点和有益效果:
(1)环境与社会效益好。本实用新型通过吸收式热泵子系统和第一蒸气压缩式热泵子系统对低谷电进行储能,并通过中央空调过程将储存的能量作为空调系统的冷量或热量向用户供应,还可以在春秋季单独供给生活热水,从而发挥了全年的“移峰填谷”作用,具有良好的环境与社会效益;
(2)储能密度高。本实用新型的吸收式热泵子系统采用饱和吸收溶液,在以低谷电为驱动力的储能过程中,通过饱和吸收溶液的发生和工质蒸气的冷凝,将工作过程中增加的吸收溶液重新转化为吸收剂结晶和冷凝工质分别蓄存起来。本实用新型在吸收溶液承接室内设置了多层的孔板来过滤和承载吸收剂结晶,由于含吸收剂结晶的吸收溶液流经孔板层时存在两种流动通道,一是流过孔板滤孔的垂直通道,二是平行于孔板的水平通道,因而即使上层孔板的滤孔被结晶堵塞也不会产生大的流动阻力。因此,本实用新型的结晶分离与储存方式不仅可以大大降低吸收溶液的流动阻力,同时还可实现吸收剂结晶的高密度蓄存。再加上当采用水作为工质时,由于冷凝水与水蒸气之间的相变潜热高达2500kJ/kg左右,从而可以达到很高的储能密度;
(3)能量效率高。由于冷凝工质和吸收剂结晶可在常温下保存,因而热量或者冷量的损失极少。当包含第一蒸气压缩式热泵子系统对低谷电进行储能时,由于第一蒸气压缩式热泵子系统的蒸发温度较高(5℃左右),因而供热COP即能效比高;
(4)经济效益好。由于吸收式热泵子系统是以廉价的低谷电来驱动的,而且能效比高,还可全年运转。同时,由于本中央空调系统可以在电力谷段只通过运行中央空调子系统来满足供暖或供冷负荷,在电力平段以运行中央空调子系统为主来满足供暖或供冷负荷,而在电力高峰段和尖峰段通过运行吸收式热泵子系统的供能过程来满足大部分或者全部的供暖或供冷负荷,因此本中央空调系统具有良好的经济性。
附图说明
图1是本实用新型实施例1的基于低谷电蓄能的中央空调系统的结构示意图。
具体实施方式
下面结合具体实施例对本实用新型作进一步详细描述,但不作为对本实用新型的限定。在下述说明中,不同的“一实施例”或“实施例”指的不一定是同一实施例。此外,一或多个实施例中的特定特征、结构、或特点可由任何合适形式组合。
图1为本实用新型的基于低谷电蓄能的中央空调系统的不同实施例的结构示意图。参见图,基于低谷电蓄能的中央空调系统,包括吸收式热泵子系统、蒸气压缩式热泵子系统和中央空调子系统,吸收式热泵子系统包括:
吸收溶液腔室2,由上下两部分组成,上部为吸收溶液喷淋腔室201,下部为吸收溶液承接室202;
第一吸收溶液喷淋装置3,设于吸收溶液喷淋腔室201,吸收溶液通过第一吸收溶液喷淋装置3在吸收溶液喷淋腔室内喷淋并闪蒸产生工质蒸气,蒸发浓缩后的吸收溶液落到吸收溶液承接室202内;
吸收溶液喷淋管道7,设于吸收溶液腔室2外部,吸收溶液承接室202与第一吸收溶液喷淋装置3通过吸收溶液喷淋管道7连接;
第一吸收溶液喷淋泵6,设于吸收溶液喷淋管道7上,将吸收溶液承接室202内的吸收溶液通过吸收溶液喷淋管道7输送至第一吸收溶液喷淋装置3进行喷淋;
第一吸收溶液换热器30,设于吸收溶液喷淋管道7上,第一吸收溶液换热器30的冷流体侧与吸收溶液喷淋管道7连接,流经第一吸收溶液换热器30的热流体侧的发生热媒加热流经冷流体侧的吸收溶液;
工质腔室22,工质腔室22通过工质蒸气通道14连通吸收溶液喷淋腔室201;
第一工质换热器50,设于工质腔室22内,流经第一工质换热器50的热媒与喷淋的冷凝工质换热;
冷凝工质接收器24,设于工质腔室22的下部,冷凝工质接收器24用于承接冷凝工质;
冷凝工质储罐26,用于储存冷凝工质,冷凝工质储罐26与冷凝工质接收器24通过第一冷凝工质管道25连接,冷凝工质接收器24承接的冷凝工质通过第一冷凝工质管道25输送至冷凝工质储罐26;
冷凝工质喷淋装置41,设于工质腔室22内第一工质换热器50的上方,冷凝工质喷淋装置41通过冷凝工质喷淋管道28与冷凝工质储罐26连接,冷凝工质喷淋装置将冷凝工质储罐内的冷凝工质在工质腔室内喷淋;
冷凝工质喷淋泵27,设于冷凝工质喷淋管道28上,用于将冷凝工质储罐26内的冷凝工质输送至冷凝工质喷淋装置41进行喷淋;
第二工质换热器60,设于冷凝工质喷淋管道28上或设于工质腔室22内冷凝工质喷淋装置41的下方,流经第二工质换热器60的蒸发热媒为冷凝工质储罐26内的冷凝工质在工质腔室22内蒸发提供所需热量,蒸发热媒从而向外输出冷量;
第二吸收溶液喷淋装置43,设于吸收溶液喷淋腔室2,吸收溶液通过第二吸收溶液喷淋装置43在吸收溶液喷淋腔室2内喷淋并吸收工质腔室22内蒸发产生的工质蒸气而稀释,稀释后的吸收溶液落到吸收溶液承接室202内;
第二吸收溶液喷淋管道9,设于吸收溶液腔室2外部,吸收溶液承接室202与第二吸收溶液喷淋装置43通过第二吸收溶液喷淋管道9连接,吸收溶液腔室2内吸收溶液通过第二吸收溶液喷淋管道9输送至第二吸收溶液喷淋装置43进行喷淋;
第二吸收溶液换热器40,设于吸收溶液喷淋腔室201内或设于吸收溶液腔室2外,吸收溶液承接室202内的吸收溶液输送至吸收溶液喷淋腔室201内进行喷淋吸收工质腔室22产生的工质蒸气时,吸收溶液在输送过程中流经设于吸收溶液腔室2外的第二吸收溶液换热器40的热流体侧,向流经第二吸收溶液换热器40的冷流体侧的吸收热媒释放吸收热而降温,或吸收溶液喷淋在设于吸收溶液喷淋腔室201内的第二吸收溶液换热器40的表面,向流经第二吸收溶液换热器40的吸收热媒释放吸收热而降温;
中央空调子系统包括分水器、与分水器连接的室内机、与室内机连接的集水器和与集水器连接的冷水机组/冷热水机组,其中,
第二吸收溶液换热器与冷水机组/冷热水机组并联或串联形成供暖机组,所述供暖机组的入口连接集水器,所述供暖机组的出口连接分水器;和/或
