CN206216738U - A kind of six-DOF robot end load dynamic parameters identification device - Google Patents

A kind of six-DOF robot end load dynamic parameters identification device Download PDF

Info

Publication number
CN206216738U
CN206216738U CN201621127259.3U CN201621127259U CN206216738U CN 206216738 U CN206216738 U CN 206216738U CN 201621127259 U CN201621127259 U CN 201621127259U CN 206216738 U CN206216738 U CN 206216738U
Authority
CN
China
Prior art keywords
load
real
robot
control system
dynamic parameters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201621127259.3U
Other languages
Chinese (zh)
Inventor
张铁
覃彬彬
邹焱飚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201621127259.3U priority Critical patent/CN206216738U/en
Application granted granted Critical
Publication of CN206216738U publication Critical patent/CN206216738U/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Numerical Control (AREA)

Abstract

本实用新型公开了一种六自由度机器人末端负载动力学参数辨识装置,包括六轴工业机器人、可替换地设置在所述六轴工业机器人末端的若干不同质量的负载、实时控制系统,所述的实时控制系统用于对机器人实施毫秒级的实时运动数据采集;采集的实时运动数据包括编码器值,力矩值。本实用新型传感系统采用高效实时控制系统,可实现对机器人的毫秒级的实时数据采集,包括位移、电机输出等,采集数据量可扩展,具有可变性的特点,满足对工业机器人末端负载动力学参数的辨识。

The utility model discloses a dynamic parameter identification device for a six-degree-of-freedom robot terminal load, which comprises a six-axis industrial robot, several loads of different masses replaceably arranged at the end of the six-axis industrial robot, and a real-time control system. The real-time control system is used to implement millisecond-level real-time motion data collection for the robot; the collected real-time motion data includes encoder values and torque values. The sensor system of the utility model adopts a high-efficiency real-time control system, which can realize millisecond-level real-time data collection of the robot, including displacement, motor output, etc., and the amount of collected data is scalable and has the characteristics of variability, which meets the requirements for the end load power of industrial robots. identification of the parameters.

Description

一种六自由度机器人末端负载动力学参数辨识装置A six-degree-of-freedom robot terminal load dynamic parameter identification device

技术领域technical field

本实用新型涉及应用于末端负载动力学参数辨识的方法及六自由度工业机器人装置,具体涉及一种六自由度机器人末端负载动力学参数辨识装置。The utility model relates to a method for identifying dynamic parameters of end loads and a six-degree-of-freedom industrial robot device, in particular to an identification device for end-load dynamic parameters of a six-degree-of-freedom robot.

背景技术Background technique

当今,机器人动力学参数辨识的测试装置很多。包括四自由度的以及六自由度的工业机器人。工业机器人的仿真和控制都需要有一个精确的机器人动力学模型。目前,许多轻型高性能的机器人广泛采用具有相对柔性的谐波驱动器来驱动关节运动,关节柔性不可忽略。因此建立精确的柔性关节机器人动力学模型,需要有比较好的参数辨识方法。Today, there are many testing devices for robot dynamic parameter identification. Including four-degree-of-freedom and six-degree-of-freedom industrial robots. Both the simulation and control of industrial robots require an accurate dynamic model of the robot. At present, many light-weight and high-performance robots widely use relatively flexible harmonic drives to drive joint motion, and the joint flexibility cannot be ignored. Therefore, a better parameter identification method is needed to establish an accurate flexible joint robot dynamic model.

