CN206135195U - 一种全光纤激光器 - Google Patents

一种全光纤激光器 Download PDF

Info

Publication number
CN206135195U
CN206135195U CN201620798337.6U CN201620798337U CN206135195U CN 206135195 U CN206135195 U CN 206135195U CN 201620798337 U CN201620798337 U CN 201620798337U CN 206135195 U CN206135195 U CN 206135195U
Authority
CN
China
Prior art keywords
quantum dot
optical
full
fiber laser
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201620798337.6U
Other languages
English (en)
Inventor
王志腾
张晗
王可
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN201620798337.6U priority Critical patent/CN206135195U/zh
Application granted granted Critical
Publication of CN206135195U publication Critical patent/CN206135195U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lasers (AREA)

Abstract

本实用新型提供了一种全光纤激光器,包括沿光传播方向依次设置的泵浦源、波分复用器、增益光纤、偏振控制器、偏振无关隔离器、光纤耦合器和可饱和吸收体,所述可饱和吸收体包括D型光纤和量子点薄膜层,所述D型光纤包括一D型凹槽和一纤芯,所述量子点薄膜层覆盖在所述D型凹槽的底部,所述D型凹槽的底部与所述纤芯中心之间的垂直距离d满足r<d,其中,r为所述纤芯的半径。本实用新型提供的全光纤激光器中包括可饱和吸收体,可饱和吸收体包括D型光纤,使该全光纤激光器具有较长的光与物质相互作用的长度,可以增加可饱和吸收体的吸收性能,从而提高其非线性光学性能和激光器的稳定性。

