CN206292816U - 一种色织物组织的自动识别装置 - Google Patents
一种色织物组织的自动识别装置 Download PDFInfo
- Publication number
- CN206292816U CN206292816U CN201621404021.0U CN201621404021U CN206292816U CN 206292816 U CN206292816 U CN 206292816U CN 201621404021 U CN201621404021 U CN 201621404021U CN 206292816 U CN206292816 U CN 206292816U
- Authority
- CN
- China
- Prior art keywords
- dyed fabric
- yarn dyed
- image
- fabric
- tissue
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Treatment Of Fiber Materials (AREA)
Abstract
本实用新型涉及一种色织物组织的自动识别装置,属于图像识别领域。本实用新型提供了一种色织物组织的自动识别装置,包括光源和两块互相垂直的镜面,所述色织物设置于两块镜面之间,与两个镜面均呈45°夹角,图像采集装置设置于色织物所在平面,所述图像采集装置与数据处理器连接,所述光源包括两个标准光源,所述两个标准光源对称设置于色织物上下两侧,与镜面相对。实现了色织物双面图像相匹配的采集,利用色织物双面图像通过处理得出色织物的组织与颜色信息,解决了现有技术利用织物单面图像难以准确识别织物的组织与颜色信息,影响织物组织识别的准确性的问题。
Description
技术领域
本实用新型涉及自动检测技术领域,尤其涉及一种色织物组织的自动识别装置。
背景技术
织物组织是机织物的重要规格参数,对织物和服装的外观及物理性能起着决定性作用,织物组织的识别因此也是纺织产品质量检测环节中不可或缺的部分。传统测量织物组织的识别方法是专业检测人员在密度镜的帮助下,通过肉眼观察分析完成。用密度镜测量织物密度虽然简单实用,但存在检测时间长、效率低的缺点,还易受到检测人员的熟练度和个人主观感觉的影响。随着图像处理和人工智能的快速发展,纺织邻域的研究人员开始将计算机技术逐步应用于纺织品质量检测,其中就包括用数字化方法自动识别织物组织。
织物组织的自动识别,多是基于单面织物图像研究,然而,由于机织物是由经纱和纬纱相互交织而成,经纬纱线在织物的一面呈现周期性沉浮,所以仅仅从织物单面图像很难准确识别织物的组织与颜色信息。从而影响织物组织识别的准确性。
实用新型内容
本实用新型所要解决的技术问题是提供一种色织物组织的自动识别装置,解决现有技术利用织物单面图像难以准确识别色织物的组织与颜色信息,影响织物组织识别准确性的问题。
技术方案
一种色织物组织的自动识别装置,其特征在于:包括两块互相垂直的镜面,所述两块镜面中间设置有色织物,在镜面成像的一侧设置有图像采集装置和标准光源,所述图像采集装置所在平面与镜面所呈色织物的虚像所在平面平行,并且图像采集装置的中心点高度与色织物高度一致,所述标准光源对称设置于色织物所在平面的上下两侧,位于镜面对侧,所述色织物边缘通过样本夹具固定,暴露出的色织物在标准光源照射下,通过色织物上下两侧的镜面进行成像后,被图像采集装置采集。
进一步,所述样本夹具为两层结构的平面框,所述色织物夹在样本夹具平面框之间,通过平面框中部的空心区域暴露出色织物。
进一步,所述标准光源与图像采集装置处于同一水平面。
进一步,所述色织物水平设置,所述镜面大小一致,对称设置于色织物两侧,并且上下两侧的镜面均与色织物呈45°夹角。
进一步,所述样本夹具中色织物四周设置有校准色块,使采集到的色织物颜色更接近真实颜色,减少采集图像的色差。
进一步,所述校准色块采用24色校准色块。
进一步,所述样本夹具中色织物四周设置有对位匹配点,实现对色织物的定位。
进一步,所述样本夹具两层结构的平面框之间设置有矩形磁条,实现对色织物的固定。
进一步,所述标准光源、镜面、图像采集装置和色织物设置于封闭暗箱内部,以避免外界光源干扰。
有益效果
本实用新型中提供了一种色织物组织的自动识别装置:包括光源和两块互相垂直的镜面,所述色织物设置于两块镜面之间,与两个镜面均呈45°夹角,图像采集装置设置于色织物所在平面,所述图像采集装置与数据处理器连接,所述光源包括两个标准光源,所述两个标准光源对称设置于色织物上下两侧,与镜面相对。实现了色织物双面图像相匹配的采集,利用色织物双面图像通过处理得出色织物的组织与颜色信息,解决了现有技术利用织物单面图像难以准确识别织物的组织与颜色信息,影响织物组织识别的准确性的问题。