第二工质换热器与冷水机组/冷热水机组并联或串联形成供冷机组,供冷机组的入口连接集水器,供冷机组的出口连接分水器;
冷水机组/冷热水机组既与第二吸收溶液换热器串联或并联,又与第二工质换热器串联或并联时,通过第一三通阀145和第二三通阀144控制所述第二吸收溶液换热器与所述冷水机组/冷热水机组并联或串联形成供暖机组,或所述第二工质换热器与所述冷水机组/冷热水机组并联或串联形成供冷机组。
本实用新型通过第二吸收溶液换热器与冷水机组/冷热水机组并联或串联的方式联合工作形成供暖机组,从而通过室内机实现供暖,而第二工质换热器与冷水机组/冷热水机组并联或串联的方式联合工作形成供冷机组,从而通过室内机实现供冷。可见,本实用新型通过不同的组合可实现中央空调成为单冷空调、单暖空调或冷暖空调。而当第二吸收溶液换热器与冷水机组/冷热水机组串联时,第二吸收溶液换热器可以是位于集水器一侧也可以是位于分水器一侧。同样,当第二工质换热器与冷水机组/冷热水机组串联,第二工质换热器也可以是位于集水器一侧也可以是位于分水器一侧;
蒸气压缩式热泵子系统包括第一蒸气压缩式热泵子系统和第二蒸气压缩式热泵子系统,其中
第一压缩机90、第一膨胀阀95、第一吸收溶液换热器30和第一工质换热器50构成第一蒸气压缩式热泵子系统,第一吸收溶液换热器30作为第一蒸气压缩式热泵子系统的压缩式热泵冷凝器与第一压缩机90出口连接,第一工质换热器50作为第一蒸气压缩式热泵子系统的压缩式热泵蒸发器与第一压缩机90的入口连接,第一吸收溶液换热器30至第一工质换热器50依次连接过冷器92和第一膨胀阀95,第一压缩机90入口一端或出口一端设有温度传感器98,第一蒸气压缩式热泵子系统内循环的制冷剂经过第一压缩机90后,作为发生热媒流经第一吸收溶液换热器30的热流体侧,然后依次经过过冷器92的热流体侧和第一膨胀阀95调节流量后作为冷凝热媒输入第一工质换热器50,流经第一工质换热器50后输入第一压缩机90完成一次循环,流经过冷器92冷流体侧的冷却热媒吸收制冷剂的热量;
第一工质换热器50作为第二蒸气压缩式热泵子系统的冷凝器,第二蒸气压缩式热泵子系统与第一蒸气压缩式热泵子系统共用第一压缩机,第一压缩机90、第二膨胀阀161、第二蒸发器162和第一工质换热器50构成第二蒸气压缩式热泵子系统。所述第一工质换热器50的出口和第一压缩机90入口之间串联设有第五三通阀165和第六三通阀166,第五三通阀还连接第二膨胀阀161,第二膨胀阀连接第二蒸发器162,第二蒸发器连接至第六三通阀166,第一压缩机90出口与第一吸收溶液换热器30之间设有第七三通阀167,第七三通阀167还与第一工质换热器50的入口连接。通过第五三通阀165、第六三通阀166和第七三通阀167控制制冷剂在第二蒸气压缩式热泵子系统内循环,实现第二蒸气压缩式热泵子系统工作,冷凝工质从流经第一工质换热器的制冷剂吸收热量而蒸发,或通过第五三通阀165、第六三通阀166和第七三通阀167控制制冷剂在第一蒸气压缩式热泵子系统内循环,实现第一蒸气压缩式热泵子系统工作。
本实用新型的吸收式热泵子系统与中央空调子系统的冷水/冷热水机组之间的连接方式为串联,供暖时的吸收热媒或者供冷时的蒸发热媒从分水器出发,在流经室内机和集水器之后,先经过冷水/冷热水机组、再经过吸收式热泵子系统回到分水器,从而完成一个供暖/供冷循环。由于吸收式热泵子系统与冷水/冷热水机组具有串联关系,本实用新型可以方便的控制二者在供暖或者供冷负荷中的占比。例如,对于夏季供冷,蒸发热媒的分水器入口和集水器出口温度分别为7℃和12℃(送回水温差5℃),当供冷处于电力峰段而需要将冷水/冷热水机组500(包括500′和500″,下同)的负荷占比降至20%时,只要将冷水/冷热水机组500的出口温度控制在11℃即可。此时,吸收式热泵子系统接着将蒸发热媒从11℃降至7℃,吸收式热泵子系统的负荷占比为80%。而对于冬季供暖,吸收热媒的分水器入口和集水器出口温度分别为45℃和40℃(送回水温差5℃),当供暖处于电力峰段而需要将冷水/冷热水机组的负荷占比降至20%时,只要将冷水/冷热水机组的出口温度控制在41℃即可。此时,吸收式热泵子系统接着将吸收热媒从41℃升至45℃,吸收式热泵子系统的负荷占比为80%。这样,通过在冷水/冷热水机组的下游串联吸收式热泵子系统,还可以提高冷水/冷热水机组制冷时的蒸发温度或者降低其供热时的冷凝温度,从而提高其制冷或供热COP,因而可进一步减少峰段或尖峰段的用电量。本实用新型实施例中的吸收热媒、冷凝热媒、蒸发热媒和发生热媒在某些情况下可以是部分或全部采用相同的热媒。
下面结合附图以串联为例对本实用新型进一步说明。
分水器与第二吸收溶液换热器的吸收热媒出口和/或第二工质换热器的蒸发热媒出口连接,冷水机组/冷热水机组的出口与第二吸收溶液换热器的吸收热媒入口和/或第二工质换热器的蒸发热媒入口连接;当分水器与第二吸收溶液换热器的吸收热媒出口和第二工质换热器的蒸发热媒出口分别连接,冷水机组/冷热水机组的出口与第二吸收溶液换热器的吸收热媒入口和第二工质换热器的蒸发热媒入口分别连接时,通过阀门控制中央空调子系统与第二工质换热器之间形成循环回路,或通过阀门控制中央空调子系统与第二吸收溶液换热器之间形成循环回路;中央空调子系统与第二工质换热器之间形成循环回路时,中央空调子系统供冷;中央空调子系统与第二吸收溶液换热器之间形成循环回路时,中央空调子系统供暖。
可见,本发明实施例中的中央空调子系统可以为供暖中央空调子系统(仅能供暖),也可以为供冷中央空调子系统(仅能供冷),或者也可以为冷暖中央空调子系统(即可供暖又可供冷)。吸收式热泵子系统可以仅与供暖中央空调子系统、供冷中央空调子系统和冷暖中央空调子系统中的一个相结合。而要实现既能供暖又能供冷时,则需要吸收式热泵子系统同时与供暖中央空调子系统和供冷中央空调子系统结合,或吸收式热泵子系统与冷暖中央空调子系统结合。下面就不同的中央空调子系统与吸收式热泵子系统的具体结合方式进行说明。