Description

一种全光纤激光器
技术领域
本实用新型涉及超快脉冲激光领域,具体涉及一种全光纤激光器。
背景技术
在激光器中,由于被动锁模激光器可以提供高稳定性、高光束质量、高能量的超短脉冲,因此被广泛应用于科研、工业、国防、环境、能源、通讯等与人们生活息息相关的领域,具有强大的应用价值。
全光纤激光器作为一种重要的被动锁模激光器,通常采用可饱和吸收体被动锁模以实现激光器被动锁模,目前常用的可饱和吸收体包括石墨烯、拓扑绝缘体、二硫化钼或黑磷等二维材料,虽然这些二维材料具有宽波段、小带隙、高载流子迁移率、高表面体积比等特性,但是,它们在某些方面(吸收强度、光谱范围、载流子动力学等)却存在不足,特别是光吸收率低,导致全光纤激光器的稳定性不好。因此,如何增加二维材料与光的相互作用,以进一步提高其非线性光学性能,并提高激光器的稳定性、以满足市场的实际应用是亟需解决的一个问题。
实用新型内容
为解决上述问题,本实用新型提供了一种全光纤激光器。
一种全光纤激光器,包括沿光传播方向依次设置的泵浦源、波分复用器、增益光纤、偏振控制器、偏振无关隔离器、光纤耦合器和可饱和吸收体,所述可饱和吸收体包括D型光纤和量子点薄膜层,所述D型光纤包括一D型凹槽和一纤芯,所述量子点薄膜层覆盖在所述D型凹槽的底部,所述D型凹槽的底部与所述纤芯中心之间的垂直距离d满足r<d,其中,r为所述纤芯的半径。
其中,所述r的范围为4-5μm,所述d满足r<d<15μm。
其中,所述量子点薄膜层的厚度为10μm-50μm。
其中,所述量子点薄膜层的厚度为20μm-30μm。
其中,所述D型凹槽在光传播方向上的长度为3mm-5mm。
其中,所述量子点薄膜层中量子点的尺寸在100nm以下。
其中,所述量子点薄膜层中量子点的尺寸为2nm-100nm。
其中,所述可饱和吸收体中的量子点的能量带隙与所述全光纤激光器的工作波长一致。
其中,所述光纤耦合器的耦合比为10:90,其中,10%端用于输出光信号。
其中,所述泵浦源输出的泵浦光的中心波长为980nm。
本实用新型提供的全光纤激光器,包括可饱和吸收体,可饱和吸收体包括量子点薄膜层,由于量子点的量子限域效应和边缘效应,可以增强物质与光相互作用强度,量子点薄膜层中的量子点的光吸收率比常规二维材料的光吸收率大一个数量级。另外,本实用新型采用D型光纤结构,可以增加物质与光的相互作用的长度,从而提高全光纤激光器的非线性光学性能和稳定性,满足市场的实际应用的需要。
附图说明
图1为本实用新型提供的全光纤激光器的结构示意图;
图2为本实用新型提供的可饱和吸收体的结构示意图;
图3为本实用新型提供的可饱和吸收体中D型凹槽部分的截面图。
具体实施方式
以下所述是本实用新型的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本实用新型原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本实用新型的保护范围。
请参阅图1、图2和图3,图1为本实用新型提供的全光纤激光器的结构示意图;图2为本实用新型提供的可饱和吸收体的结构示意图;图3为本实用新型提供的可饱和吸收体中D型凹槽部分的截面图;图1中101为泵浦源、102为波分复用器、103为增益光纤、104为偏振控制器、105为偏振无关隔离器、106为光纤耦合器、107为可饱和吸收体,图2中1为D型光纤,2为量子点薄膜层,6为量子点薄膜层中的量子点材料,3为D型凹槽,图3中2为量子点薄膜层,4为光纤纤芯,5为光纤包层。
本实用新型提供了一种全光纤激光器,包括沿光传播方向依次设置的泵浦源101、波分复用器102、增益光纤103、偏振控制器104、偏振无关隔离器105、光纤耦合器106、可饱和吸收体107,其中,波分复用器102、增益光纤103、偏振控制器104、偏振无关隔离器105、光纤耦合器106、可饱和吸收体107依次用单模光纤连接成环形光纤谐振器腔结构;其中,泵浦源101与波分复用器102的泵浦端(反射端)连接,以将泵浦光输入到光纤谐振器腔,波分复用器102的公共端(透射端)与增益光纤103的一端相连,增益光纤103的另一端与偏振控制器104的输入端相连,偏振控制器104的输出端与偏振无关隔离器105的输入端连接,偏振无关隔离器105的输出端与耦合比为10:90的光纤耦合器106的输入端连接;光纤耦合器106的10%端输出信号光,而90%端与可饱和吸收体107一端连接;可饱和吸收体107的另外一端与波分复用器102的信号端相连。可饱和吸收体产生可饱和吸收,使全光纤激光器产生超快激光脉冲。可饱和吸收体包括D型光纤和量子点薄膜层,D型光纤包括一D型凹槽和一纤芯,量子点薄膜层覆盖在D型凹槽的底部,D型凹槽的底部与纤芯中心之间的垂直距离d满足r<d,其中,r为纤芯的半径。
