CN206109104U - Fenton协同臭氧流态化催化氧化废水处理装置 - Google Patents

Fenton协同臭氧流态化催化氧化废水处理装置 Download PDF

Info

Publication number
CN206109104U
CN206109104U CN201621122828.5U CN201621122828U CN206109104U CN 206109104 U CN206109104 U CN 206109104U CN 201621122828 U CN201621122828 U CN 201621122828U CN 206109104 U CN206109104 U CN 206109104U
Authority
CN
China
Prior art keywords
waste water
pipe
tower
ozone
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201621122828.5U
Other languages
English (en)
Inventor
雷利荣
李友明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201621122828.5U priority Critical patent/CN206109104U/zh
Application granted granted Critical
Publication of CN206109104U publication Critical patent/CN206109104U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本实用新型公开了Fenton协同臭氧流态化催化氧化废水处理装置。该装置包括前处理塔(9)、催化氧化塔(1)、后处理塔(27)、药剂制备系统(30)、臭氧供应系统和清水池(29)。该装置处理废水的方法包括如下步骤:(1)前处理;(2)催化氧化处理;(3)后处理。本实用新型装置处理废水提高了废水处理效率,提高了废水COD和色度的去除效果,同时减少了化学试剂用量,减少污泥产量,提高了臭氧利用率,且降低了废水处理成本。