中央空调子系统与第二吸收溶液换热器之间形成吸收热媒的循环回路时,中央空调子系统即为供暖中央空调子系统。具体连接如下,冷水机组/冷热水机组为热水机组500,分水器与第二吸收溶液换热器40的吸收热媒出口连接,热水机组500与第二吸收溶液换热器40的吸收热媒入口连接,流经第二吸收溶液换热器40的吸收热媒输送至分水器,分水器内的吸收热媒输送至室内机进行供暖,经室内机供暖后的吸收热媒汇集至集水器,集水器内的吸收热媒输送至热水机组500,最后返回第二吸收溶液换热器40。为了实现吸收热媒在该循环回路中更好地循环,在该回路上设置循环泵100。循环泵100一般设于集水器出口一侧的管道上。当然,循环泵100也可设置在分水器的入口侧。吸收溶液吸收冷凝工质蒸发得到的工质蒸气释放的吸收热通过第二吸收溶液换热器被吸收热媒吸收,吸收热媒在经过室内机时进行供暖。
中央空调子系统与第二工质换热器之间形成蒸发热媒的循环回路时,中央空调子系统即为供冷中央空调子系统。具体连接如下,冷水机组/冷热水机组为冷水机组500′,分水器与第二工质换热器60的蒸发热媒出口连接,集水器与冷水机组的入口连接,冷水机组的出口与第二工质换热器60的蒸发热媒入口连接,流经第二工质换热器60的蒸发热媒输送至分水器,分水器内的蒸发热媒输送至室内机进行供冷,经室内机供冷后的蒸发热媒汇集至集水器,集水器内的蒸发热媒输送至冷水机组,最后返回第二工质换热器60。为冷凝工质提供了蒸发热的蒸发热媒在流经室内机时向外部提供冷量,进行供冷。同样,可在集水器的出口侧设置循环泵。
中央空调子系统既与第二吸收溶液换热器连接,又与第二工质换热器连接,通过阀门控制空调子系统与第二吸收溶液换热器之间形成吸收热媒的循环回路实现供暖,或通过阀门控制空调子系统与第二工质换热器之间形成蒸发热媒的循环回路实现供冷,此时中央空调子系统即为冷暖中央空调子系统,既可供暖又可供冷。冷水机组/冷热水机组为冷热水机组500″,分水器与第二吸收溶液换热器40的吸收热媒出口和第二工质换热器60的蒸发热媒出口分别连接,集水器与冷热水机组的入口连接,冷热水机组的出口与第二吸收溶液换热器40的吸收热媒入口和第二工质换热器60的蒸发热媒入口分别连接,通过阀门控制冷暖中央空调子系统与第二工质换热器60之间形成循环回路进行供冷,通过阀门控制冷暖中央空调子系统与第二吸收溶液换热器40之间形成循环回路进行供暖。具体的管道设计,可以是第二工质换热器60和第二吸收溶液换热器40分别通过各自独立的管道与分水器和集水器连接分别形成循环回路,然后在各自的循环回路上设置阀门,根据需要通过阀门控制哪一个循环回路导通,从而实现供暖或供冷。或者分水器和冷热水机组分别通过三通阀实现与第二工质换热器60和第二吸收溶液换热器40连接,然后通过三通阀控制中央空调子系统与第二吸收溶液换热器40之间形成的循环回路导通进行供暖,或通过三通阀控制中央空调子系统与第二工质换热器60之间形成的循环回路导通实现供冷。冷热水机组通过第一三通阀145分别连接第二工质换热器60的蒸发热媒入口和第二吸收溶液换热器40的吸收热媒入口,分水器通过第二三通阀144分别连接第二工质换热器60的蒸发热媒出口和第二吸收溶液换热器40的吸收热媒出口。
本实用新型通过将吸收式热泵系统和中央空调系统相结合,通过吸收式热泵子系统用低谷电进行蓄能,从而降低了空调系统的运行成本。并且由于吸收式热泵子系统本质上是以廉价的低谷电来驱动的,因此本实用新型的系统具有良好的经济性。本实用新型采用低谷电进行储能过程,通过第一吸收溶液换热器30和第一工质换热器50使饱和吸收溶液发生和工质蒸气冷凝,重新转化为吸收剂结晶和冷凝工质分别蓄存起来实现储能。当采用水作为工质时,由于冷凝水与水蒸气之间的相变潜热高达2500kJ/kg左右,再加上吸收剂结晶,能够达到很高的储能密度。由于冷凝工质和吸收剂结晶可在常温下保存,因而热量或者冷量的损失极少。本实用新型设备的运行率高、“移峰填谷”的作用大、经济效益好。本实用新型实施例将第一吸收溶液换热器置于吸收溶液腔室的外部,通过在吸收溶液喷淋腔室对经第一吸收溶液换热器30加热后的吸收溶液进行绝热闪蒸,使吸收溶液因闪蒸浓缩和闪蒸降温而发生过饱和结晶,可以避免在第一吸收溶液换热器30的换热面上产生吸收剂结晶而引起传热传质障碍,尤其有利于对饱和的吸收溶液进行发生。另外,第一吸收溶液换热器30外置可以采用逆流换热器,因而能够更高效的利用变温发生热源、变温吸收溶液和变温蒸发热源,具体的发生热媒包括水、水溶液、不冻液、导热油、空气、工艺气体、过热蒸气以及含不凝气体的蒸气等。本实用新型实施例中,吸收溶液腔室内的吸收溶液保持饱和状态。
本实用新型实施例中,吸收溶液腔室2与工质腔室22采用同一容器,该容器内的上部为工质腔室22,下部为吸收溶液腔室2,冷凝工质接收器24与容器内壁之间形成工质蒸气通道14。
作为上述实施例的优选,吸收溶液承接室202的下部还设有用于将吸收剂结晶分离的固液分离装置。通过设置固液分离装置将吸收剂结晶从吸收溶液中分离开,可在不堵塞吸收溶液流动的前提下进一步显著提高吸收剂结晶的储存密度,因而能够达到很高的储能密度。固液分离装置的具体构造不做限定,只要能将吸收剂结晶从吸收溶液中分离出来,避免吸收剂结晶影响吸收溶液的流动及循环即可。本实施例给出的固液分离装置的一种优选实施例为过滤和承载吸收剂结晶的孔板4。通过在吸收溶液承接室202设置孔板4对吸收剂结晶进行过滤分离,并承载过滤分离出的吸收剂结晶,可以有效提高系统中可容纳的吸收剂结晶的量,提高储能密度。为了进一步提高孔板4的过滤分离及承载的效果,本实施例进一步在吸收溶液承接室202设置至少两个孔板4,每一孔板202的外缘部与吸收溶液承接室202的内壁之间具有一个开口5,相邻两孔板4与吸收溶液承接室202的内壁之间的开口5相对设置。本实施例中将上下相邻两个孔板上的开口设置在相对侧,使得吸收剂结晶需要在孔板4上移动尽可能长的距离才能落到下一孔板4上,这就使得在每一孔板4上堆积尽可能多的吸收剂结晶。同时保证了吸收溶液承接室202的底部基本不会有吸收剂结晶,在提高储能密度的同时,不会影响吸收溶液的流动和循环。由于含吸收剂结晶的吸收溶液流经孔板层时存在两种流动通道,一是流过孔板4滤孔的垂直通道,二是平行于孔板的水平通道,因而即使上层孔板的滤孔被结晶堵塞也不会产生大的流动阻力。因此,结晶分离与储存方式不仅可以大大降低吸收溶液的流动阻力,同时还可实现吸收剂结晶的高密度蓄存,从而达到很高的储能密度。