对于工业机器人来说,通常只有电机位置和电机力矩数据可测。因此用于柔性关节机器人动力学参数辨识的外加传感器主要有加速度传感器,连杆位置和速度传感器,力矩传感器等。从实际应用的角度来说,因为对机器人来说,增加额外的内部传感器不但成本昂贵,而且有时是无法实现的。因此,许多学者提出了仅仅需要电机力矩和电机位置信息的辨识方法。在这些方法中,弹性偏差不是采用附加传感器测量的,而是通过解包含未知参数的运动方程得到的。For industrial robots, usually only the motor position and motor torque data can be measured. Therefore, the external sensors used to identify the dynamic parameters of flexible joint robots mainly include acceleration sensors, connecting rod position and speed sensors, and torque sensors. From a practical point of view, because for robots, adding additional internal sensors is not only expensive, but sometimes impossible to achieve. Therefore, many scholars have proposed identification methods that only need information about motor torque and motor position. In these methods, elastic deflection is not measured with additional sensors, but is obtained by solving the equations of motion involving unknown parameters.

目前,末端负载动力学参数辨识的方法各不同。对于不同型号的工业机器人来说,建立的动力学模型以及最优的激励轨迹是不一样的。采用的传感系统也有所差异,因而数据的采集途径也不相同。At present, there are different methods for the identification of end load dynamic parameters. For different types of industrial robots, the established dynamic models and optimal excitation trajectories are different. The sensing system used is also different, so the way of data collection is also different.

然而,很多六自由度工业机器人末端负载动力学参数辨识的平台辨识效果不是很理想,因为所用的软硬件的兼容性不佳以及算法的选择不当,导致辨识的结果存在很大的误差。However, the platform identification effect of many six-degree-of-freedom industrial robot terminal load dynamic parameter identification is not very ideal, because the compatibility of the software and hardware used and the improper selection of the algorithm lead to large errors in the identification results.

实用新型内容Utility model content

为解决对工业机器人末端负载动力学参数辨识的问题,本实用新型提供了一种六自由度机器人末端负载动力学参数辨识装置,利用机械结构上一系列不同的负载来设计辨识负载的实验方案,设计最优激励轨迹,从而用实时控制系统采集数据,为辨识负载动力学参数结果提供了外在条件。In order to solve the problem of identifying the dynamic parameters of the end load of the industrial robot, the utility model provides a device for identifying the dynamic parameters of the end load of the six-degree-of-freedom robot, which uses a series of different loads on the mechanical structure to design an experimental program for identifying the load. The optimal excitation trajectory is designed to collect data with a real-time control system, which provides external conditions for identifying the results of load dynamic parameters.

本实用新型的目的通过如下技术方案实现:The purpose of this utility model is achieved through the following technical solutions:

一种六自由度机器人末端负载动力学参数辨识装置,包括六轴工业机器人、可替换地设置在所述六轴工业机器人末端的若干不同质量的负载、实时控制系统,所述的实时控制系统用于对机器人实施毫秒级的实时运动数据采集。A six-degree-of-freedom robot terminal load dynamic parameter identification device, including a six-axis industrial robot, a number of loads of different masses that can be replaced at the end of the six-axis industrial robot, and a real-time control system. The real-time control system uses It is used to implement millisecond-level real-time motion data collection for robots.

进一步地,采集的实时运动数据包括编码器值,力矩值。Further, the collected real-time motion data includes encoder values and torque values.

进一步地,所述的负载的材料为钢。Further, the material of the load is steel.

相对于现有技术,本实用新型的具有如下优点:Compared with the prior art, the utility model has the following advantages:

(1)本实用新型是通过配备一系列不同的负载,并可辨识到负载的动力学参数,验证参数由三维设计制图软件提供。(1) The utility model is equipped with a series of different loads, and can identify the dynamic parameters of the loads, and the verification parameters are provided by the three-dimensional design drawing software.

(2)本实用新型是通过称重实验法,检验辨识到的负载质量的准确性,也是验证模型准确度的证据。(2) The utility model checks the accuracy of the identified load mass through the weighing experiment method, which is also evidence for verifying the accuracy of the model.

(3)本实用新型通过采用高效实时控制系统进行数据采样,实现了毫秒级实时数据采集,保证了采集样本的精度。采集数据包括位移以及电机输出等,数据量可扩展,从而提供了辨识的理论基础。(3) The utility model realizes millisecond-level real-time data collection by adopting a high-efficiency real-time control system for data sampling, and ensures the accuracy of sample collection. The collected data includes displacement and motor output, etc., and the amount of data can be expanded, thus providing a theoretical basis for identification.