Description

Fenton协同臭氧流态化催化氧化废水处理装置
技术领域
本实用新型涉及废水处理装置及废水处理方法,具体涉及一种Fenton协同臭氧流态化催化氧化废水处理装置。
背景技术
造纸废水中含有一定浓度的难生物降解的有机物,主要是木素降解产物,导致造纸废水经二级生物处理后仍然含有较高浓度的有机污染物,不能达到国家的排放标准,因而必须进行进一步的深度处理,以减轻对人类和环境的影响。
Fenton催化氧化技术是当前降解去除废水中难生物降解有机物的有效途径之一,具有反应条件温和、反应速度快、处理效果好的优点,从而得到广泛的工程化应用。Fenton催化氧化技术实质上包括两个步骤:首先在酸性条件下亚铁离子催化过氧化氢分解产生羟基自由基,通过羟基自由基氧化降解、矿化废水中的有机污染物;然后调节反应体系的pH值至中、碱性,铁离子生成铁盐沉淀絮体,通过吸附、混凝、沉淀的方式去除废水中的有机污染物、悬浮物和其他污染物。但是传统的Fenton催化氧化技术存在着化学品用量大、处理成本高的问题,且处理过程中产生了大量的污泥,成为Fenton催化氧化技术进一步推广应用的障碍。
臭氧是一种清洁的强氧化剂,对废水中的大多数有机物具有很强的氧化降解能力,且不产生二次污染。另一方面,虽然臭氧具有很强的去除废水色度的能力,但是对废水中有机物的降解去除具有选择性,表现在对废水的TOC、COD去除率不高。近年来,通过研发制备催化剂以提高臭氧对废水中有机物的降解去除效果取得了很大进展,有效提高了臭氧对废水的处理效果。同时,臭氧在废水中的溶解度较低,且臭氧在废水处理过程中的利用率较低,部分未参与反应的臭氧随尾气排出,成为臭氧处理废水成本较高的主要原因之一。
实用新型内容
为解决上述相关技术存在的缺陷和不足,本实用新型的目的在于提供一种降低化学品用量、提高臭氧利用率、减少化学污泥产量、提高废水处理效率的Fenton协同臭氧流态化催化氧化废水处理装置。
本实用新型的目的通过以下技术方案实现。
Fenton协同臭氧流态化催化氧化废水处理装置,包括前处理塔、催化氧化塔、后处理塔、药剂制备系统、臭氧供应系统和清水池;所述的前处理塔的底部设置有布水管和布气管,前处理塔上部设置吸附生长有微生物的填料;前处理塔由下至上设置有依次流通的预氧化区和生物处理区;所述臭氧供应系统包括通过管道连接的氧气供应系统和臭氧制备装置,氧气供应系统和臭氧制备装置的连接管道上设置有流量计;
所述前处理塔上部外侧设置有出水槽,前处理塔的顶部通过溢流口与出水槽连接;所述前处理塔的出水槽通过管道与设置在催化氧化塔底部的喷射进水口连接;前处理塔的出水槽与催化氧化塔的喷射进水口的连接管道上设置有依次连接的第一水泵、第一管道混合器、第二管道混合器、第三管道混合器、第一流量计和射流器;第一管道混合器通过管道与药剂制备系统的酸液贮存槽的出口连接;第一管道混合器与药剂制备系统的酸液贮存槽出口的连接管道上设置有第一计量泵;第二管道混合器通过管道与药剂制备系统的催化剂贮存槽的出口连接;第二管道混合器与药剂制备系统的催化剂贮存槽出口的连接管道上设置有第二计量泵;第三管道混合器通过管道与药剂制备系统的过氧化氢贮存槽的出口连接;第三管道混合器与药剂制备系统的过氧化氢贮存槽出口的连接管道上设置有第三计量泵;射流器通过管道与臭氧供应系统的臭氧制备装置连接;射流器与臭氧制备装置的连接管道上设置有防止废水倒流的单向阀;
所述催化氧化塔上部外侧设置有循环出水槽,催化氧化塔顶部通过溢流口与循环出水槽连接;循环出水槽通过管道与催化氧化塔底部的喷射进水口连接;循环出水槽与喷射进水口的连接管道上设置有依次连接的第二流量计和第二水泵;所述的催化氧化塔设置有依次连通的第一流态化反应区、第二流态化反应区、颗粒聚集区和颗粒沉降分离区;催化氧化塔还设置有催化剂颗粒和粒子投加口;
所述催化氧化塔顶部设置有气体收集装置,所述气体收集装置通过尾气管与设置在前处理塔底部的布气管连接;
所述催化氧化塔循环出水槽的出水口通过管道与后处理塔的喷射进水口连接;循环出水槽的出水口与后处理塔的喷射进水口的连接管道上设置有依次连接的第三流量计、第三水泵、第四管道混合器和第五管道混合器;第四管道混合器通过管道与药剂制备系统的碱液贮存槽的出口连接;第五管道混合器通过管道与药剂制备系统的絮凝剂贮存槽的出口连接;所述的第四管道混合器与药剂制备系统的碱液贮存槽出口的连接管道上设置有第四计量泵;所述的第五管道混合器与药剂制备系统的絮凝剂贮存槽出口的连接管道上设置有第五计量泵;
所述循环出水槽的溢流口通过第一溢流管与前处理塔连接;
所述后处理塔的上部外侧设置有出水槽,后处理塔顶部通过溢流口与出水槽连接;所述出水槽的出水口通过出水管与清水池连接,出水槽的溢流口通过第二溢流管与清水池连接。
进一步地,所述催化剂颗粒为活性吸附材料负载过渡金属氧化物催化剂。
更进一步地,所述活性吸附材料为活性炭颗粒或活性氧化铝颗粒。
更进一步地,所述过渡金属氧化物为锰、镍、钛和锆的氧化物中的一种以上。
进一步地,所述的后处理塔设置有依次流通的流态化反应区、絮体增长反应区、絮体分离沉淀区、污泥浓缩区和澄清水区,是具有中和、混凝、沉淀和净化功能的一体化立式反应塔。
所述Fenton协同臭氧流态化催化氧化废水处理装置处理废水的方法,包括以下步骤:
(1)前处理:二沉池出水由泵通过设置在前处理塔底部的布水管输送进入前处理塔,同时来自催化氧化塔顶部气体收集装置的臭氧-氧气混合气体尾气通过设置在前处理塔底部的布气管进入前处理塔;臭氧-氧气混合气体与废水在前处理塔底部充分均匀混合后进入前处理塔的预氧化反应区,然后废水进入生物处理区;