本实用新型实施例中采用冷凝工质储罐26来存储冷凝工质,将冷凝工质接收器24的冷凝工质存储功能转移到冷凝工质储罐26,可以减小形成工质腔室22的容器的体积,同时避免了过多的冷凝工质存留在工质腔室22内影响系统的运行。
第一工质换热器50设于工质腔室22内部,吸收溶液喷淋腔室201内产生的工质蒸气通过工质蒸气通道14进入工质腔室2后直接与第一工质换热器50的表面相接触实现与流经第一工质换热器50的冷凝热媒换热,工质蒸气冷凝并释放冷凝热,冷凝热由冷凝热媒吸收并带走。
本实用新型实施例引入了第一蒸气压缩式热泵子系统,由于第一蒸气压缩式热泵子系统的蒸发温度较高(5℃左右),当第一工质换热器50外置时,第一工质换热器50的冷流体侧接入第一蒸气压缩式热泵子系统,第一工质换热器50的热流体侧与冷凝工质喷淋管道28连接。而当第一工质换热器50内置时,第一工质换热器50的入口和出口直接接入第一蒸气压缩式热泵子系统。设置温度传感器98可及时掌握第一蒸气压缩式热泵子系统中制冷剂的温度变化,当超过设定的阈值时,可以通过增加流过过冷器92冷却热媒流量来控制制冷剂的温度。或者,在蒸气压缩式热泵子系统中设置用于测定制冷剂压力的压力传感器,通过及时掌握制冷剂压力变化来调整流过过冷器92的冷却热媒流量。根据采用的具体的冷却热媒,过冷器92通过冷却热媒管道93连接适当的冷却热媒提供设备。冷却热媒可以采用自来水、供热回水或者冷却水等。
作为上述实施例的优选,本实用新型实施例的基于低谷电蓄能的中央空调系统还包括热水供给子系统,热水供给子系统包括冷却热媒储罐110,过冷器92的冷流体侧通过管道与冷却热媒储罐110连接,冷却热媒在过冷器92和冷却热媒储罐110之间循环,冷却热媒为水,冷却热媒储罐110还连接热水供应管道118和补水管道117。本实施例通过使用自来水作为冷却热媒向用户提供生活热水。冷却热媒储罐110的输出管道上设有冷却热媒循环泵111,以实现冷却热媒循环。
流经第二工质换热器60的蒸发热媒为冷凝工质储罐内储存的冷凝工质的蒸发提供所需热量,通过第二工质换热器60吸收蒸发热媒的热量后,一部分冷凝工质蒸发为工质蒸气,为冷凝工质提供了蒸发热的蒸发热媒向外提供冷量。第二工质换热器60可以是与空调子系统连接,通过空调子系统向外释放冷量。
本实用新型实施例中,第二蒸气压缩式热泵子系统内循环的制冷剂经过第一压缩机90后,作为蒸发热媒输入第一工质换热器50,流经第一工质换热器50的蒸发热媒为冷凝工质在工质腔室22内蒸发提供所需热量,为冷凝工质提供了蒸发热的蒸发热媒经过第二膨胀阀161后输入第二蒸发器162,经过第二蒸发器162的制冷剂输入第一压缩机90完成一次循环,制冷剂流经蒸发器162时从外部吸热蒸发。
第二蒸气压缩式热泵子系统可以是空气源热泵系统或者水源热泵系统,当第二蒸气压缩式热泵子系统为空气源热泵系统时,流经空气源热泵系统蒸发器的制冷剂从大气吸收热量而蒸发,第二蒸气压缩式热泵子系统为水源热泵系统时,流经水源热泵系统蒸发器的制冷剂从水吸收热量而蒸发。
当所述中央空调子系统为供冷中央空调子系统,所述冷水机组/冷热水机组为冷水机组,第二吸收溶液换热器40与冷却塔或者空冷器171连接,吸收热媒在第二吸收溶液换热器与冷却塔或者空冷器171之间循环,从而将在第二吸收溶液换热器吸收的吸收热在冷却塔或者空冷器171释放。该循环回路上设置循环泵170实现吸收热媒在第二吸收溶液换热器与冷却塔或者空冷器171之间循环。当所述中央空调子系统为冷暖中央空调子系统,所述冷水机组/冷热水机组为冷热水机组,第二吸收溶液换热器还连接中央空调子系统时,通过设置第三三通阀107和第四三通阀108控制第二吸收溶液换热器与冷却塔或者空冷器之间形成循环回路或第二吸收溶液换热器与中央空调子系统之间形成循环回路。
吸收溶液吸收冷凝工质蒸发形成的工质蒸气而升温并稀释,升温后的吸收溶液通过第二吸收溶液换热器40向流经第二吸收溶液换热器的吸收热媒释放吸收热,吸收了吸收热的吸收热媒向外供热或者释放热量,稀释后的吸收溶液溶解吸收剂结晶而恢复至饱和浓度。根据采用的吸收热媒及具体情况,第二吸收溶液换热器40可以与空调子系统连接,通过空调子系统向外供暖。或者,第二吸收溶液换热器40还可以与冷却热媒储罐110连接,吸收热媒在第二吸收溶液换热器40和冷却热媒储罐110之间循环。同样,吸收热媒采用自来水时,冷却热媒储罐110可以通过热水供应管道118提供生活热水。当然,该实施例可以与上一实施例结合,即冷却热媒储罐110分别连接第二吸收溶液换热器40和过冷器92。此时,吸收热媒和冷却热媒采用同一热媒。通过阀门控制冷却热媒储罐110与第二吸收溶液换热器40之间的循环回路导通或冷却热媒储罐110与过冷器92之间的循环回路导通,或该两个循环回路均导通。同样,作为一种选择,冷却热媒储罐110可以通过三通阀分别连接第二吸收溶液换热器40和过冷器92,并通过三通阀控制循环回路的导通。具体的管道设计,可以是过冷器92和第二吸收溶液换热器40分别通过各自独立的管道与冷却热媒储罐110连接分别形成循环回路,然后在各自的循环回路上设置阀门,根据需要通过阀门控制哪一个循环回路导通。