附图说明Description of drawings

图1是本实用新型六自由度工业机器人负载动力学参数辨识装置示意图。Fig. 1 is a schematic diagram of a load dynamic parameter identification device for a six-degree-of-freedom industrial robot of the present invention.

图2是辨识对象第一负载。Figure 2 is the first load of the identification object.

图3是辨识对象第二负载。Fig. 3 is the second load of the identification object.

图4参数辨识流程图。Figure 4. Parameter identification flow chart.

图中所示为:1-负载;2-六轴工业机器人。The picture shows: 1-load; 2-six-axis industrial robot.

具体实施方式detailed description

为进一步理解本实用新型,下面结合附图和实施例对本实用新型做进一步说明,但是需要说明的是,本实用新型要求保护的范围并不局限于实施例表述的范围。In order to further understand the utility model, the utility model will be further described below in conjunction with the accompanying drawings and embodiments, but it should be noted that the protection scope of the utility model is not limited to the range described in the embodiments.

实施例一Embodiment one

如图1至图3所示,一种六自由度机器人末端负载动力学参数辨识装置,包括六轴工业机器人2、可替换地设置在所述六轴工业机器人末端的若干不同质量的负载1、实时控制系统,所述的实时控制系统用于对机器人实施毫秒级的实时运动数据采集。As shown in Figures 1 to 3, a device for identifying dynamic parameters of a six-axis robot terminal load includes a six-axis industrial robot 2, several loads 1 of different masses that can be alternatively arranged at the end of the six-axis industrial robot, A real-time control system, the real-time control system is used to implement millisecond-level real-time movement data collection for the robot.

具体而言,采集的实时运动数据包括编码器值,力矩值。Specifically, the collected real-time motion data includes encoder values and torque values.

具体而言,所述的负载的材料为钢。Specifically, the material of the load is steel.

本实施例利用三维设计制图软件设计一系列不同配备的负载1,质量可自行设计,本实验设计有第一负载、第二负载;自行设计负载时采用钢材质,并加工出来。In this embodiment, a series of loads 1 with different configurations are designed by using three-dimensional design and drawing software, and the mass can be designed by oneself. In this experiment, the first load and the second load are designed; steel materials are used for self-designed loads, and they are processed.

实施例二Embodiment two

如图4所示,一种基于所述装置的六自由度机器人末端负载动力学参数辨识方法,包括步骤:As shown in Figure 4, a method for identifying dynamic parameters of a six-degree-of-freedom robot end load based on the device includes steps:

(1)根据拉格朗日方程建立动力学模型;(1) Establish a kinetic model according to the Lagrangian equation;

(2)设计激励轨迹;(2) Design the incentive trajectory;

(3)通过实时控制系统对机器人实施毫秒级的实时数据采集,并对多次采样数据作平均以及中心差分法提高信噪比;采集数据量可扩展,既保证了采样数据的充足,也为辨识末端负载的动力学参数提供了数据基础。(3) Implement millisecond-level real-time data collection for the robot through the real-time control system, and average multiple sampling data and improve the signal-to-noise ratio with the central difference method; the amount of collected data can be expanded, which not only ensures sufficient sampling data, but also provides The identification of the kinetic parameters of the end load provides the data basis.

(4)负载参数辨识,将参变量代入建好的动力学模型,然后估计出要辨识的动力学参数;(4) Identification of load parameters, substituting the parameters into the built dynamic model, and then estimating the dynamic parameters to be identified;

(5)模型验证,利用辨识到的负载动力学参数计算出力矩理论值与读取到的实际力矩值相比较,验证模型准确度。(5) Model verification. Using the identified load dynamic parameters to calculate the theoretical value of the moment and compare it with the actual moment value read to verify the accuracy of the model.