(2)催化氧化处理:经前处理塔处理的废水通过第一水泵输送到催化氧化塔底部的喷射进水口,同时通过第一管道混合器、第二管道混合器和第三管道混合器分别加入H2SO4、FeSO4•7H2O和过氧化氢,通过射流器向废水提供臭氧,通过粒子投入口向催化氧化塔投加催化剂颗粒;
废水从喷射进水口喷射出来进入催化氧化塔的第一流态化反应区,并通过形成的负压将催化氧化塔底部的催化剂颗粒提升吸入第一流态化反应区,接着废水从第一流态化反应区溢流进入第二流态化反应区;废水在第一流态化反应区和第二流态化反应区的流动速度分别为60~75 m/h和40~55 m/h,使催化剂颗粒充分流态化,进行Fenton协同臭氧流态化催化氧化反应;然后废水和颗粒离开第二流态化反应区向催化氧化塔顶部流动,进入颗粒沉降分离区;在颗粒沉降分离区,随着流动截面积的增加,废水和催化剂颗粒的上升速度下降,粒子在重力作用下开始沉降至颗粒聚集区,而废水则与颗粒分离经催化氧化塔顶部溢流进入循环出水槽;
循环出水槽1/2~2/3质量的水通过第二水泵输送,经管道和来自前处理塔的废水混合,进入催化氧化塔底部的喷射进水口,以维持废水在催化氧化塔中的流速,使催化剂颗粒在第一、第二流态化反应区中充分流态化,有效提高废水的处理效果;
(3)后处理:经催化氧化处理的废水溢流进入循环出水槽,再通过第三水泵经管道输送到后处理塔的喷射进水口,进入后处理塔的流态化反应区,同时通过第四管道混合器和第五管道混合器向废水中加入碱液和聚丙烯酰胺;在流态化反应区,微絮体开始形成,维持水流上升速度为25~45m/h,使微絮体处于流态化状态,使废水和碱液、聚丙烯酰胺充分混合、接触、反应;从流态化反应区出来的废水进入絮体增长反应区,废水的流速下降,流态化逐渐减弱,微絮体在絮凝剂作用下相互凝聚,形成较大的絮体开始下沉,接着,废水进入絮体分离沉淀区;在絮体分离沉淀区,废水上升的流速进一步下降,絮体逐渐下沉,最后到达污泥浓缩区,在反应塔底部形成沉淀并逐渐浓缩,而废水缓慢上流至后处理塔顶部的澄清水区,通过溢流堰溢流进入出水槽输送到清水池,完成废水的Fenton协同臭氧流态化催化氧化处理过程。
进一步地,步骤(1)中,废水在前处理塔的停留时间为1.5-3h。
进一步地,步骤(2)中,加入H2SO4使废水pH保持为2~4。
进一步地,步骤(2)中,FeSO4•7H2O、过氧化氢和臭氧的加入量与待处理废水COD质量比分别为1-2:1、1-3:1和0.5-1:1。
进一步地,步骤(2)中,废水在催化氧化塔的停留时间为1~2.5h。
进一步地,步骤(2)中,催化剂颗粒的投加量为催化剂颗粒与废水的料液比为2:1~15:1g/L。
进一步地,步骤(2)中,废水以5-10 m/s的速度从喷射进水口喷射出来进入催化氧化塔的第一流态化反应区。
进一步地,步骤(3)中,以废水体积计,聚丙烯酰胺的加入量为1~2mg/L。
进一步地,步骤(3)中,加入碱液调节废水的pH值至7.5~8。
进一步地,步骤(3)中,废水在后处理塔的停留时间为3~5h。
因为木素降解产物等难生物降解有机污染物的存在,造纸废水二级生物处理出水仍然含有较高浓度的COD和发色物质,无法达到排放标准。本实用新型的方法首先将造纸废水二级生物处理出水输送到前处理塔的底部,与来自催化氧化塔气体收集装置收集的尾气混合均匀,进入前处理塔的预氧化反应区,接着废水进入前处理塔的生物处理区。在臭氧处理废水过程中,臭氧的利用率并不高,催化氧化塔的尾气中除了氧气外,还含有臭氧。因此,在前处理塔的预氧化反应区中,尾气中的臭氧氧化降解造纸废水中的难生物降解有机物,改善废水的可生物降解性,同时,尾气中的氧气溶解在废水中。接着,饱含溶解氧的废水进入前处理塔的生物处理区,废水中的有机污染物被附着在载体上的微生物吸附、氧化降解,达到对废水预处理、降低废水污染负荷的目的。
经前处理塔处理的废水输送到催化氧化塔,通过喷射进水口首先进入第一流态化反应区并持续向上流动,在第一流态化反应区的顶部,未能溶解在废水中的臭氧随氧气与废水分离,进入气体收集装置,而废水则进入第二流态化反应区。在催化氧化塔的第一、第二流态化反应区,废水中的有机污染物、FeSO4•7H2O、过氧化氢、溶解态臭氧和催化剂颗粒充分均匀混合,进行Fenton协同臭氧流态化催化氧化反应。在第一、第二流态化反应区,首先,亚铁离子催化过氧化氢分解产生羟基自由基,通过羟基自由基氧化、矿化废水中的有机污染物,这是Fenton反应的主要原理;另一方面,臭氧分子具有较强的氧化降解废水中有机污染物的能力,但是更重要的是,催化剂颗粒具有很强的吸附性能,臭氧分子和废水中的有机污染物吸附在催化剂颗粒表面上并富集起来。吸附在催化剂颗粒表面上的臭氧分子与催化剂颗粒表面的活性组分发生表面催化反应,生成了以羟基自由基为主的新生态自由基,对废水有机污染物的降解去除产生了重要影响。这些自由基或吸附在催化剂颗粒表面,或以溶解态存在于废水中,有效降解去除吸附在催化剂颗粒上和废水中的有机污染物。此外,亚铁离子和过氧化氢也能有效催化臭氧分解生产羟基自由基。因此,在催化氧化塔的第一、第二流态化反应区中,充分发挥了Fenton和臭氧催化氧化反应在流态化条件下的协同效应,大大提高了废水处理的效率,提高了对废水COD和色度的去除效果。
与现有技术相比,本实用新型具有如下优点和有益效果:
(1)本实用新型利用Fenton和臭氧催化氧化反应在流态化条件下的协同效应,大大提高了废水处理的效率,提高了对废水COD和色度的去除效果。