冷凝工质的蒸发在工质蒸发腔室内进行,吸收溶液吸收工质蒸气在吸收溶液腔室内进行。第二工质换热器和第二吸收溶液换热器可以是内置或外置。
冷凝工质储罐26内的冷凝工质通过第二工质换热器与流经第二工质换热器的蒸发热媒进行换热,吸收了蒸发热媒提供的热量后,冷凝工质蒸发为工质蒸气。
下面通过不同实施例来对其具体构造进行说明,以供进一步理解本实用新型的技术方案。
第二吸收溶液换热器40外置时,即第二吸收换热器40设于吸收溶液腔室2外部时,吸收热媒流经第二吸收溶液换热器40的冷流体侧。可以通过不同方式实现吸收溶液在吸收溶液腔室2内吸收冷凝工质蒸发形成的工质蒸气而升温并稀释,升温后的吸收溶液通过第二吸收溶液换热器向流经第二吸收溶液换热器的吸收热媒释放吸收热,吸收了吸收热的吸收热媒向外供热,稀释后的吸收溶液溶解吸收剂结晶而恢复至饱和浓度。第一吸收溶液喷淋管道7连接第二吸收溶液换热器40的热流体侧,吸收溶液向流经第二吸收溶液换热器40的冷流体侧的吸收热媒释放吸收热而降温,吸收了吸收热的吸收热媒向外供热,降温后的吸收溶液输送至第一吸收溶液喷淋装置3喷淋后,吸收冷凝工质在工质腔室内产生的工质蒸气而升温并稀释。当然,也可另外设置第二吸收溶液喷淋管道9来输送吸收溶液至设于吸收溶液喷淋腔室201内的第二吸收溶液喷淋装置43进行喷淋,吸收冷凝工质在工质腔室内产生的工质蒸气而升温并稀释。第二吸收溶液换热器40外置时,其热流体侧接入第二吸收溶液喷淋管道9。第二吸收溶液喷淋管道9上设有第二吸收溶液喷淋泵8,当然,第二吸收溶液喷淋管道9也可与第一吸收溶液喷淋管道7共用一个泵,即共用第一吸收溶液喷淋泵6。第二吸收溶液换热器40内置时,即第二吸收溶液换热器40设于吸收溶液腔室2内部时,吸收溶液承接室202内的吸收溶液通过另外设置的第二吸收溶液喷淋管道9输送至设于吸收溶液喷淋腔室201内的第二吸收溶液喷淋装置43进行喷淋。第二吸收溶液换热器40设于第二吸收溶液喷淋装置43的下方,吸收溶液喷淋在第二吸收溶液换热器40的表面,喷淋后的吸收溶液吸收来自工质腔室的工质蒸气而稀释,并通过第二吸收溶液换热器40向吸收热媒释放吸收热,吸收了吸收热的吸收热媒可以向外提供热量。
本实用新型实施例中的第一吸收溶液换热器、第二吸收溶液换热器、第一冷凝工质换热器和第二冷凝工质换热器可采用外置的逆流换热器,因而能够更高效的利用变温发生热源、变温吸收溶液和变温蒸发热源。流经第二吸收溶液换热器的吸收热媒和流经第二冷凝工质换热器的蒸发热媒具体可采用水、水溶液以及不冻液等。
由于各换热器外置并使用逆流板式换热器,而采用吸收溶液和冷凝工质的喷淋闪蒸和喷淋吸收方式,由于吸收溶液和冷凝工质的闪蒸蒸发和喷淋吸收的传热传质速率极快,因而可显著减小吸收溶液喷淋腔室和冷凝工质喷淋腔室的体积,从而显著减小系统整体的体积,同时显著提高换热强度和降低换热温差,从而使系统的结构更加紧凑和简单化,可进一步提高系统性能降低制造成本,并更加易于维护。由于采用了冷凝工质和吸收溶液的喷淋闪蒸或者喷淋吸收的方式,使得吸收溶液喷淋腔室和工质腔室中的不凝气体对发生过程、吸收过程、冷凝过程和蒸发过程的传热传质的阻碍作用显著降低。尤其是采用圆筒容器时,由于容器结构材料的焊接量大幅减少且容器内部不含换热材料,使得腐蚀量、进而不凝气体的产生量显著减少。
对于容易引起结垢或堵塞的各热媒通过采用可拆式板式换热器,可以使换热器的维护变得简单,从而进一步拓宽了系统的应用领域。
本实用新型在工作过程中吸收溶液始终在饱和浓度下进行吸收,因而能够获得较大的热泵温升(即吸收温度与蒸发温度之差),而且能够保证吸收温度和蒸发温度的稳定,即可以保证系统制冷始终稳定。
本实用新型实施例的基于低谷电蓄能的中央空调系统工作过程分别如下:其中吸收式热泵子系统的储能过程包括吸收溶液发生的吸收溶液腔室环节和工质蒸气冷凝的工质腔室环节,其中
吸收溶液发生的吸收溶液腔室环节,位于吸收溶液喷淋腔室201下方的吸收溶液承接室202内的吸收溶液由第一吸收溶液喷淋泵6输送,经由第一吸收溶液喷淋管道7进入设于吸收溶液腔室2外部的第一吸收溶液换热器30的冷流体侧,通过第一吸收溶液换热器30吸收流经热流体侧的发生热媒的热量而升温后进入设于吸收溶液喷淋腔室201内的吸收溶液喷淋装置3喷淋,经闪蒸产生工质蒸气后,得到浓缩和冷却的吸收溶液因过饱和而晶析出吸收剂结晶,闪蒸产生的工质蒸气经工质蒸气通道14进入工质腔室22,随着吸收溶液腔室环节的进行,吸收溶液承接室的吸收溶液逐渐减少,吸收剂结晶逐渐增加;
工质蒸气冷凝的工质腔室环节,吸收溶液在吸收溶液腔室2内产生的工质蒸气进入工质腔室22内冷凝并释放冷凝热,冷凝热由流经第一工质换热器50的冷凝热媒吸收并带走,冷凝工质进入冷凝工质储罐,随着工质腔室环节的进行,冷凝工质储罐内的冷凝工质逐渐增加;其中,当第一工质换热器50设于工质腔室22内部时,来自吸收溶液腔室的工质蒸气在第一工质换热器50的换热面上冷凝并释放冷凝热;当第一工质换热器50设于工质腔室外部时,冷凝工质储罐内的冷凝工质经由冷凝工质喷淋管道进入第一冷凝工质换热器的热流体侧,通过第一冷凝工质换热器向冷流体侧的冷凝热媒释放所携带的工质蒸气的冷凝热后,冷凝工质进入冷凝工质喷淋装置喷淋,喷淋后冷凝工质吸收来自吸收溶液腔室的工质蒸气和工质蒸气的冷凝热,然后进入冷凝工质储罐。