附图说明
图1为织物双面图像采集系统示意图;
图2为样本夹具结构示意图;
图3为样本夹具校准色块结构图;
图4为色织物组织自动识别流程图;
图5为组织点属性识别分类坐标系;
图6为纬组织点分类示意图;
图7为经组织点分类示意图;
图8为平纹织物组织点分类结果图;
图9为平纹织物组织自动识别出的组织图;
图10为平纹织物组织点的矩阵叠加示意图;
图11为人工测量图;
图12为自动测量图;
其中:1-封闭暗箱,2-镜面,3-样本夹具,4-标准光源,5-图像采集装置,6-视窗,7-支架,8-光源控制器,9-滑槽,10-计算机,11-夹具框架,12-滑动边框,13-对位匹配点,14-转轴,15-矩形窗口,16-矩形磁条,17-色织物,18-校准色块。
具体实施方式
下面结合具体实施例和附图,进一步阐述本实用新型。
图1是双面图像采集系统,如图1所示,一个带有开关门的暗箱,用来确保在图像采集过程中避免外界光线干扰,其尺寸大小为40厘米×40厘米×50厘米;暗箱内部设置有一套镜面成像系统,包括放置在封闭暗箱1内部背面的两块互相垂直的镜面2,所述色织物17放置于镜面中间,与两侧的镜面均呈45°夹角,两个镜面与背面的夹角均为45°,分别用来呈现织物样本的正面和反面反射图像。还包括一套标准光源4装置,为对称安放在夹具上色织物两侧封闭暗箱内壁的日光灯,用来提供样品双侧照明光,其型号为6500K,亮度为20001x;本实施例中所述色织物通过样品夹具固定,所述样本夹具3其结构如图2所示,样本夹具包括上下两层中心开有矩形孔状空心区域的平面框,每块平面框表侧共设计四个对位匹配点13,分别位于平面框的四个角部位;平面框表侧还镶嵌24色标准色块,如图3所示,用来进行图像的颜色校准。夹具内侧固定四块矩形磁条16,通过磁铁间的吸引力,将两块平面框连接在一起并同时织物样本提供一定的预加张力,本实施例中样本夹具的尺寸为10厘米×10厘米。本实施例中以一台高分辨率数码相机作为图像采集装置5,该图像采集装置中心点与色织物所在平面高度一致,并且图像采集装置的镜头与两个镜面相对,以使图像采集装置所在平面与镜面所呈色织物的虚像所在平面平行,使图像采集装置所采集到色织物正反两面的图像均不存在倾斜角。本实施例中,所述图像采集装置连接有一台安装数据处理软件的计算机10,该计算机安装有有图像采集和分析软件,软件由作者在Windows 10操作系统下利用Matlab 2013b自行开发。
在本实施方式中,高分辨率数码相机的分辨率为1400万像素。使用时,利用夹具夹住织物放置在封闭暗箱内的样本夹具上,关闭箱门,打开照明装置,利用数码相机即可采集到织物的图像。
通过在织物上设置24色的校准色块18,使得本实用新型在采集到织物的图像后,能够根据校准色块对颜色进行校对,使采集到的织物颜色更接近真实的颜色,减小采集图像的色差。
本具体实施方式还提供了一种色织物密度的自动测量方法,首先利用颜色校准模型将图像从RGB颜色空间转换到Lab颜色空间并提取L分量;借助灰度投影法分别得到织物径向亮度曲线和纬向亮度曲线,完成经纬纱线定位分割和组织点网格初始化;利用纬纱条干的局部亮度信息对组织点网格进行校正,提取出组织点子图像;根据织物组织点图像的灰度特征分别建立经组织点模板图像和纬组织点模板图像并提取模板图像的特征参数;提取织物组织点图像中的特征参数后与模板图像进行相似性匹配,完成组织点属性识别,生成初始组织图;利用织物双面图像的组织图进行组织点错误检测,利用k邻近算法对错误识别的组织点进行校正;提取每个组织点的颜色特征参数后,结合双面组织图完成经组织点和纬组织点融合;借助k均值聚类算法进行色纱颜色聚类,最终生成色织物的配色模纹图。具体的算法执行流程图如图4所示。
采集到织物双面图像后,提取出含有匹配特征点的子图像用于双面图像的对位与匹配。首先利用图像分割和Sobel边缘检测算子提取特征三角形三条边所在直线,利用Radon变换计算出三条边的直线方程后,通过计算三角形顶点坐标得到其重心点坐标,将重心作为特征匹配点,最后通过仿射变换得到匹配完成的双面图像,实现双面图像像素级的一一对应。采集到的图像分辨率为1200dpi,将对位匹配后的双面图像裁剪为512像素×512像素大小。