本实用新型一实施方式中,泵浦源输出的泵浦光的中心波长为980nm。
本实用新型一实施方式中,增益光纤103为掺镱光纤、掺铋光纤、掺铒光纤、掺铥光纤或ZBLAN光纤等,具体的说,当选择不同的增益光纤时,波分复用器、光纤耦合器、偏振无关隔离器、偏振控制器、可饱和吸收体的工作波长为相应增益光纤的工作波长。
本实用新型一优选实施方式中,光纤耦合器的耦合比为10:90,其中,10%端用于输出光信号。
本实用新型一实施方式中,泵浦源、波分复用器、偏振控制器、光纤耦合器、偏振无关隔离器为业界常规选择,本实用新型不做特殊限定。
参阅图2和图3,本实用新型一实施方式中,可饱和吸收体包括D型光纤1和量子点薄膜层2,D型光纤1的一侧沿光传播方向设置有一D型凹槽3,D型光纤1还包括包层5和纤芯4,量子点薄膜层2覆盖在D型凹槽3的底部。
本实用新型D型光纤是在标准单模通信光纤上,利用光学微加工技术,将一定长度的圆柱形的光纤包层抛磨掉一部分,制成D型光纤。
本实用新型一实施方式中,光纤纤芯传输的光通过消逝场与量子点材料发生相互作用。
现有技术中往往在两光纤头之间插入二维材料薄膜形成“三明治”结构,光与二维材料物质相互作用的长度仅为薄膜层的厚度(<50μm),导致光与二维材料的相互作用的长度较短,激光器的稳定性较差。本实用新型提供了D型光纤,量子点薄膜层覆盖在D型凹槽底部。光与量子点材料的相互作用长度大约是D型凹槽的长度(3mm-5mm)。因此,基于D型光纤的可饱和吸收体,具有较长的光与物质相互作用长度,可以增加可饱和吸收体的吸收性能,从而提高其非线性光学性能和激光器的稳定性。
本实用新型一实施方式中,量子点薄膜层的厚度为10μm-50μm。
本实用新型一优选实施方式中,量子点薄膜层的厚度为20μm-30μm。
本实用新型一实施方式中,量子点薄膜层中量子点的尺寸在100nm以下,量子点的能量带隙对应的波长范围为400nm-4000nm。
本实用新型一优选实施方式中,量子点薄膜层中量子点的尺寸为2nm-100nm。
本实用新型一优选实施方式中,量子点的尺寸在50nm以下。
本实用新型一优选实施方式中,量子点的尺寸为2nm-50nm。
本实用新型一实施方式中,本实用新型的量子点的尺寸指的是量子点的横向尺寸。
本实用新型一实施方式中,量子点的形状为二维层状材料。
本实用新型一实施方式中,量子点包括石墨烯量子点、拓扑绝缘体量子点、过渡金属硫化物量子点和黑磷量子点中的至少一种。和常规的二维材料相比,本实用新型这些量子点为新型的二维材料,其横向尺寸在100nm以下。由于这些量子点的尺寸都在100nm以下,因此拥有丰富的边缘效应和量子限域效应。可以通过控制尺寸大小来调节边缘效应和量子限域效应,进而得到不同能量带隙的量子点材料。
本实用新型一实施方式中,拓扑绝缘体量子点包括Bi2Te3量子点、Bi2Se3量子点和Sb2Te3量子点中的至少一种。
本实用新型一实施方式中,过渡金属硫化物量子点包括二硫化钼量子点或二硫化钨量子点。
当该量子点薄膜层应用于全光纤激光器时,可以根据全光纤激光器的工作波长选择不同尺寸的量子点,从而使量子点的能量带隙与全光纤激光器的工作波长相匹配,在这种情况下,由于量子限域效应和边缘效应,量子点材料与光发生共振增强效应,量子点材料对能带内的激光产生较强的吸收,该量子点薄膜光吸收率比常规二维材料的光吸收率大一个数量级。另外,该量子点具备与普通二维材料一样的可饱和吸收特性。将该高质量、高光学吸收率的量子点薄膜层制备成可饱和吸收体,使激光器实现被动锁模运转,产生高能量、高稳定的超短脉冲。
本实用新型一实施方式中,量子点薄膜层的组成成分中还包括高分子有机化合物,高分子有机化合物为聚乙烯醇、聚甲基丙烯酸甲酯和聚苯乙烯中的至少一种。
本实用新型一实施方式中,高分子有机化合物的作用是增加基于二维材料的量子点的粘合性,从而有助于形成量子点薄膜层。这种高分子有机化合物可以保护量子点,可以保护其免受外界机械力等因素的破坏,增加激光系统的实用性。
本实用新型一实施方式中,量子点薄膜层是由量子点溶液与高分子有机化合物经过混合、超声、干燥形成的。
本实用新型一实施方式中,量子点薄膜层的制备方法,包括以下步骤:
提供基于二维材料的量子点溶液,基于二维材料的量子点溶液中的量子点为石墨烯量子点、拓扑绝缘体量子点、过渡金属硫化物量子点和黑磷量子点中的至少一种,量子点的尺寸在100nm以下;
超声分散后,将量子点溶液直接滴至D型凹槽的底部,真空条件下于70-100℃烘干,在D型凹槽的底部形成量子点薄膜层。
本实用新型一优选实施方式中,将量子点溶液与高分子有机化合物混合,超声分散后,得到混合溶液;高分子有机化合物为聚乙烯醇(PVA)、聚甲基丙烯酸甲酯(PMMA)和聚苯乙烯(PS)中的至少一种。