当吸收溶液承接室202内设有孔板4时,含有吸收剂结晶的吸收溶液经由孔板4进入吸收溶液承接室4的下方。吸收剂结晶通过过滤和基于吸收剂结晶与吸收溶液之间的密度差的重力分离堆积于孔板4之上。由于含吸收剂结晶的吸收溶液流经孔板层时存在两种流动通道,一是流过孔板滤孔的垂直通道,二是平行于孔板的水平通道,因而即使上层孔板的滤孔被结晶堵塞也不会产生大的流动阻力。因此,随着储能的进行,吸收剂结晶逐渐增加也不会阻碍吸收溶液的流动及循环。而当第一工质换热器50是设于工质腔室22内时,工质蒸气直接在第一工质换热器50的换热面上冷凝并释放冷凝热。当第一工质换热器50是设于工质腔室22外时,工质腔室22内冷凝产生的冷凝工质由冷凝工质喷淋泵输送,通过冷凝工质喷淋管道28输入第一工质换热器50的热流体侧,冷凝工质通过第一工质换热器50与流经冷流体侧的冷凝热媒换热后,再输送到冷凝工质喷淋装置41进行喷淋,工质蒸气与喷淋的冷凝工质相接触而冷凝释放冷凝热,冷凝工质携带的冷凝热由冷凝热媒通过第一工质换热器50吸收并带走。当设有冷凝工质储罐26时,工质腔室22内冷凝产生的的冷凝工质落到冷凝工质接收器24内后,通过第一冷凝工质管道25进入冷凝工质储罐26。
当包括第一蒸气压缩式热泵子系统时,还包括第一蒸气压缩式热泵子系统环节,第一压缩机90出口的制冷剂作为发生热媒进入第一吸收溶液换热器30的热流体侧,第一吸收溶液换热器30冷流体侧的吸收溶液通过第一吸收溶液换热器30吸收制冷剂的冷凝热而升温,通过第一吸收溶液换热器30的制冷剂经第一膨胀阀95调节后作为冷凝热媒进入第一冷凝工质换热器50,作为冷凝热媒的制冷剂通过第一冷凝工质换热器50吸收吸收溶液腔室2内产生的蒸气在工质腔室22内冷凝而释放的冷凝热,吸收了冷凝热的制冷剂进入第一压缩机90实现制冷剂循环。当第一蒸气压缩式热泵子系统还包括过冷器92和温度传感器98时,还可根据监测到的温度进行相应调整。具体如下:当温度传感器98检测进入第一压缩机90的制冷剂的温度超过第一设定值时,增加流经设于第一吸收溶液换热器30和第一膨胀阀95之间的过冷器92的冷流体侧的冷却热媒流量,从而降低流经过冷器92的热流体侧的制冷剂的温度;而当温度传感器98检测进入第一压缩机90的制冷剂的温度低于第二设定值时,减少过冷器92的冷流体侧的冷却热媒流量。第一设定值和第二设定值的具体设定可根据具体的情况确定,在此不再赘述。
本实用新型的基于低谷电蓄能的中央空调系统的吸收式热泵子系统蓄能后可通过第二吸收溶液换热器40向外提供热量,通过第二工质换热器60可实现向外提供冷量。举例如下,包括冷凝工质蒸发环节和吸收溶液吸收工质蒸气环节,其中
冷凝工质蒸发环节,流经第二工质换热器的蒸发热媒为冷凝工质储罐26内储存的冷凝工质蒸发提供所需热量,通过第二工质换热器吸收蒸发热媒的热量后蒸发为工质蒸气,为冷凝工质提供了蒸发热的蒸发热媒向外提供冷量,冷凝工质在第二工质换热器60和冷凝工质储罐26之间循环,随着冷凝工质蒸发环节的进行,冷凝工质储罐26内储存的冷凝工质逐渐减少;中央空调子系统与第二工质换热器形成回路时,即可实现供冷。
吸收溶液吸收工质蒸气环节,吸收溶液吸收冷凝工质蒸发形成的工质蒸气而升温并稀释,升温后的吸收溶液通过第二吸收溶液换热器向流经第二吸收溶液换热器的吸收热媒释放吸收热,吸收了吸收热的吸收热媒可以向外提供热量,稀释后的吸收溶液溶解吸收剂结晶而恢复至饱和浓度,随着吸收溶液吸收工质蒸气环节的进行,吸收溶液承接室的吸收溶液逐渐增加,吸收剂结晶逐渐减少。中央空调子系统与第二吸收溶液换热器形成回路时,即可实现供暖。
工质优选为水;吸收剂为LiBr,LiNO3,LiCl和CaCl2中的任一种或两种以上的混合物;第一以及第二蒸气压缩式热泵子系统的制冷剂为R22、R134a、R407、R410、R600a或R450A等。
以上所述,仅为本实用新型的具体实施方式,但本实用新型的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本实用新型揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本实用新型的保护范围之内。因此,本实用新型的保护范围应以所述权利要求的保护范围为准。

Claims (9)

1.基于低谷电蓄能的中央空调系统,其特征在于,包括吸收式热泵子系统、蒸气压缩式热泵子系统和中央空调子系统,所述吸收式热泵子系统包括:
吸收溶液腔室,由上下两部分组成,上部为吸收溶液喷淋腔室,下部为吸收溶液承接室;
第一吸收溶液喷淋装置,设于所述吸收溶液喷淋腔室,吸收溶液通过所述第一吸收溶液喷淋装置在吸收溶液喷淋腔室内喷淋并闪蒸产生工质蒸气,蒸发浓缩后的吸收溶液落到所述吸收溶液承接室内;
第一吸收溶液喷淋管道,设于所述吸收溶液腔室外部,吸收溶液承接室与第一吸收溶液喷淋装置通过第一吸收溶液喷淋管道连接;
第一吸收溶液喷淋泵,设于所述第一吸收溶液喷淋管道上,将吸收溶液承接室内的吸收溶液通过吸收溶液喷淋管道输送至第一吸收溶液喷淋装置进行喷淋;
第一吸收溶液换热器,设于所述吸收溶液喷淋管道上,所述第一吸收溶液换热器的冷流体侧与吸收溶液喷淋管道连接,流经第一吸收溶液换热器的热流体侧的发生热媒加热流经冷流体侧的吸收溶液;
工质腔室,所述工质腔室通过工质蒸气通道连通吸收溶液喷淋腔室;
第一工质换热器,设于工质腔室内,流经第一工质换热器的热媒与喷淋的工质换热;
冷凝工质接收器,设于所述工质腔室的下部,所述冷凝工质接收器用于承接冷凝工质;
冷凝工质储罐,用于储存冷凝工质,所述冷凝工质储罐与所述的冷凝工质接收器通过第一冷凝工质管道连接,所述冷凝工质接收器承接的冷凝工质通过第一冷凝工质管道输送至所述冷凝工质储罐;
冷凝工质喷淋装置,设于所述工质腔室内第一工质换热器的上方,所述冷凝工质喷淋装置通过冷凝工质喷淋管道与所述冷凝工质储罐连接,所述冷凝工质喷淋装置将所述冷凝工质储罐内的冷凝工质在工质腔室内喷淋;
冷凝工质喷淋泵,设于冷凝工质喷淋管道上,用于将冷凝工质储罐内的冷凝工质输送至冷凝工质喷淋装置进行喷淋;