颜色校准是对颜色测试装置或仪器的颜色测量进行标准化,保证颜色测量准确性的一种手段或方法。本文搭建装置得到的织物图像颜色以RGB表示,通过建立数码编码RGB范围[0,255]与CIE1964XYZ之间的关系方程,得到校准模型,从而对试验用相机的颜色进行校准。
通常颜色校准采用的方法是将依赖具体设备的颜色编码与不依赖具体设备的CIE标准观察者即三刺激值联系起来。将数字化设备信号转换成三刺激值的最简单的方法就是采用转换矩阵,矩阵如下:
但是设备的光谱灵敏度与色度学中的配色函数之间具有明显差异时,上式会产生极大误差。所以很多的校准方法和模型被用于颜色的校准,如回归法,神经网络法等等。本实用新型利用回归法来建立校准模型。
颜色校准模型因子的设定需考虑颜色表征中RGB作为颜色坐标的均衡性,在设定平方项,立方项和协方差项时需考虑其对称性,所以本实用新型建立的模型有23个因子,如下所示:
A=[1 r g b r2 g2 b2 rg rb gb rgb r2gb g2rb b2rg r2g b2g g2b r2b b2r g2rr3 g3 b3]T
其中,r、g、b分别代表颜色的数字化存储红,绿,蓝分量。模型搭建完成后,利用最小二乘法对对系数矩阵进行求解,从而得到校准模型。
最小二乘法是一种数学优化技术,将被用于模型建立后的系数求解。其基本原理为,通过计算和调整关系式的系数使得数据和实际数据误差之间的平方和最小。经过推导得出其矩阵形式求解系数的等式如下:
x=(ATA)-1ATy
其中Q为最小值,y为实测值,Ax为预测值。具体校准步骤如下:
①利用分光光度计测量得到样本夹具中24色块各自的XYZ颜色值;
②提取图像中24色色块子图像的RGB颜色值;
③将各色块的X值和R、G、B下列代入公式中,利用最小二乘法计算出[a1,1a1,2a1,3…a1,23]T的值;
④同理,利用各色块的Y值和R、G、B值,Z值和R、G、B值分别求出[a2,1a2,2a2,3…a2,23]T和[a3,1a3,2a3,3…a3,23]T,并最终得到转换矩阵M的值。本文中M值如下:
表1转换矩阵M各元素值
得到CIE-XYZ颜色空间的图像后,在将图像转换到Lab颜色空间,具体转换下:
(1)若X>0.008856,则:
否则:
(2)对X分量和Y分量做类似于步骤(1)的处理,得到y和z。
(3)由以下公式计算得到Lab颜色空间图像:
经过以上步骤可以将织物图像从RGB颜色颜色空间转换到Lab颜色空间,此时,L分量的分布在[0,100]范围内,a、b分量的取值分布在[-128,127]范围。
在得到Lab颜色空间下的色织物图像后,通过提取仅包含图像亮度信息的L分量,完成图像灰度转化,进一步得到织物灰度图。
采用3*3模板尺寸的维纳滤波对织物图片进行去噪处理,经维纳滤波处理后,图片中的噪声被有效滤除,除此以外,织物表面的细小纤维也被弱化去除,而织物主要结构信息得以保留。
织物图像可以看做是一个二维数据M*N,建立相应的二维坐标系,其中织物的纬纱平行于坐标系的x轴,经纱平行于坐标系的y轴,则织物图像中垂直方向和水平方向的灰度投影曲线可以由以下公式计算得到:
其中M,N为图像的宽和高,G(x,y)为图像中(x,y)处像素点的灰度值,H(y)为第y行像素点的平均灰度投影值,V(x)为第x列像素点的平均灰度投影值。根据纱线的亮度特征,织物纬向灰度投影曲线中波峰位置对应纬纱轴线,波谷位置对应纬纱间隙,因此只要通过确定波谷的坐标,即可定位纬纱间隙位置,实现纬纱分割。同理,通过确定织物径向灰度投影曲线中的波谷坐标,即可定位经纱间隙位置,实现经纱分割完成组织点网格初始化。
在进行织物样本图片采集时,尽管已经人为控制将经纱和纬纱处于垂直相交的状态,但仍会出现部分经纬纱线处于小角度偏斜状态,导致在进行组织点网格划分时,无法确保组织点完全处于网格内,即提取到的组织点子图像中仅包含部分组织点边缘信息,影响后续组织点特征参数提取和属性识别。由于纬纱的密度相对较低,纱线间间隔较明显,利用灰度投影法能实现准确定位分割,因此,在准确分割纬纱的基础上,利用纬纱条干的局部亮度信息来进行网格校正,过程如下:
①在采集样本图像时,优先使纬纱处于水平方向上,再尽量时经纱处于竖直方向。
②将采集到的织物图像进行网格初始化后,提取每根纬纱的子图像;
③提取初始化后经纱间隙的定位点坐标,计算定位点局部区域内的径向灰度总值,计算公式如下,选取灰度总值最小的点坐标,作为校正后的经纱间隙定位点:
④对每一根纬纱进行相同的处理,最终得到完整的组织点网格校准后图像。
分别建立大小为M像素*N像素的经组织点模板图像和纬组织点模板图像。本文分割提取出的组织点图像大小平均约为20像素*20像素,因此模板图像的尺寸大小确定为20像素*20像素,结合织物反射图像中纱线的亮度特征,模板中纱线部分用白色表示,纱线间隙部分用黑色表示,建立经组织点模板图和纬组织点模板图。