(2)本实用新型利用流态化催化氧化技术代替传统的Fenton氧化工艺及臭氧催化氧化工艺,利用流态化条件下高效的传质效率,实现了较低的过氧化氢、亚铁离子及臭氧投加量条件下废水的较高处理效果,提高了废水处理的效率,同时减少了污泥的生成量;在催化氧化塔的第一、第二流态化反应区中,废水中的有机污染物、FeSO4•7H2O、过氧化氢、溶解态臭氧和催化剂颗粒充分均匀混合,进行Fenton协同臭氧流态化催化氧化反应,有效提高了传质效率和化学反应的速率,提高了废水中有机污染物氧化降解的效果;同时减少化学试剂用量,减少后期混凝过程中污泥的产量。
(3)本实用新型通过控制过氧化氢计量泵使过氧化氢逐步、连续加入到反应体系中,有效维持了流态化催化氧化塔中稳定的、较高的过氧化氢浓度,保证羟基自由基持续有效的生成,保证较高的催化氧化反应速度,同时有效减少过氧化氢的无效分解,减少过氧化氢的需求量。
(4)本实用新型通过设计尾气收集装置,将催化氧化塔中未参与反应的臭氧及氧气一起输送到前处理塔,利用尾气中的臭氧和氧气依次对废水进行臭氧预氧化和生物处理,臭氧的利用率提高20%以上,废水COD去除率提高12%以上,同时降低了废水处理的成本。
附图说明
图1是本实用新型Fenton协同臭氧流态化催化氧化废水处理装置的示意图。
具体实施方式
下面结合附图和实施例对本实用新型作进一步的描述,但本实用新型要求保护的范围并不局限于实施例所表述的范围。
图1是本实用新型Fenton协同臭氧流态化催化氧化废水处理装置的示意图,如图1所示,本实用新型Fenton协同臭氧流态化催化氧化废水处理装置,包括前处理塔9、催化氧化塔1、后处理塔27、药剂制备系统30、臭氧供应系统和清水池29;前处理塔9的底部设置有布水管12和布气管13,前处理塔9上部设置吸附生长有微生物的填料;前处理塔9由下至上设置有依次流通的预氧化区10和生物处理区11;臭氧供应系统包括通过管道连接的氧气供应系统36和臭氧制备装置38,氧气供应系统36和臭氧制备装置38的连接管道上设置有流量计37;后处理塔27设置有依次流通的流态化反应区27-1、絮体增长反应区27-2、絮体分离沉淀区27-3、污泥浓缩区27-4和澄清水区27-5,是具有中和、混凝、沉淀和净化功能的一体化立式反应塔;药剂制备系统30制备和/或贮存了酸、催化剂、碱、絮凝剂溶液和过氧化氢,并分别通过计量泵加入到废水中去;
前处理塔9上部外侧设置有出水槽14,前处理塔9的顶部通过溢流口与出水槽14连接;所述前处理塔9的出水槽14通过管道与设置在催化氧化塔1底部的喷射进水口2连接;前处理塔9的出水槽14与催化氧化塔1的喷射进水口2的连接管道上设置有依次连接的第一水泵15、第一管道混合器16、第二管道混合器17、第三管道混合器18、第一流量计19和射流器20;第一管道混合器16通过管道与药剂制备系统30的酸液贮存槽30-1的出口连接;第一管道混合器16与药剂制备系统30的酸液贮存槽出口的连接管道上设置有第一计量泵31;第二管道混合器17通过管道与药剂制备系统30的催化剂贮存槽30-2的出口连接;第二管道混合器17与药剂制备系统30的催化剂贮存槽出口的连接管道上设置有第二计量泵32;第三管道混合器18通过管道与药剂制备系统30的过氧化氢贮存槽30-3的出口连接;第三管道混合器18与药剂制备系统30的过氧化氢贮存槽出口的连接管道上设置有第三计量泵33;射流器20通过管道与臭氧供应系统的臭氧制备装置38连接;射流器20与臭氧制备装置38的连接管道上设置有防止废水倒流的单向阀39;
催化氧化塔1上部外侧设置有循环出水槽8,催化氧化塔1顶部通过溢流口与循环出水槽8连接;循环出水槽8通过管道与催化氧化塔1底部的喷射进水口2连接;循环出水槽8与喷射进水口2的连接管道上设置有依次连接的第二流量计21和第二水泵22;所述的催化氧化塔1设置有依次连通的第一流态化反应区4、第二流态化反应区5、颗粒聚集区3和颗粒沉降分离区6;催化氧化塔1还设置有催化剂颗粒和粒子投加口;
催化氧化塔1顶部设置有气体收集装置7,所述气体收集装置7通过尾气管41与设置在前处理塔9底部的布气管13连接;
催化氧化塔1循环出水槽8的出水口通过管道与后处理塔27的喷射进水口连接;循环出水槽8的出水口与后处理塔27的喷射进水口的连接管道上设置有依次连接的第三流量计23、第三水泵24、第四管道混合器25和第五管道混合器26;第四管道混合器25通过管道与药剂制备系统30的碱液贮存槽30-4的出口连接;第五管道混合器26通过管道与药剂制备系统30的絮凝剂贮存槽30-5的出口连接;所述的第四管道混合器25与药剂制备系统30的碱液贮存槽出口的连接管道上设置有第四计量泵34;所述的第五管道混合器26与药剂制备系统30的絮凝剂贮存槽出口的连接管道上设置有第五计量泵35;
循环出水槽8的溢流口通过第一溢流管40与前处理塔9连接;
后处理塔27的上部外侧设置有出水槽28,后处理塔27顶部通过溢流口与出水槽28连接;所述出水槽28的出水口通过出水管42与清水池29连接,出水槽28的溢流口通过第二溢流管43与清水池29连接。
实施例1
本实施例中,Fenton协同臭氧流态化催化氧化废水处理装置用于处理南方杂木浆D0/C-(EO)PD1漂白废水经水解酸化和活性污泥法处理后的废水,废水的CODcr为320 mg/L,BOD5为60 mg/L,色度为630 C.U.。
本实用新型Fenton协同臭氧流态化催化氧化废水处理装置处理南方杂木浆漂白废水的方法,包括以下步骤和工艺条件:
(1)前处理:二沉池出水由泵通过设置在前处理塔9底部的布水管12输送进入前处理塔9,同时来自催化氧化塔1顶部气体收集装置7的臭氧-氧气混合气体尾气通过设置在前处理塔9底部的布气管13进入前处理塔9;臭氧和氧气混合气体与废水在前处理塔9底部充分均匀混合后进入前处理塔9的预氧化反应区10,然后废水进入生物处理区11;废水在前处理塔9的停留时间为3 h;