第二工质换热器,设于冷凝工质喷淋管道上或设于所述工质腔室内冷凝工质喷淋装置的下方,流经第二工质换热器的蒸发热媒为冷凝工质储罐内的冷凝工质在工质腔室内蒸发提供所需热量;
第二吸收溶液喷淋装置,设于所述吸收溶液喷淋腔室,吸收溶液通过所述第二吸收溶液喷淋装置在吸收溶液喷淋腔室内喷淋并吸收工质腔室内蒸发产生的工质蒸气而稀释,稀释后的吸收溶液落到所述吸收溶液承接室内;
第二吸收溶液喷淋管道,设于所述吸收溶液腔室外部,吸收溶液承接室与第二吸收溶液喷淋装置通过第二吸收溶液喷淋管道连接,吸收溶液腔室内吸收溶液通过第二吸收溶液喷淋管道输送至第二吸收溶液喷淋装置进行喷淋;
第二吸收溶液换热器,设于吸收溶液喷淋腔室内第二吸收溶液喷淋装置的下方或设于第二吸收溶液喷淋管道上,所述吸收溶液承接室内的吸收溶液输送至吸收溶液喷淋腔室内进行喷淋吸收工质腔室产生的工质蒸气时,所述吸收溶液在输送过程中流经设于吸收溶液腔室外的第二吸收溶液换热器的热流体侧,向流经第二吸收溶液换热器的冷流体侧的吸收热媒释放吸收热而降温,或吸收溶液喷淋在设于吸收溶液喷淋腔室内的第二吸收溶液换热器的表面,向流经第二吸收溶液换热器的吸收热媒释放吸收热而降温;
所述中央空调子系统包括分水器、与分水器连接的室内机、与室内机连接的集水器和冷水机组/冷热水机组,其中
所述第二吸收溶液换热器与所述冷水机组/冷热水机组并联或串联形成供暖机组,所述供暖机组的入口连接集水器,所述供暖机组的出口连接分水器;和/或
所述第二工质换热器与所述冷水机组/冷热水机组并联或串联形成供冷机组,所述供冷机组的入口连接集水器,所述供冷机组的出口连接分水器;
所述冷水机组/冷热水机组既与第二吸收溶液换热器串联或并联,又与第二工质换热器串联或并联时,通过阀门控制所述第二吸收溶液换热器与所述冷水机组/冷热水机组并联或串联形成供暖机组,或所述第二工质换热器与所述冷水机组/冷热水机组并联或串联形成供冷机组;
所述蒸气压缩式热泵子系统包括第一蒸气压缩式热泵子系统和第二蒸气压缩式热泵子系统,其中
第一压缩机、第一膨胀阀、第一吸收溶液换热器和第一工质换热器构成第一蒸气压缩式热泵子系统,所述第一吸收溶液换热器作为第一蒸气压缩式热泵子系统的压缩式热泵冷凝器与第一压缩机出口连接,所述第一工质换热器作为第一蒸气压缩式热泵子系统的压缩式热泵蒸发器与第一压缩机的入口连接,第一膨胀阀设于所述第一吸收溶液换热器和所述第一工质换热器之间,所述第一蒸气压缩式热泵子系统内循环的制冷剂经过第一压缩机后,作为发生热媒流经所述第一吸收溶液换热器的热流体侧,然后经过第一膨胀阀后作为冷凝热媒输入第一工质换热器,流经第一工质换热器后输入第一压缩机完成一次循环;
第一工质换热器作为所述第二蒸气压缩式热泵子系统的冷凝器,所述第二蒸气压缩式热泵子系统与所述第一蒸气压缩式热泵子系统共用第一压缩机,第一压缩机、第二膨胀阀、第二蒸发器和第一工质换热器构成第二蒸气压缩式热泵子系统,通过阀门控制制冷剂在第二蒸气压缩式热泵子系统内循环,实现第二蒸气压缩式热泵子系统工作,冷凝工质从流经所述第一工质换热器的制冷剂吸收热量而蒸发,或控制制冷剂在第一蒸气压缩式热泵子系统内循环,实现第一蒸气压缩式热泵子系统工作。
2.根据权利要求1所述的基于低谷电蓄能的中央空调系统,其特征在于,所述中央空调子系统为供暖中央空调子系统,所述冷水机组/冷热水机组为热水机组,所述分水器与所述第二吸收溶液换热器的吸收热媒出口连接,所述集水器与热水机组的入口连接,热水机组的出口与所述第二吸收溶液换热器的吸收热媒入口连接,流经第二吸收溶液换热器的吸收热媒输送至分水器,分水器内的吸收热媒输送至室内机进行供暖,经室内机供暖后的吸收热媒汇集至集水器,集水器内的吸收热媒输送至热水机组,最后返回第二吸收溶液换热器;和/或
所述中央空调子系统为供冷中央空调子系统,所述冷水机组/冷热水机组为冷水机组,所述分水器与所述第二工质换热器的蒸发热媒出口连接,所述集水器与冷水机组的入口连接,冷水机组的出口与所述第二工质换热器的蒸发热媒入口连接,流经第二工质换热器的蒸发热媒输送至分水器,分水器内的蒸发热媒输送至室内机进行供冷,经室内机供冷后的蒸发热媒汇集至集水器,集水器内的蒸发热媒输送至冷水机组,最后返回第二工质换热器;或
所述中央空调子系统为冷暖中央空调子系统,所述冷水机组/冷热水机组为冷热水机组,所述分水器与所述第二吸收溶液换热器的吸收热媒出口和所述第二工质换热器的蒸发热媒出口分别连接,所述集水器与冷热水机组的入口连接,冷热水机组的出口与所述第二吸收溶液换热器的吸收热媒入口和所述第二工质换热器的蒸发热媒入口分别连接,通过阀门控制冷暖中央空调子系统与所述第二工质换热器之间形成循环回路进行供冷,通过阀门控制冷暖中央空调子系统与所述第二吸收溶液换热器之间形成循环回路进行供暖。
3.根据权利要求1所述的基于低谷电蓄能的中央空调系统,其特征在于,所述吸收溶液承接室的下部还设有用于过滤和承载吸收剂结晶的孔板。
4.根据权利要求3所述的基于低谷电蓄能的中央空调系统,其特征在于,所述孔板为至少两个,每一孔板的外缘部与吸收溶液承接室的内壁之间具有一个开口,相邻两孔板与吸收溶液承接室的内壁之间的开口相对设置。
5.根据权利要求1所述的基于低谷电蓄能的中央空调系统,其特征在于,所述第一工质换热器的出口和第一压缩机入口之间串联设有第五三通阀和第六三通阀,第五三通阀还连接第二膨胀阀,第二膨胀阀连接第二蒸发器,第二蒸发器连接至第六三通阀,第一压缩机出口与第一吸收溶液换热器之间设有第七三通阀,第七三通阀还与第一工质换热器的入口连接,通过第五三通阀、第六三通阀和第七三通阀控制制冷剂在第二蒸气压缩式热泵子系统内循环或者在第一蒸气压缩式热泵子系统内循环。