选取水平灰度变化均值(Hcov)和垂直灰度变化均值(Vcov)作为特征参数来表征组织点图像。
假设M表示组织点图像垂直方向上的像素数,N表示图像水平方向上的像素数,G(x,y)表示图像在(x,y)处的灰度值,d表示两个像素点间的距离,则图像的水平灰度变化均值表达式如下:
水平变化均值反映了组织点图像在水平方向上的灰度变化规律,其数值越大,表示图像在水平方向上的灰度突变总值越大,灰度突变越明显。
图像的垂直灰度变化表达式如下:
垂直变化均值反映了组织点图像在垂直方向上的灰度变化规律,其数值越大,表示图像在垂直方向上的灰度突变总值越大,灰度突变越明显。
以水平变化均值为x轴,以垂直变化均值为y轴,建立如图5所示分类坐标系,则基于模板匹配的组织点属性识别方法具体流程如下:
①提取出组织点模板的特征参数,即模板图像的水平灰度变化均值(Hcov)和垂直灰度变化均值(Vcov),作为特征参考点;
②以待识别组织点图像为目标,提取出图像的水平灰度变化均值(Hcov)和垂直变化均值(Vcov),作为其特征点;
③计算坐标系中代表待识别组织点图像的特征点与代表纬组织点模板图像的特征参考点的欧式距离S1,与代表经组织点模板图像的特征参考点的欧式距离S2,如图6和图7所示,计算公式如下:
其中,x1为特征点的横坐标,y1为特征点的纵坐标,x2为参考点的横坐标,y2为参考点的纵坐标,S为两点间的欧式距离;
④比较S1和S2,若S1<S2,则判定该点为为组织点;若S1>S2,则判定该点为经组织点;若S1=S2,则标记该点为未成功识别点;
⑤取下一个待识别组织点图像作为目标,重复步骤②-④,直至所有待识别组织点识别结束,并得到组织点分类结果图,如图8所示。
判断出组织点属性后,将经组织点记为“1”,纬组织点记为“0”,则可以得到对应的组织点矩阵。将组织点矩阵中的“1”以黑色方块表示,“0”以白色方块表示,则可以得到相应的组织图,如图9所示的连续9*9个组织点进行识别结果。
由于机织物的经纬纱线呈相互沉浮的交织状态,该特性反映在组织图中则表现为:若正面组织图中交织点为经组织点,则反面组织图中相应位置必定为纬组织点。因此,利用该现象,在初步识别双面图像的组织图后,对正反面组织图进行对位检测,可检测出识别错误的组织点。具体工作流程如下:
①利用基于模板匹配的组织点属性识别方法分别得到织物正反双面图像的组织点矩阵;
②将正反面组织点矩阵相加,得到叠加矩阵;
③提取出矩阵中数值不为“1”的元素点,元素的位置坐标即对应识别错误的组织点位置。
以平纹织物为例,如图10所示的矩阵叠加示意图,织物正面组织图a的正面组织点矩阵b和反面组织图c的反面组织点矩阵d叠加,得到组织点叠加矩阵e。矩阵中元素1-4、1-9和9-4的值不等于1,因此对应于双面组织图中组织点1-4,1-9和9-4为错误识别的组织点。
提取出识别错误的组织点后,利用k邻近算法对组织点进行属性校正,具体工作流程如下:
①提取已经正确识别的经纬组织点,分别构建为训练集U1和U2;
②提取错误识别的组织点,构建为测试集X;
③确定k的值;
④分别计算测试集X中待检测点xi到训练集U1和U2中所有点的欧氏距离:
⑤从训练集中选取与待检测点最近的k个点组成优先级队列;
⑥计算训练集U1和U2中元素在优先级队列中各占的权重,将测试集与所占权重较大的训练集归为同一类别。
以提取的识别错误的平纹组织点1-4为例,对其进行属性校正,当k=1时,优先级队列中所有元素属于经组织点集;当k=5时,优先级队列中4个元素属于经组织点集,1个属于纬组织点集;当k=15时,优先级队列中12个元素属于经组织点集,3个属于纬组织点集。由结果可知,随着k值增大,优先级队列中元素属于经组织点集的个数也随之增多,因此,可将组织点1-4归为经组织点。同理,组织点1-9归为纬组织点,组织点9-4归为经组织点。
利用K-NN算法对组织图进行校正后,最终可以得到正确识别的色织物双面组织图。不同组织结构的织物,取连续的9*9个组织点进行识别。
在利用K邻近算法得到校正后的机织物组织图后,结合提取出的组织点图像,借助聚类算法对色纱进行聚类分析,可生成色织物配色模纹图。
由于组织点图像中各像素点的颜色值均不相同,因此首先需要提取出代表单个组织点颜色的特征值,具体流程如下:
①对色织物图像进行组织点网格划分,得到Lab颜色空间下的组织点图像;
②将组织点图像分解为L、a、b三个颜色通道的子图像;