具体而言,所述的步骤(1)具体包括:Specifically, described step (1) specifically includes:

(11)、选定广义坐标,建立有限维模型,选择关节变量和柔性连杆的模态坐标为广义坐标;(11), select the generalized coordinates, set up the finite-dimensional model, select the modal coordinates of the joint variable and the flexible link as the generalized coordinates;

(12)、建立动能,势能和虚功表达式;(12) Establish kinetic energy, potential energy and virtual work expressions;

(13)、对拉格朗日方程进行推导和整理,推导出必要的惯性力项、科氏力和向心力项、重力项、摩擦力项;(13) Deriving and sorting out the Lagrangian equation, deriving the necessary inertial force term, Coriolis force and centripetal force term, gravity term and friction force term;

(14)、将拉格朗日动力学方程整合成计算力矩的线性方程形式。(14). Integrate the Lagrangian dynamic equation into a linear equation form for calculating torque.

具体而言,所述的步骤(14)具体包括:Specifically, described step (14) specifically comprises:

(141)根据:(141) According to:

推导后得出完整的动力学公式:After derivation, the complete kinetic formula is obtained:

其中,计算的惯性参数项为:Among them, the calculated inertia parameter item is:

Tp是坐标系P相对于基坐标系0的变换矩阵;qi为各个关节角度值;T p is the transformation matrix of the coordinate system P relative to the base coordinate system 0; q i is the angle value of each joint;

JP是伪惯性矩阵:J P is the pseudo-inertia matrix:

计算的向心力和科氏力系数项为:The calculated centripetal force and Coriolis force coefficient terms are:

计算的重力项为The calculated gravitational term is

计算的摩擦力项:Calculated friction term:

Fvj,Fsj是粘性摩擦力,库伦摩擦力系数;F vj , F sj are viscous friction, Coulomb friction coefficient;

(142)最后将拉格朗日动力学方程化简,提取要辨识的基础动力学参数χ:(142) Finally, the Lagrangian dynamic equation is simplified, and the basic dynamic parameter χ to be identified is extracted:

计算力矩的线性方程可化为:The linear equation for calculating moments can be reduced to:

τ=Wχ+ρ。τ=Wχ+ρ.

具体而言,所述步骤(2)具体包括:Specifically, the step (2) specifically includes:

设计采用周期性轨迹,每个关节的激励轨迹是正弦和余弦函数的代数和,即有限的傅立叶级数函数,则机器人每个关节的关节位置qi,速度和加速度规划如下The design adopts a periodic trajectory, and the excitation trajectory of each joint is the algebraic sum of sine and cosine functions, that is, a finite Fourier series function, then the joint position q i and velocity of each joint of the robot and acceleration The plan is as follows

具体而言,所述步骤(4)具体包括:Specifically, the step (4) specifically includes:

(41)结合三种不同的负载辨识方法对负载动力学参数进行辨识,第一负载辨识方法利用已经简化出来的基础动力学参数的耦合项进行差值相减,得到的差值再与三维制图软件得到的负载惯量数据进行误差分析进行辨识;第二负载辨识方法利用有无负载是读取的力矩数值进行辨识;第三负载辨识方法利用全局辨识机器人动力学参数与负载参数。(41) Combining three different load identification methods to identify the load dynamic parameters, the first load identification method uses the coupling items of the simplified basic dynamic parameters to subtract the difference, and the difference obtained is then compared with the three-dimensional drawing The load inertia data obtained by the software is identified by error analysis; the second load identification method uses the read torque value to identify whether there is a load or not; the third load identification method uses the global identification of robot dynamic parameters and load parameters.

(42)从三种辨识结果中选取最优辨识结果。(42) Select the optimal identification result from the three identification results.