6.根据权利要求1所述的基于低谷电蓄能的中央空调系统,其特征在于,所述第一吸收溶液换热器和第一膨胀阀之间设有过冷器,所述第一压缩机入口一端或出口一端设有温度传感器,所述第一蒸气压缩式热泵子系统内循环的制冷剂循环时,流经所述第一吸收溶液换热器的热流体侧后,先流经所述过冷器的热流体侧,然后经过第一膨胀阀输入第一工质换热器,流经过冷器冷流体侧的冷却热媒吸收制冷剂的热量。
7.根据权利要求6所述的基于低谷电蓄能的中央空调系统,其特征在于,还包括热水供给子系统,所述热水供给子系统包括冷却热媒储罐,所述过冷器通过管道与冷却热媒储罐连接,所述冷却热媒在过冷器和冷却热媒储罐之间循环,所述冷却热媒为水,所述冷却热媒储罐还连接热水供应管道和补水管道。
8.根据权利要求1所述的基于低谷电蓄能的中央空调系统,其特征在于,第二蒸气压缩式热泵子系统为空气源热泵系统或者水源热泵系统或者地源热泵系统,当第二蒸气压缩式热泵子系统为空气源热泵系统时,流经第二蒸气压缩式热泵子系统蒸发器的制冷剂从大气吸收热量而蒸发,当第二蒸气压缩式热泵子系统为水源热泵系统或者地源热泵系统时,流经第二蒸气压缩式热泵子系统蒸发器的制冷剂从水吸收热量而蒸发。
9.根据权利要求1所述的基于低谷电蓄能的中央空调系统,其特征在于,第二吸收溶液换热器与冷却塔或空冷器连接,吸收热媒在第二吸收溶液换热器与冷却塔或空冷器之间循环,从而将在第二吸收溶液换热器吸收的吸收热在冷却塔或者空冷器释放;当第二吸收溶液换热器还连接中央空调子系统时,通过设置阀门控制第二吸收溶液换热器与冷却塔或空冷器之间形成循环回路或第二吸收溶液换热器还与中央空调子系统之间形成循环回路。
CN201720517508.8U 2017-05-10 2017-05-10 基于低谷电蓄能的中央空调系统 Active CN206724385U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201720517508.8U CN206724385U (zh) 2017-05-10 2017-05-10 基于低谷电蓄能的中央空调系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201720517508.8U CN206724385U (zh) 2017-05-10 2017-05-10 基于低谷电蓄能的中央空调系统

Publications (1)

Publication Number Publication Date
CN206724385U true CN206724385U (zh) 2017-12-08

Family

ID=60509879

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201720517508.8U Active CN206724385U (zh) 2017-05-10 2017-05-10 基于低谷电蓄能的中央空调系统

Country Status (1)

Country Link
CN (1) CN206724385U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020181899A1 (zh) * 2019-03-11 2020-09-17 深圳市爱能森科技有限公司 相变储能换热系统及加热水的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020181899A1 (zh) * 2019-03-11 2020-09-17 深圳市爱能森科技有限公司 相变储能换热系统及加热水的方法

Similar Documents

Publication Publication Date Title
CN107014015B (zh) 热回收型蒸发冷凝式冷水机组
CN206514443U (zh) 基于低谷电蓄能的供能系统
CN207741250U (zh) 一种机房节能循环系统
CN110360769B (zh) 一种具有相变能源塔的热泵系统及其换热方法
CN106524578B (zh) 吸收式储能系统、供能系统及方法
CN106642789A (zh) 实现太阳能综合利用与土壤跨季节储能的热源塔热泵系统
CN106440578A (zh) 一种冷化霜式风能热泵
CN106642801A (zh) 一种提取凝固热的热泵机组及其系统
CN206399038U (zh) 吸收式储能系统及供能系统
CN205048782U (zh) 一种压缩式与吸收式双能源联合蓄冷制冷一体机组
CN201569202U (zh) 降幕式冷水机制冷控制装置
CN210532739U (zh) 一种具有相变能源塔的热泵系统
CN206724385U (zh) 基于低谷电蓄能的中央空调系统
CN106352583B (zh) 一种基于冷冻再生及再生热量利用的热源塔热泵系统
CN104296286B (zh) 一种带蓄冰蓄热功能的热源塔制冷供热节能设备
CN206875630U (zh) 基于低谷电蓄能的中央空调系统
CN210570083U (zh) 一种相变能源塔
CN110360852A (zh) 一种相变能源塔及其换热方法
CN206056011U (zh) 高温热泵系统
CN206709264U (zh) 基于低谷电蓄能的新风系统
CN106196726B (zh) 高温热泵系统及其循环方法
CN109990412A (zh) 机械制冷结合自然冷却方式的数据中心空调系统
CN206113423U (zh) 吸收式热泵及其蒸发器
CN201476403U (zh) 蒸发式热泵热回收冷暖浴三位一体机
CN108954980A (zh) 一种翅片式蒸发器、热泵系统及控制方法

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant