CN206038955U - 一种可调的表面等离激元滤波器 - Google Patents

一种可调的表面等离激元滤波器 Download PDF

Info

Publication number
CN206038955U
CN206038955U CN201620880518.3U CN201620880518U CN206038955U CN 206038955 U CN206038955 U CN 206038955U CN 201620880518 U CN201620880518 U CN 201620880518U CN 206038955 U CN206038955 U CN 206038955U
Authority
CN
China
Prior art keywords
surface plasmon
wave filter
waveguide
pressure
adjustable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201620880518.3U
Other languages
English (en)
Inventor
王萍
郎佩琳
段高燕
解廷月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi Datong University
Original Assignee
Shanxi Datong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi Datong University filed Critical Shanxi Datong University
Priority to CN201620880518.3U priority Critical patent/CN206038955U/zh
Application granted granted Critical
Publication of CN206038955U publication Critical patent/CN206038955U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

一种可调的表面等离激元滤波器。该滤波器由表面等离激元共振腔和表面等离激元波导耦合构成。入射激光在波导中激发表面等离激元,当入射光的波长与表面等离激元共振腔的共振波长匹配时,可以将表面等离激元的能量耦合进入表面等离激元共振腔,从而改变表面等离激元波导中的光强,实现滤波效果。由于表面等离激元共振腔的共振波长会在外加压力下改变,因此外加的压力可以调制滤波器的滤波波段。由于滤波器的形变依赖于外加压强,而与介电常数无关,因此加大压力就可以扩大滤波器的可调范围。而且,该滤波器不含有液体成分,更易于集成制作。