具体而言,所述的步骤(41)中,Specifically, in the step (41),

所述的第一负载辨识方法包括步骤:The first load identification method includes the steps of:

(401)根据方程τ=Wχ+ρ,用最小二乘法计算出估计值χ;(401) According to the equation τ=Wχ+ρ, calculate the estimated value χ with the method of least squares;

(402)选取最优的轨迹进行实验,先不装负载进行参数辨识,得到一组零负载时基础动力学参数χ0(402) Select the optimal track to carry out the experiment, first carry out parameter identification without loading, and obtain the basic dynamic parameters χ0 when a group of zero loads are obtained;

(403)然后再用相同的轨迹进行实验,用第一组负载进行参数辨识,得到第一组的负载基础动力学参数χ1(403) Then carry out the experiment with the same track again, carry out parameter identification with the first group of loads, obtain the first group of load basic dynamic parameters χ 1 ;

(404)再换用第二组负载进行参数辨识,得到第二组负载基础动力学参数χ2(404) switch to the second group of loads for parameter identification, and obtain the second group of load basic dynamic parameters χ 2 ;

(405)求取第一组负载的基础动力学参数:Δχ1=χ10(405) Calculating the basic dynamic parameters of the first group of loads: Δχ 110 ;

(406)求取第二组负载的基础动力学参数:Δχ2=χ20(406) Calculating the basic dynamic parameters of the second group of loads: Δχ 22 −χ 0 ;

所述的第二负载辨识方法包括步骤:The second load identification method includes the steps of:

(411)不装负载的条件下读取力矩数值,记作YWL,再装上负载的条件下读取力矩数值,记作YT(411) Read the torque value under the condition of no load, denoted as Y WL , and then read the torque value under the condition of loading, denoted as Y T ;

(412)求得辨识方程为(412) The identification equation obtained is

其中,W+=(WTW)-1WT Where, W + =(W T W) -1 W T

YT-YWL为(6×ne)×1矩阵;Y T -Y WL is a (6×ne)×1 matrix;

所述的第三负载辨识方法包括步骤:The third load identification method includes the steps of:

(421)将零负载条件下的动力学方程和带上负载时候的动力学方程变形成矩阵相乘的形式:(421) The kinetic equation under the zero load condition and the dynamic equation when the load is put on are transformed into the form of matrix multiplication:

其中:in:

Ya=WaχY a =W a χ

Yb=Wbχ+WLχY b =W b χ+W L χ

(422)然后用加权最小二乘法WLS求解上述矩阵方程。(422) The above matrix equations are then solved using the weighted least squares method WLS.

另外,所述的步骤(5)还包括步骤:In addition, described step (5) also includes the steps of:

利用称重实验法对负载的质量数据进行检验和分析,可为辨识的准确性提供理论依据。用三维制图软件对不同的负载进行三维实体设计,可通过三维设计制图软件得出各个实体负载的惯性参数,与辨识出的实际负载动力学参数理论值进行误差分析。用上述所举出的三种负载动力学参数辨识方法辨识到的负载动力学参数用于线性方程τ=Wχ+ρ的计算,计算出的力矩理论值与读取到的实际力矩值相比较,从而利用力矩误差百分比分析其模型的准确性与辨识参数结果的准确性与可行性。Using the weighing experiment method to test and analyze the quality data of the load can provide a theoretical basis for the accuracy of identification. Use 3D drawing software to design 3D entities for different loads. The inertia parameters of each entity load can be obtained through 3D design drawing software, and the error analysis can be carried out with the identified theoretical values of the actual load dynamic parameters. The load dynamic parameters identified by the above-mentioned three load dynamic parameter identification methods are used for the calculation of the linear equation τ=Wχ+ρ, and the calculated torque theoretical value is compared with the read actual torque value. The accuracy of the model and the accuracy and feasibility of the identification parameter results are analyzed by using the torque error percentage.

本实施例在设计激励轨迹时,考虑机器人运动的一系列约束条件,比如关节角度范围,速度范围等等。在激励时,分别采用不同的速度对数据进行采样。In this embodiment, when designing the excitation trajectory, a series of constraint conditions of the robot movement are taken into consideration, such as joint angle range, speed range and so on. During excitation, the data are sampled at different speeds respectively.