(2)催化氧化处理:经前处理塔9处理的废水通过第一水泵15输送到催化氧化塔1底部的喷射进水口2,同时通过第一管道混合器16、第二管道混合器17和第三管道混合器18分别加入H2SO4、FeSO4•7H2O和过氧化氢,通过射流器20向废水提供臭氧,通过粒子投入口向催化氧化塔1投加催化剂颗粒;以废水体积计,FeSO4•7H2O、过氧化氢和臭氧的加入量分别为640 mg/L、960 mg/L和320 mg/L;加入H2SO4使废水pH保持为4;投加催化剂颗粒为活性碳负载二氧化钛颗粒,以废水体积计,催化剂颗粒加入量为3 g/L;
废水以8 m/s的速度从喷射进水口2喷射出来进入催化氧化塔1的第一流态化反应区4,并通过形成的负压将催化氧化塔1底部的催化剂颗粒提升吸入第一流态化反应区4,接着废水从第一流态化反应区4溢流进入第二流态化反应区5;废水在第一流态化反应区4和第二流态化反应区5的流动速度分别为67 m/h和48 m/h,使催化剂颗粒充分流态化,进行Fenton协同臭氧流态化催化氧化反应;然后废水和颗粒离开第二流态化反应区5向催化氧化塔1顶部流动,进入颗粒沉降分离区6;在颗粒沉降分离区6,随着流动截面积的增加,废水和催化剂颗粒的上升速度下降,粒子在重力作用下开始沉降至颗粒聚集区3,而废水则与颗粒分离经催化氧化塔1顶部溢流进入循环出水槽8;
循环出水槽1/2质量的水通过第二水泵22输送,经管道和来自前处理塔9的废水混合,进入催化氧化塔1底部的喷射进水口2,以维持废水在催化氧化塔1中的流速,使催化剂颗粒在第一、第二流态化反应区中充分流态化,有效提高废水的处理效果;废水在催化氧化塔1的停留时间为1.5 h;
(3)后处理:经催化氧化处理的废水溢流进入循环出水槽8,再通过第三水泵24经管道输送到后处理塔27的喷射进水口,进入后处理塔27的流态化反应区27-1,同时通过第四管道混合器25和第五管道混合器26向废水中加入碱液和聚丙烯酰胺,以废水体积计,聚丙烯酰胺的加入量为1.5 mg/L,废水的pH值调节至8。在流态化反应区27-1,微絮体开始形成,维持水流上升速度为25m/h,使微絮体处于流态化状态,使废水和碱液、聚丙烯酰胺充分混合、接触、反应;从流态化反应区27-1出来的废水进入絮体增长反应区27-2,废水的流速下降,流态化逐渐减弱,微絮体在絮凝剂作用下相互凝聚,形成较大的絮体开始下沉,接着,废水进入絮体分离沉淀区27-3;在絮体分离沉淀区27-3,废水上升的流速进一步下降,絮体逐渐下沉,最后到达污泥浓缩区27-4,在反应塔底部形成沉淀并逐渐浓缩,而废水缓慢上流至后处理塔27顶部的澄清水区27-5,通过溢流堰溢流进入出水槽28输送到清水池29,完成废水的Fenton协同臭氧流态化催化氧化处理过程,废水在后处理塔27的停留时间为5 h。
经检测,处理后,废水的CODcr为57 mg/L,色度为49 C.U.。而采取常规的Fenton处理方法,处理后废水的CODcr为135 mg/L,色度为150C.U.,且处理成本较高。
实施例2
本实施例中,Fenton协同臭氧流态化催化氧化废水处理装置用于处理废纸脱墨制浆废水经IC塔和SBR处理后的废水,废水的CODcr为390 mg/L,色度为650 C.U.。
本实用新型Fenton协同臭氧流态化催化氧化废水处理装置处理废纸脱墨制浆废水的方法,包括以下步骤和工艺条件:
(1)前处理:二沉池出水由泵通过设置在前处理塔9底部的布水管12输送进入前处理塔9,同时来自催化氧化塔1顶部气体收集装置7的臭氧-氧气混合气体尾气通过设置在前处理塔9底部的布气管13进入前处理塔9;臭氧和氧气混合气体与废水在前处理塔9底部充分均匀混合后进入前处理塔9的预氧化反应区10,然后废水进入生物处理区11;废水在前处理塔9的停留时间为1.5 h;
(2)催化氧化处理:经前处理塔9处理的废水通过第一水泵15输送到催化氧化塔1底部的喷射进水口2,同时通过第一管道混合器16、第二管道混合器17和第三管道混合器18分别加入H2SO4、FeSO4•7H2O和过氧化氢,通过射流器20向废水提供臭氧,通过粒子投入口向催化氧化塔1投加催化剂颗粒;以废水体积计,FeSO4•7H2O的加入量为585 mg/L,过氧化氢加入量为780 mg/L,臭氧加入量为195 mg/L;加入H2SO4使废水pH保持为3;投加催化剂颗粒为活性氧化铝负载氧化锰和二氧化钛颗粒,以废水体积计,催化剂颗粒加入量为15g/L;
废水以5 m/s的速度从喷射进水口2喷射出来进入催化氧化塔1的第一流态化反应区4,并通过形成的负压将催化氧化塔1底部的催化剂颗粒提升吸入第一流态化反应区4,接着废水从第一流态化反应区4溢流进入第二流态化反应区5;废水在第一流态化反应区4和第二流态化反应区5的流动速度分别为60 m/h和40 m/h,使催化剂颗粒充分流态化,进行Fenton协同臭氧流态化催化氧化反应;然后废水和颗粒离开第二流态化反应区5向催化氧化塔1顶部流动,进入颗粒沉降分离区6;在颗粒沉降分离区6,随着流动截面积的增加,废水和催化剂颗粒的上升速度下降,粒子在重力作用下开始沉降至颗粒聚集区3,而废水则与颗粒分离经催化氧化塔1顶部溢流进入循环出水槽8;
循环出水槽2/3质量的水通过第二水泵22输送,经管道和来自前处理塔9的废水混合,进入催化氧化塔1底部的喷射进水口2,以维持废水在催化氧化塔1中的流速,使催化剂颗粒在第一、第二流态化反应区中充分流态化,有效提高废水的处理效果;废水在催化氧化塔1的停留时间为2.5 h;