本实用新型一实施方式中,量子点溶液按照常规方法制备即可,具体不限,如石墨烯量子点可采用水热法、微波辅助法。如黑磷量子点的制备方法可参考文献[Ultrasmallblackphosphorus quantum dots:synthesis and use asphotothermalagents,Angew.Chem.,2015,127(39):11688-11692]进行制备。
本实用新型一实施方式中,该可饱和吸收体以单模光纤为基础,其中间部分经过抛磨处理去掉部分包层5,形成D型凹槽。量子点材料通过物理的方法设置到D型凹槽底部,光纤采用标准单模光纤。
本实用新型一实施方式中,D型凹槽在光传播方向上的长度L为3mm-5mm。
本实用新型一实施方式中,D型凹槽底部被量子点薄膜层完全覆盖。
如图3所示,本实用新型一实施方式中,D型凹槽的底部与纤芯中心之间的垂直距离d满足r<d,其中,r为纤芯的半径,即D型凹槽3的底部与光纤纤芯4之间还留有一定厚度的包层,纤芯表面没有露出。R为D型光纤的最大半径(即包层2完整时光纤的半径),由于D型光纤中D型凹槽的存在,很显然,d是小于R的。
本实用新型一优选实施方式中,D型凹槽的底部与纤芯之间的距离很近但两者又不接触。
本实用新型一优选实施方式中,r的范围为4-5μm,d满足r<d<15μm。
本实用新型一实施方式中,D型凹槽底面平整。
本实用新型一实施方式中,可饱和吸收体中的量子点的能量带隙与全光纤激光器的工作波长一致。可饱和吸收体中的量子点的能量带隙与全光纤激光器的工作波长一致指的是量子点的能量带隙对应的波长与全光纤激光器的工作波长相同或相近。
本实用新型提供的全光纤激光器,包括可饱和吸收体,可饱和吸收体中的量子点的能量带隙与全光纤激光器的工作波长一致,由于量子限域效应和边缘效应,量子点与光发生共振增强效应,量子点对能带内的激光产生较强的吸收,可以显著提高激光器的稳定性。本实用新型将高质量、高光学吸收率的量子点薄膜层制备成可饱和吸收体,并且将量子点薄膜层覆盖D型凹槽底部,可以增加光与物质相互作用的长度,使激光器实现被动锁模运转,产生高能量、高稳定的超短脉冲。
以上所述实施例仅表达了本实用新型的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本实用新型专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本实用新型构思的前提下,还可以做出若干变形和改进,这些都属于本实用新型的保护范围。因此,本实用新型专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种全光纤激光器,其特征在于,包括沿光传播方向依次设置的泵浦源、波分复用器、增益光纤、偏振控制器、偏振无关隔离器、光纤耦合器和可饱和吸收体,所述可饱和吸收体包括D型光纤和量子点薄膜层,所述D型光纤包括一D型凹槽和一纤芯,所述量子点薄膜层覆盖在所述D型凹槽的底部,所述D型凹槽的底部与所述纤芯中心之间的垂直距离d满足r<d,其中,r为所述纤芯的半径。
2.如权利要求1所述的全光纤激光器,其特征在于,所述r的范围为4-5μm,所述d满足r<d<15μm。
3.如权利要求1所述的全光纤激光器,其特征在于,所述量子点薄膜层的厚度为10μm-50μm。
4.如权利要求3所述的全光纤激光器,其特征在于,所述量子点薄膜层的厚度为20μm-30μm。
5.如权利要求1所述的全光纤激光器,其特征在于,所述D型凹槽在光传播方向上的长度为3mm-5mm。
6.如权利要求1所述的全光纤激光器,其特征在于,所述量子点薄膜层中量子点的尺寸在100nm以下。
7.如权利要求6所述的全光纤激光器,其特征在于,所述量子点薄膜层中量子点的尺寸为2nm-100nm。
8.如权利要求1所述的全光纤激光器,其特征在于,所述可饱和吸收体中的量子点的能量带隙与所述全光纤激光器的工作波长一致。
9.如权利要求1所述的全光纤激光器,其特征在于,所述光纤耦合器的耦合比为10:90,其中,10%端用于输出光信号。
10.如权利要求1所述的全光纤激光器,其特征在于,所述泵浦源输出的泵浦光的中心波长为980nm。
CN201620798337.6U 2016-07-27 2016-07-27 一种全光纤激光器 Active CN206135195U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201620798337.6U CN206135195U (zh) 2016-07-27 2016-07-27 一种全光纤激光器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201620798337.6U CN206135195U (zh) 2016-07-27 2016-07-27 一种全光纤激光器