本实施例采用的传感系统为实时控制系统,针对机器人的运动,实现了毫秒级的实时数据采集,包括位移,电机输出等。设计的软件结构中采集数据量可扩展,既保证了采样数据的充足,也为辨识末端负载的动力学参数提供了数据基础。The sensing system adopted in this embodiment is a real-time control system, which realizes millisecond-level real-time data collection for the movement of the robot, including displacement and motor output. The amount of collected data in the designed software structure can be expanded, which not only ensures sufficient sampling data, but also provides a data basis for identifying the dynamic parameters of the end load.

如图1所示、图2所示:将第一负载装于机器人末端,然后用设计好的激励轨迹进行激励;数据采集与处理的工程中,一是将采集回来的关节位置信号经过良好的调谐带通滤波,从而用来计算出所需的角速度和角加速度,二是读取力矩值,然后经过数据处理,换算成需要的计算参数。As shown in Figure 1 and Figure 2: install the first load on the end of the robot, and then use the designed excitation trajectory for excitation; in the project of data acquisition and processing, firstly, the collected joint position signals are processed by a good Tuning band-pass filtering is used to calculate the required angular velocity and angular acceleration. The second is to read the torque value, and then convert it into the required calculation parameters after data processing.

如图1所示、图3所示:将第二负载装于机器人末端,然后再用设计好的最优激励轨迹激励,数据采集与处理的工程中,一是将采集回来的关节位置信号经过良好的调谐带通滤波,从而用来计算所需的角速度和角加速度,采集二是读取力矩值,然后经过数据处理,换算成需要的计算参数。As shown in Figure 1 and Figure 3: install the second load on the end of the robot, and then use the designed optimal excitation trajectory to excite. In the data acquisition and processing project, one is to pass the collected joint position signals through A well-tuned bandpass filter is used to calculate the required angular velocity and angular acceleration. The second acquisition is to read the torque value, and then after data processing, it is converted into the required calculation parameters.

经过一系列的辨识准备步骤之后,结合三种不同的负载辨识方法对负载动力学参数进行辨识,选取最优辨识结果。After a series of identification preparation steps, three different load identification methods are combined to identify the load dynamic parameters, and the optimal identification result is selected.

本实用新型的上述实施例仅仅是为清楚地说明本实用新型所作的举例,而并非是对本实用新型的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本实用新型的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本实用新型权利要求的保护范围之内。The above-mentioned embodiments of the present utility model are only examples for clearly illustrating the present utility model, and are not intended to limit the implementation of the present utility model. For those of ordinary skill in the art, other changes or changes in different forms can be made on the basis of the above description. It is not necessary and impossible to exhaustively list all the implementation manners here. All modifications, equivalent replacements and improvements made within the spirit and principles of the utility model shall be included in the protection scope of the claims of the utility model.

Claims (3)

1.一种六自由度机器人末端负载动力学参数辨识装置,其特征在于:包括六轴工业机器人、可替换地设置在所述六轴工业机器人末端的若干不同质量的负载、实时控制系统,所述的实时控制系统用于对机器人实施毫秒级的实时运动数据采集。1. A six-degree-of-freedom robot terminal load dynamic parameter identification device is characterized in that: it includes a six-axis industrial robot, a load of several different qualities that can be arranged on the end of the six-axis industrial robot, and a real-time control system, so that The real-time control system described above is used to implement millisecond-level real-time motion data collection for the robot. 2.根据权利要求1所述的六自由度机器人末端负载动力学参数辨识装置,其特征在于:采集的实时运动数据包括编码器值,力矩值。2. The device for identifying dynamic parameters of a six-degree-of-freedom robot terminal load according to claim 1, wherein the collected real-time motion data includes encoder values and torque values. 3.根据权利要求1所述的六自由度机器人末端负载动力学参数辨识装置,其特征在于:所述的负载的材料为钢。3. The device for identifying dynamic parameters of the load at the end of a six-degree-of-freedom robot according to claim 1, wherein the material of the load is steel.
CN201621127259.3U 2016-10-17 2016-10-17 A kind of six-DOF robot end load dynamic parameters identification device Expired - Fee Related CN206216738U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201621127259.3U CN206216738U (en) 2016-10-17 2016-10-17 A kind of six-DOF robot end load dynamic parameters identification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201621127259.3U CN206216738U (en) 2016-10-17 2016-10-17 A kind of six-DOF robot end load dynamic parameters identification device