(3)后处理:经催化氧化处理的废水溢流进入循环出水槽8,再通过第三水泵24经管道输送到后处理塔27的喷射进水口,进入后处理塔27的流态化反应区27-1,同时通过第四管道混合器25和第五管道混合器26向废水中加入碱液和聚丙烯酰胺,以废水体积计,聚丙烯酰胺的加入量为2 mg/L,废水的pH值调节至7.5。在流态化反应区27-1,微絮体开始形成,维持水流上升速度为45m/h,使微絮体处于流态化状态,使废水和碱液、聚丙烯酰胺充分混合、接触、反应;从流态化反应区27-1出来的废水进入絮体增长反应区27-2,废水的流速下降,流态化逐渐减弱,微絮体在絮凝剂作用下相互凝聚,形成较大的絮体开始下沉,接着,废水进入絮体分离沉淀区27-3;在絮体分离沉淀区27-3,废水上升的流速进一步下降,絮体逐渐下沉,最后到达污泥浓缩区27-4,在反应塔底部形成沉淀并逐渐浓缩,而废水缓慢上流至后处理塔27顶部的澄清水区27-5,通过溢流堰溢流进入出水槽28输送到清水池29,完成废水的Fenton协同臭氧流态化催化氧化处理过程,废水在后处理塔27的停留时间为3 h。
经处理后,废水的CODcr为78 mg/L,色度为61 C.U.。而采取常规的Fenton处理方法,处理后废水的CODcr为126 mg/L,色度为115 C.U.,且处理成本较高。
实施例3
本实施例中,Fenton协同臭氧流态化催化氧化废水处理装置用于处理废纸造纸废水经水解酸化和SBR处理后的废水,废水的CODcr为230 mg/L,色度为320 C.U.。
本实用新型Fenton协同臭氧流态化催化氧化废水处理装置处理南方杂木浆漂白废水的方法,包括以下步骤和工艺条件:
(1)前处理:二沉池出水由泵通过设置在前处理塔9底部的布水管12输送进入前处理塔9,同时来自催化氧化塔1顶部气体收集装置7的臭氧-氧气混合气体尾气通过设置在前处理塔9底部的布气管13进入前处理塔9;臭氧和氧气混合气体与废水在前处理塔9底部充分均匀混合后进入前处理塔9的预氧化反应区10,然后废水进入生物处理区11;废水在前处理塔9的停留时间为2 h;
(2)催化氧化处理:经前处理塔9处理的废水通过第一水泵15输送到催化氧化塔1底部的喷射进水口2,同时通过第一管道混合器16、第二管道混合器17和第三管道混合器18分别加入H2SO4、FeSO4•7H2O和过氧化氢,通过射流器20向废水提供臭氧,通过粒子投入口向催化氧化塔1投加催化剂颗粒;以废水体积计,FeSO4•7H2O的加入量为230 mg/L,过氧化氢加入量为230 mg/L,臭氧加入量为115 mg/L;加入H2SO4使废水pH保持为2;投加催化剂颗粒为活性碳负载氧化镍颗粒,以废水体积计,催化剂颗粒加入量为2g/L;
废水以10 m/s的速度从喷射进水口2喷射出来进入催化氧化塔1的第一流态化反应区4,并通过形成的负压将催化氧化塔1底部的催化剂颗粒提升吸入第一流态化反应区4,接着废水从第一流态化反应区4溢流进入第二流态化反应区5;废水在第一流态化反应区4和第二流态化反应区5的流动速度分别为75 m/h和55 m/h,使催化剂颗粒充分流态化,进行Fenton协同臭氧流态化催化氧化反应;然后废水和颗粒离开第二流态化反应区5向催化氧化塔1顶部流动,进入颗粒沉降分离区6;在颗粒沉降分离区6,随着流动截面积的增加,废水和催化剂颗粒的上升速度下降,粒子在重力作用下开始沉降至颗粒聚集区3,而废水则与颗粒分离经催化氧化塔1顶部溢流进入循环出水槽8;
循环出水槽2/3质量的水通过第二水泵22输送,经管道和来自前处理塔9的废水混合,进入催化氧化塔1底部的喷射进水口2,以维持废水在催化氧化塔1中的流速,使催化剂颗粒在第一、第二流态化反应区中充分流态化,有效提高废水的处理效果;废水在催化氧化塔1的停留时间为1 h;
(3)后处理:经催化氧化处理的废水溢流进入循环出水槽8,再通过第三水泵24经管道输送到后处理塔27的喷射进水口,进入后处理塔27的流态化反应区27-1,同时通过第四管道混合器25和第五管道混合器26向废水中加入碱液和聚丙烯酰胺,以废水体积计,聚丙烯酰胺的加入量为1 mg/L,废水的pH值调节至7.6。在流态化反应区27-1,微絮体开始形成,维持水流上升速度为35m/h,使微絮体处于流态化状态,使废水和碱液、聚丙烯酰胺充分混合、接触、反应;从流态化反应区27-1出来的废水进入絮体增长反应区27-2,废水的流速下降,流态化逐渐减弱,微絮体在絮凝剂作用下相互凝聚,形成较大的絮体开始下沉,接着,废水进入絮体分离沉淀区27-3;在絮体分离沉淀区27-3,废水上升的流速进一步下降,絮体逐渐下沉,最后到达污泥浓缩区27-4,在反应塔底部形成沉淀并逐渐浓缩,而废水缓慢上流至后处理塔27顶部的澄清水区27-5,通过溢流堰溢流进入出水槽28输送到清水池29,完成废水的Fenton协同臭氧流态化催化氧化处理过程,废水在后处理塔27的停留时间为4 h。
经处理后,废水的CODcr为48 mg/L,色度为20 C.U.。而采取常规的Fenton处理方法,处理后废水的CODcr为90 mg/L,色度为85 C.U.,且处理成本较高。
实施例4
本实施例除下述条件外,其余同实施例1:本实施例中,以废水体积计,过氧化氢加入量为640 mg/L,所投加的催化剂颗粒为活性氧化铝负载氧化锆颗粒,催化剂颗粒投加量为12 g/L;
经处理后,废水的CODcr为45 mg/L,色度为55 C.U.。而采取常规的Fenton处理方法,处理后废水的CODcr为135 mg/L,色度为150C.U.,且处理成本较高。