Publications (1)

Publication Number Publication Date
CN206135195U true CN206135195U (zh) 2017-04-26

Family

ID=58564070

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201620798337.6U Active CN206135195U (zh) 2016-07-27 2016-07-27 一种全光纤激光器

Country Status (1)

Country Link
CN (1) CN206135195U (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107039880A (zh) * 2017-06-26 2017-08-11 吉林大学 主被动混合锁模光纤激光器脉冲产生系统
CN107134711A (zh) * 2017-06-26 2017-09-05 吉林大学 基于压电陶瓷反馈控制的光脉冲发生器
CN107134712A (zh) * 2017-06-26 2017-09-05 吉林大学 一种带有温度补偿的主被动混合锁模光纤激光器
CN107302176A (zh) * 2017-06-26 2017-10-27 吉林大学 一种高稳定度主被动混合锁模光孤子产生系统
CN107302177A (zh) * 2017-06-26 2017-10-27 吉林大学 基于黑磷可饱和吸收体的主被动混合锁模脉冲产生系统
CN108123360A (zh) * 2018-01-29 2018-06-05 南通大学 一种应用于光纤激光器上的可饱和吸收体装置
CN108233158A (zh) * 2018-01-29 2018-06-29 南通大学 一种光纤激光器
CN110911958A (zh) * 2019-11-25 2020-03-24 上海交通大学 基于二维材料可饱和吸收体的硅基被动锁模外腔激光器
CN111525374A (zh) * 2020-04-28 2020-08-11 中国人民解放军国防科技大学 一种宽带波长可调激光脉冲信号发生装置和光纤激光器
CN113091603A (zh) * 2021-04-01 2021-07-09 深圳大学 一种自由光谱区可调的干涉装置
CN113823989A (zh) * 2021-10-08 2021-12-21 天津理工大学 一种采用二硫化钨作为稳定波长输出的多波长光纤激光器及其制备方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107039880A (zh) * 2017-06-26 2017-08-11 吉林大学 主被动混合锁模光纤激光器脉冲产生系统
CN107134711A (zh) * 2017-06-26 2017-09-05 吉林大学 基于压电陶瓷反馈控制的光脉冲发生器
CN107134712A (zh) * 2017-06-26 2017-09-05 吉林大学 一种带有温度补偿的主被动混合锁模光纤激光器
CN107302176A (zh) * 2017-06-26 2017-10-27 吉林大学 一种高稳定度主被动混合锁模光孤子产生系统
CN107302177A (zh) * 2017-06-26 2017-10-27 吉林大学 基于黑磷可饱和吸收体的主被动混合锁模脉冲产生系统
CN108233158A (zh) * 2018-01-29 2018-06-29 南通大学 一种光纤激光器
CN108123360A (zh) * 2018-01-29 2018-06-05 南通大学 一种应用于光纤激光器上的可饱和吸收体装置
CN108233158B (zh) * 2018-01-29 2020-02-04 南通大学 一种光纤激光器
CN108123360B (zh) * 2018-01-29 2020-05-15 南通大学 一种应用于光纤激光器上的可饱和吸收体装置
CN110911958A (zh) * 2019-11-25 2020-03-24 上海交通大学 基于二维材料可饱和吸收体的硅基被动锁模外腔激光器
CN111525374A (zh) * 2020-04-28 2020-08-11 中国人民解放军国防科技大学 一种宽带波长可调激光脉冲信号发生装置和光纤激光器
CN113091603A (zh) * 2021-04-01 2021-07-09 深圳大学 一种自由光谱区可调的干涉装置
CN113823989A (zh) * 2021-10-08 2021-12-21 天津理工大学 一种采用二硫化钨作为稳定波长输出的多波长光纤激光器及其制备方法