Publications (1)

Publication Number Publication Date
CN206216738U true CN206216738U (en) 2017-06-06

Family

ID=58788372

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201621127259.3U Expired - Fee Related CN206216738U (en) 2016-10-17 2016-10-17 A kind of six-DOF robot end load dynamic parameters identification device

Country Status (1)

Country Link
CN (1) CN206216738U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106346513A (en) * 2016-10-17 2017-01-25 华南理工大学 Device and method for identifying kinetic parameters of terminal loads of six-degree-of-freedom robot
CN112621748A (en) * 2020-12-02 2021-04-09 法奥意威(苏州)机器人系统有限公司 Robot load identification method
WO2021238049A1 (en) * 2020-05-28 2021-12-02 杭州键嘉机器人有限公司 Method, apparatus and control device for multi-load self-adaptive gravity compensation of manipulator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106346513A (en) * 2016-10-17 2017-01-25 华南理工大学 Device and method for identifying kinetic parameters of terminal loads of six-degree-of-freedom robot
WO2021238049A1 (en) * 2020-05-28 2021-12-02 杭州键嘉机器人有限公司 Method, apparatus and control device for multi-load self-adaptive gravity compensation of manipulator
CN112621748A (en) * 2020-12-02 2021-04-09 法奥意威(苏州)机器人系统有限公司 Robot load identification method

Similar Documents

Publication Publication Date Title
CN106346513B (en) A device and method for identifying dynamic parameters of a six-degree-of-freedom robot end load
CN104985598B (en) A kind of industrial robot collision checking method
CN109583093B (en) A dynamic parameter identification method for industrial robots considering joint elasticity
CN110941183B (en) Industrial robot dynamics identification method based on neural network
CN106426174A (en) Robot contact force detecting method based on torque observation and friction identification
CN101949954B (en) Redundant parallel six-dimensional acceleration transducer and measuring method thereof
CN206216738U (en) A kind of six-DOF robot end load dynamic parameters identification device
CN105945979B (en) The method that Shared control is carried out to the paw mechanism of drive lacking two
CN106064377A (en) A kind of excitation track optimizing method of robot for space dynamic parameters identification
CN105856273A (en) Industrial robot kinematics performance testing device
JP2013090862A (en) Golf swing analysis device and golf swing analysis method
CN105643641A (en) Force sensor calibration device and method and force control robot
CN113771044B (en) Robot tail end load dynamic stress sensing method
US20150377726A1 (en) Method for indentifying friction parameter for linear module
CN113910247B (en) Control method and system for end trajectory of industrial robot considering joint gap evolution
CN113246174B (en) An industrial robot servo system workload simulation test system and method
CN106197564A (en) A kind of being applicable to identifies the method and system connecting Complexed Prostate Specific Antigen
CN107991049A (en) Six-degree of freedom vibration test method and device based on acceleration transducer
CN105674971B (en) Two-dimentional spacecraft angular rate measurement method based on gyroscope flywheel system
CN113910229B (en) Load parameter identification method, identification device, readable storage medium and robot
CN116476062A (en) A method, system, device and medium for identifying load parameters of an industrial robot
Akeila et al. Implementation, calibration and testing of GFINS models based on six-accelerometer cube
JP5424224B2 (en) Relative angle estimation system
CN117549300B (en) A method for identifying dynamic parameters of a manipulator at the current level
CN112948999A (en) Joint reliability verification method for space robot

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170606

Termination date: 20201017

CF01 Termination of patent right due to non-payment of annual fee