③分别求出三个颜色通道的子图像的颜色均值L、a、b,作为组织点图像的颜色特征值,计算公式如下:
其中,M、N为组织点图像的水平像素数和垂直像素数,L(x,y)、a(x,y)、b(x,y)分别为L、a、b颜色通道子图像中(x,y)处点的像素值。提取全部组织点颜色特征之后,以特征值作为该组织点的颜色值,重构得到色织物特征模拟图。
得到双面图像的特征模拟图后,结合组织图,分别提取正面模拟图中经组织点的颜色信息和反面模拟图中经组织点的颜色信息进行融合处理,得到色经排列图。类似的,提取正面模拟图中纬组织点的颜色信息和反面模拟图中纬组织点的颜色信息进行融合处理,得到色纬排列图。
对色经排列图和色纬排列图进行k均值聚类分析,由结果可知,利用k均值聚类算法,可以将分别将色织物20的色经和色纬划分为2个聚类结果,分别对应2种不同颜色的纱线。取各种类聚类中心的特征值作为该种类色纱的颜色特征值,可重构得到校正后色经排列图和色纬排列图。
利用校正后的色纱排列图,将织物组织图中经组织点处填上相应色经的颜色,纬组织点处填上相应色纬的颜色,最终可以得到色织物的配色模纹图。
利用分光光度计提取色织物色纱颜色值,作为人工测量值,如图11所示;利用聚类算法得到的色纱颜色值,即自动测量值,如图12所示,将人工测量值与自动测量值进行对比可知,本实例人工测量颜色值与自动测量颜色值最小差值为1,最大差值为12,平均差值为4.2。
上述各实施方式是实现本实用新型的具体实施例,本领域的普通技术人员可以理解,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本实用新型的精神和范围。
Claims (9)
1.一种色织物组织的自动识别装置,其特征在于:包括两块互相垂直的镜面,所述两块镜面中间设置有色织物(17),在镜面成像的一侧设置有图像采集装置(5)和标准光源(4),所述图像采集装置(5)所在平面与镜面所呈色织物的虚像所在平面平行,并且图像采集装置(5)的中心点高度与色织物(17)高度一致,所述标准光源(4)对称设置于色织物(17)所在平面的上下两侧,位于镜面对侧,所述色织物(17)边缘通过样本夹具(3)固定,暴露出的色织物在标准光源(4)照射下,通过色织物上下两侧的镜面进行成像后,被图像采集装置(5)采集。
2.如权利要求1所述的色织物组织的自动识别装置,其特征在于:所述样本夹具(3)为两层结构的平面框,所述色织物(17)夹在样本夹具(3)平面框之间,通过平面框中部的空心区域暴露出色织物。
3.如权利要求1所述的色织物组织的自动识别装置,其特征在于:所述标准光源(4)与图像采集装置(5)处于同一水平面。
4.如权利要求1所述的色织物组织的自动识别装置,其特征在于:所述色织物水平设置,所述镜面大小一致,对称设置于色织物两侧,并且上下两侧的镜面均与色织物呈45°夹角。
5.如权利要求1所述的色织物组织的自动识别装置,其特征在于:所述样本夹具(3)中色织物(17)四周设置有校准色块(18),使采集到的色织物颜色更接近真实颜色,减少采集图像的色差。
6.如权利要求5所述的色织物组织的自动识别装置,其特征在于:所述校准色块(18)采用24色校准色块。
7.如权利要求1所述的色织物组织的自动识别装置,其特征在于:所述样本夹具(3)中色织物四周设置有对位匹配点(13),实现对色织物的定位。
8.如权利要求1所述的色织物组织的自动识别装置,其特征在于:所述样本夹具两层结构的平面框之间设置有矩形磁条(16),实现对色织物的固定。
9.如权利要求1至8任一项权利要求所述的色织物组织的自动识别装置,其特征在于:所述标准光源(4)、镜面(2)、图像采集装置(5)和色织物(17)设置于封闭暗箱(1)内部,以避免外界光源干扰。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201621404021.0U CN206292816U (zh) | 2016-12-21 | 2016-12-21 | 一种色织物组织的自动识别装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201621404021.0U CN206292816U (zh) | 2016-12-21 | 2016-12-21 | 一种色织物组织的自动识别装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN206292816U true CN206292816U (zh) | 2017-06-30 |
Family