Claims (6)

1.Fenton协同臭氧流态化催化氧化废水处理装置,其特征在于,包括前处理塔(9)、催化氧化塔(1)、后处理塔(27)、药剂制备系统(30)、臭氧供应系统和清水池(29);所述的前处理塔(9)的底部设置有布水管(12)和布气管(13),前处理塔(9)上部设置吸附生长有微生物的填料;前处理塔(9)由下至上设置有依次流通的预氧化区(10)和生物处理区(11);所述臭氧供应系统包括通过管道连接的氧气供应系统(36)和臭氧制备装置(38),氧气供应系统(36)和臭氧制备装置(38)的连接管道上设置有流量计(37)。
2.根据权利要求1所述的Fenton协同臭氧流态化催化氧化废水处理装置,其特征在于,所述前处理塔(9)上部外侧设置有出水槽(14),前处理塔(9)的顶部通过溢流口与出水槽(14)连接;所述前处理塔(9)的出水槽(14)通过管道与设置在催化氧化塔(1)底部的喷射进水口(2)连接;前处理塔(9)的出水槽(14)与催化氧化塔(1)的喷射进水口(2)的连接管道上设置有依次连接的第一水泵(15)、第一管道混合器(16)、第二管道混合器(17)、第三管道混合器(18)、第一流量计(19)和射流器(20);第一管道混合器(16)通过管道与药剂制备系统(30)的酸液贮存槽(30-1)的出口连接;第一管道混合器(16)与药剂制备系统(30)的酸液贮存槽出口的连接管道上设置有第一计量泵(31);第二管道混合器(17)通过管道与药剂制备系统(30)的催化剂贮存槽(30-2)的出口连接;第二管道混合器(17)与药剂制备系统(30)的催化剂贮存槽出口的连接管道上设置有第二计量泵(32);第三管道混合器(18)通过管道与药剂制备系统(30)的过氧化氢贮存槽(30-3)的出口连接;第三管道混合器(18)与药剂制备系统(30)的过氧化氢贮存槽出口的连接管道上设置有第三计量泵(33);射流器(20)通过管道与臭氧供应系统的臭氧制备装置(38)连接;射流器(20)与臭氧制备装置(38)的连接管道上设置有防止废水倒流的单向阀(39)。
3.根据权利要求2所述的Fenton协同臭氧流态化催化氧化废水处理装置,其特征在于,所述催化氧化塔(1)上部外侧设置有循环出水槽(8),催化氧化塔(1)顶部通过溢流口与循环出水槽(8)连接;循环出水槽(8)通过管道与催化氧化塔(1)底部的喷射进水口(2)连接;循环出水槽(8)与喷射进水口(2)的连接管道上设置有依次连接的第二流量计(21)和第二水泵(22);所述的催化氧化塔(1)设置有依次连通的第一流态化反应区(4)、第二流态化反应区(5)、颗粒聚集区(3)和颗粒沉降分离区(6);催化氧化塔(1)还设置有催化剂颗粒和粒子投加口;
所述催化氧化塔(1)顶部设置有气体收集装置(7),所述气体收集装置(7)通过尾气管(41)与设置在前处理塔(9)底部的布气管(13)连接。
4.根据权利要求3所述的Fenton协同臭氧流态化催化氧化废水处理装置,其特征在于,所述催化氧化塔循环出水槽(8)的出水口通过管道与后处理塔(27)的喷射进水口连接;循环出水槽(8)的出水口与后处理塔(27)的喷射进水口的连接管道上设置有依次连接的第三流量计(23)、第三水泵(24)、第四管道混合器(25)和第五管道混合器(26);第四管道混合器(25)通过管道与药剂制备系统(30)的碱液贮存槽(30-4)的出口连接;第五管道混合器(26)通过管道与药剂制备系统(30)的絮凝剂贮存槽(30-5)的出口连接;所述的第四管道混合器(25)与药剂制备系统(30)的碱液贮存槽出口的连接管道上设置有第四计量泵(34);所述的第五管道混合器(26)与药剂制备系统(30)的絮凝剂贮存槽出口的连接管道上设置有第五计量泵(35);
所述循环出水槽(8)的溢流口通过第一溢流管(40)与前处理塔(9)连接。
5.根据权利要求4所述的Fenton协同臭氧流态化催化氧化废水处理装置,其特征在于,所述后处理塔(27)的上部外侧设置有出水槽(28),后处理塔(27)顶部通过溢流口与出水槽(28)连接;所述出水槽(28)的出水口通过出水管(42)与清水池(29)连接,出水槽(28)的溢流口通过第二溢流管(43)与清水池(29)连接。
6.根据权利要求1所述的Fenton协同臭氧流态化催化氧化废水处理装置,其特征在于,所述的后处理塔(27)设置有依次流通的流态化反应区(27-1)、絮体增长反应区(27-2)、絮体分离沉淀区(27-3)、污泥浓缩区(27-4)和澄清水区(27-5),是具有中和、混凝、沉淀和净化功能的一体化立式反应塔。
CN201621122828.5U 2016-10-14 2016-10-14 Fenton协同臭氧流态化催化氧化废水处理装置 Expired - Fee Related CN206109104U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201621122828.5U CN206109104U (zh) 2016-10-14 2016-10-14 Fenton协同臭氧流态化催化氧化废水处理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201621122828.5U CN206109104U (zh) 2016-10-14 2016-10-14 Fenton协同臭氧流态化催化氧化废水处理装置