Similar Documents

Publication Publication Date Title
CN206135195U (zh) 一种全光纤激光器
CN106099632A (zh) 一种用于可饱和吸收体的基于二维材料的量子点薄膜及其制备方法和在超快激光中的应用
CN102318151A (zh) 平面波导型激光装置
CN101794053B (zh) 基于微环谐振器结构的全光逻辑异或非门结构
CN109825021B (zh) 一种含碲烯的聚合物薄膜及其制备方法和应用
CN107069413B (zh) 硒化铅量子点作为饱和吸收体的锁模光纤激光器
CN107621670A (zh) 全固态反谐振光纤
CN104993371A (zh) 可调谐液体微球激光器
CN102244351B (zh) 基于单壁碳纳米管的被动锁模器件的制备方法
CN204680898U (zh) 可调谐液体微球激光器
CN107102402A (zh) 基于极化共振和布拉格共振作用的超透射波导设计方法
CN106911063B (zh) 偏振随机光纤脉冲激光器
CN110297293A (zh) 一种基于杂化型高质量因子的mim波导结构
Krishnamurthy et al. Theoretical investigation of metal cladding for nanowire and cylindrical micropost lasers
Li et al. Multiwavelength Q-switched pulse operation with gold nanoparticles as saturable absorber
CN112596280B (zh) 一种太赫兹反谐振光纤偏振调控器
CN105591272B (zh) 一种基于掺铥光纤激光器产生高能量矢量孤子雨装置
CN112563873B (zh) 一种可饱和吸收体的制备方法及多模光纤激光器
CN108459449B (zh) 基于石墨烯光纤的全光调制器及其调制方法
CN202103310U (zh) 一种基于单壁碳纳米管的被动锁模器件及光纤激光器
Muhammad et al. Q-switched fiber laser operating at 1 μm region with electron beam deposited titanium nanoparticles
CN110086077A (zh) 基于氧化镓倍频晶体的光纤激光器
CN104795720A (zh) 一种基于光学微腔调控的光束转换装置
US9709736B2 (en) Right-angle waveguide based on square-cylinder-type square-lattice photonic crystal and single compensation scattering cylinder with high refractive index
Liu et al. Metamaterial all-optical switching based on resonance mode coupling in dielectric meta-atoms

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder

Address after: 518000 Nanhai Road, Guangdong, Shenzhen, No. 3688, No.

Patentee after: Shenzhen University

Address before: 518000 South China Medical College, Nanhai Avenue, Guangdong, Shenzhen, 3688, China

Patentee before: Shenzhen University

CP02 Change in the address of a patent holder