ID=59104086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201621404021.0U Expired - Fee Related CN206292816U (zh) | 2016-12-21 | 2016-12-21 | 一种色织物组织的自动识别装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN206292816U (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT201800009746A1 (it) * | 2018-10-24 | 2020-04-24 | Vision Device Srl | Metodo di riconoscimento di punti di riferimento in un tessuto |
-
2016
- 2016-12-21 CN CN201621404021.0U patent/CN206292816U/zh not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT201800009746A1 (it) * | 2018-10-24 | 2020-04-24 | Vision Device Srl | Metodo di riconoscimento di punti di riferimento in un tessuto |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106485288A (zh) | 一种色织物组织的自动识别方法 | |
CN1844550B (zh) | 双面扫描织物和纱线分析系统 | |
CN104715477B (zh) | 基于多尺度和多区域的机织物编织密度的图像分析方法 | |
ES2826400T3 (es) | Recolección de contraste de colonias | |
CN105654123B (zh) | 一种机织物组织图的识别方法 | |
CN107679106B (zh) | 一种快速反应的色织面料设计生产方法 | |
CN105654121B (zh) | 一种基于深度学习的复杂提花织物缺陷检测方法 | |
CN103518224B (zh) | 用于分析微生物生长的方法 | |
CN105787508B (zh) | 纺织品颜色识别方法及系统 | |
CN111047655B (zh) | 基于卷积神经网络的高清摄像机布料疵点检测方法 | |
CN104854620B (zh) | 图像处理装置、图像处理系统和程序 | |
CN105893925A (zh) | 基于肤色的人手检测方法及装置 | |
CN103106645B (zh) | 一种机织物组织结构识别方法 | |
CN103035013A (zh) | 一种基于多特征融合的精确运动阴影检测方法 | |
CN102523366B (zh) | 一种织物编织样式自动分析系统及方法 | |
CN109509171A (zh) | 一种基于gmm和图像金字塔的布匹疵点检测方法 | |
CN114693676B (zh) | 一种新材料纺织品漂白缺陷光学检测方法及装置 | |
CN109829906A (zh) | 一种基于方向场与纹理特征的工件缺陷检测与分类方法 | |
CN106937109B (zh) | 低成本判断摄像头分辨率水平的方法 | |
CN109191520A (zh) | 一种基于色彩标定的植物叶面积测量方法及系统 | |
US20140286569A1 (en) | Robust automatic determination and location of macbeth color checker charts | |
CN108710852A (zh) | 一种限定拍摄深度的粒度分布图像识别方法及系统 | |
CN115100206A (zh) | 用于具有周期图案纺织物的印花缺陷识别方法 | |
CN107154058A (zh) | 一种引导使用者还原魔方的方法 | |
CN109594319A (zh) | 一种织物经纬密度智能检测装置及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170630 Termination date: 20211221 |