Publications (1)

Publication Number Publication Date
CN206109104U true CN206109104U (zh) 2017-04-19

Family

ID=58529484

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201621122828.5U Expired - Fee Related CN206109104U (zh) 2016-10-14 2016-10-14 Fenton协同臭氧流态化催化氧化废水处理装置

Country Status (1)

Country Link
CN (1) CN206109104U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106365348A (zh) * 2016-10-14 2017-02-01 华南理工大学 Fenton协同臭氧流态化催化氧化废水处理装置及其处理废水的方法
CN110272143A (zh) * 2018-03-14 2019-09-24 株式会社 Enplus 用于净化页岩气开采过程中的污水的装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106365348A (zh) * 2016-10-14 2017-02-01 华南理工大学 Fenton协同臭氧流态化催化氧化废水处理装置及其处理废水的方法
CN110272143A (zh) * 2018-03-14 2019-09-24 株式会社 Enplus 用于净化页岩气开采过程中的污水的装置

Similar Documents

Publication Publication Date Title
CN105236694B (zh) 一种化工废水生化尾水深度处理的系统及方法
CN103771625B (zh) Fenton催化氧化法处理制浆废水的装置及方法
CN104150707B (zh) 一种生物转盘处理污水的装置和方法
CN103553200B (zh) 一种Fenton 氧化废水处理方法及系统
CN103755093B (zh) 芬顿流化床-ibac联用深度处理纺织染整废水工艺
CN104445605B (zh) 一种机械内循环射流厌氧反应器及其处理废水的方法
CN103755096A (zh) 用于剩余污泥处理的耦合Fenton氧化和厌氧消化的反应装置
CN103755092B (zh) 一种新型纺织染整废水深度处理及回用工艺
CN106365348A (zh) Fenton协同臭氧流态化催化氧化废水处理装置及其处理废水的方法
CN206512041U (zh) 一种两级梯度臭氧催化流化床深度处理生化尾水的装置
CN209226777U (zh) 一种强化深度脱氮除磷工艺污水处理装置
CN206109104U (zh) Fenton协同臭氧流态化催化氧化废水处理装置
CN103755006A (zh) 一体化非均相折流板Fenton连续反应器
CN110526504A (zh) 一种靶向脱氮除磷树脂再生废液处理的系统及方法
CN206109157U (zh) 一种Fenton协同臭氧处理废水装置
CN102951724A (zh) 一种Fenton反应用三相反应器
CN207192990U (zh) 一种芬顿耦合微电解催化氧化废水处理系统
CN106587441A (zh) 一种钢铁企业废水处理和再利用的装置和工艺方法
CN206109156U (zh) 一种高效造纸法再造烟叶废水处理装置
CN206109155U (zh) 一种造纸法再造烟叶废水深度处理装置
CN106348536A (zh) 一种Fenton协同臭氧处理废水装置及其处理废水的方法
CN206109103U (zh) Fenton流态化废水处理装置
CN103771624B (zh) 一体流态化催化氧化塔及应用其深度处理废水的方法
CN108862849A (zh) 杏仁脱苦废水的处理工艺及处理系统
CN105330017B (zh) 一种厌氧反应器及养殖废水处理系统和方法

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170419

Termination date: 20191014

CF01 Termination of patent right due to non-payment of annual fee