Description

一种可调的表面等离激元滤波器
技术领域
本实用新型涉及一种可调滤波器装置,尤其是纳米尺度的可调表面等离激元滤波器装置。
背景技术
表面等离激元是光入射在金属和介质表面形成的一种电磁场与金属内部电子相互耦合的电磁波。表面等离激元的主要特点是波长短、能量高度局域化、可以突破光学衍射极限。因此,利用表面等离激元可以制成突破衍射极限的纳米光学器件。表面等离激元滤波器是纳米光学器件中的核心部件。利用表面等离激元滤波器与表面等离激元波导结构耦合,可以制作多种纳米光学器件,比如表面等离激元分束器,表面等离激元衰减器,纳米光学传感器等(参见G.An et al.,Applied Optics,55(2016)1262;J.Yang et al.,OpticsLett.40(2015)978;Y.Liu et al.,Optics Express,23(2015)20540;H.Nasari andM.S.Abrishamian,Journal of Lightwave Tech.,33(2015)4071;T.Nikolajsen et al.,Opt.Commun.244(2005)455;X.Zhai et al.,J.Nanomaterials 2013(2013)484207;D.Xiang and W.-J.Li,J.Mod.Opt.61(2014)222;G.Gagnon et al.,J.LightwaveTechnol.24(2006)4391;T.Nikolajsen et al.,Appl.Phys.Lett.85(2004)5833;Z.H.Hanet al.,IEEE Photon. Technol.Lett.19(2007)91等文献)。
表面等离激元的传输特性与金属和电介质的介电性质密切相关,因此改变电介质的介电常数就可以改变表面等离激元的传输特性,进而可以改变表面等离激元滤波器的特征波长。利用调控电介质的介电常数,可以制作可调的表面等离激元滤波器。如文献(XiChen,Ru Zhang,Peilin Lang,Huichun Yang,Ting Zhong and Kun Zhong,TransmittanceSpectrum of Surface Plasmon Polariton Based Filter with Asymmetric Double-ring Resonator and Switch,Journal of Modern Optics,61(9),716-720(2014))所述,在环形表面等离激元滤波器中填充向列型液晶BL009,当给液晶施加电场后,液晶的介电常数发生变化,导致表面等离激元滤波器的特征波长移动,从而制成波长可调的带通滤波器。如果外加电压与滤波器的特征波长匹配,则可以构成表面等离激元光电开关。因此,可调的表面等离激元滤波器在集成光学器件中具有重要的作用。
目前的可调表面等离激元滤波器基本上都采用调节电介质的介电常数的方法,其中最容易调节介电常数的电介质就是液晶。但由于液晶是一种液体,因此集成在表面等离激元纳米光学器件中的技术难度较大。而且液晶的介电常数在外加电压超过一定值后会趋向饱和,因此采用调节介电常数的方法制作的表面等离激元滤波器的可调范围有限。
实用新型内容
为了克服现有的可调表面等离激元滤波器在可调范围方面的不足,本实用新型提供一种新型的采用压力可调表面等离激元滤波器。该可调滤波器不但具有易于集成的优点,还提高了滤波器的可调范围。
本实用新型解决其技术问题所采用的技术方案是:采用表面等离激元共振腔与表面等离激元波导相互耦合构成可调表面等离激元滤波器。表面等离激元共振腔是由金属中的空腔构成,空腔中的一侧腔壁很薄,且此腔壁外侧与压力源接触,在外加压力下腔壁容易发生形变。为了防止表面等离激元波导的传输特性也受到外加压力的影响,表面等离激元波导与共振腔在远离金属表面的地方相互耦合。当入射光激发表面等离激元在表面等离激元波导中传播时,如果入射光波长与表面等离激元共振腔的共振波长匹配,则会在共振腔中产生共振,使得表面等离激元波导中的能量被耦合到共振腔中,从而在表面等离激元波导的出射口会检测到光强的变化。在外加压力下,表面等离激元共振腔的一侧腔壁发生形变,从而导致共振腔的共振波长发生变化,因此出射端口的发生光强变化对应的波长就发生相应的移动,从而实现滤波器的波段可调。由于表面等离激元共振腔对形变比对介电常数的变化更加敏感,因此压力可调的滤波器的可调范围大大增加。而且,由于压力可调的表面等离激元滤波器不含有液体成分,因此易于集成。
本实用新型的有益效果是,可以扩大可调表面等离激元滤波器的可调范围,同时还具有易于集成制作的优点。
附图说明
下面结合附图和实施例对本实用新型进一步说明。
图1是压力作用下表面等离激元共振腔壁的形变示意图。
图2是第一个实施例的结构原理图。
图3是第一个实施例的测试光路原理图。
图4是第一个实施例的透射光谱图。
图5是第二个实施例的结构原理图。
图中1.金属腔壁,2.表面等离激元共振腔,3.表面等离激元波导,4.表面等离激元压力可调滤波器,5.激光器,6.光纤,7.光纤光谱仪。
具体实施方式
在图1中,表面等离激元共振腔的一部分腔壁1在没有外加压强情况下可以看成是一平直的金属梁。在外加压强情况下,金属腔壁1在外加压力下发生弯曲,减少金属空腔的体积。由于表面等离激元共振腔的共振波长与空腔体积、空腔形状密切相关,因此表面等离激元共振腔的共振波长会发生移动。基于表面等离激元共振腔的表面等离激元滤波器的滤波波段也就会随外加压力而改变,从而实现了压力可调的表面等离激元滤波器。
在图2所示的实施例中,压力可调滤波器4是由表面等离激元共振腔2和表面等离激元波导3采用侧边耦合的方式构成的。表面等离激元共振腔采用“Π”字型结构,“Π”字型共振腔由一个横槽和两个竖槽构成。横槽与金属表面平行而且距离金属表面很近,两个竖槽分别与横槽直接连接,且都分布在远离金属表面一侧。在表面等离激元共振腔2的下面,用离子束刻蚀的方法或利用薄膜分层生长的方法制备一表面等离激元直波导结构3。波导3的一侧与“Π”字型表面等离激元共振腔2的两个竖槽相互耦合。当有激光入射到波导3的入射端口时,就会在波导3内激发表面等离激元,表面等离激元沿波导3传播。如果入射光的波长与“Π”字型表面等离激元共振腔2的共振波长相同,则表面等离激元会被耦合到“Π”字型表面等离激元共振腔2中,从而导致波导3中表面等离激元的能量降低,这样就会在波导的出射端口检测到光强的衰减。这样就实现了对表面等离激元的滤波。由于“Π”字型表面等离激元共振腔2的共振波长与外加压强成正比,因此外加压强可以调节压力可调滤波器的带阻波段。
在图3所示的实施例测试光路原理图中,激光器5发射的激光通过光纤6耦合到压力可调滤波器4的波导入射端口,并在波导3中激发表面等离激元。表面等离激元通过滤波器4滤波后,由波导3的出射端口耦合到光纤6中,传输到光纤光谱仪7中测量透射谱。测量后得到的透射谱如图4所示。当没有外加压力时,共振腔不形变,透射谱由图中实线表示。在波长从600nm到1600nm的波段内有两个共振波长,对应于透射谱中的带阻波段。一个带阻的中心波长为790nm,另一个带阻的中心波长为1425nm。当外加一定压力使共振腔的形变量达到10nm时的透射谱由图中虚线表示。显然,两个带阻波段的位置都发生了改变。其中波长短的带阻中心波长移动到800nm,而波长较长的带阻中心波长移动到了1505nm。相当于每形变量为1nm时,带阻中心波长移动8nm。
在图5所示实施例中,可调滤波器4是由“工”字型表面等离激元共振腔2和表面等离激元入射波导3以及出射波导3采用直接耦合的方式构成的。这样的表面等离激元滤波器属于带通滤波器,带通的中心波长对应表面等离激元共振腔2的共振波长。当有外加压力时,带通的中心波长位置也会发生相应的移动,从而实现可调的带通滤波器。
可以理解的是,以上实施例只是为了说明本实用新型的有益效果而采取的实施方式。表面等离激元共振腔与表面等离激元波导有多种耦合方式,表面等离激元共振腔也可以采用多种材料和制备工艺。所有利用压力调制表面等离激元共振腔的共振波长实现可调滤波器的各种实施结构和应用均被视为本实用新型的保护范围。

Claims (1)

1.一种可调的表面等离激元滤波器,其特征是:由表面等离激元共振腔和表面等离激元波导耦合构成,表面等离激元共振腔是由金属中的空腔构成,空腔中的一侧腔壁很薄,且此腔壁外侧与压力源接触,表面等离激元波导与共振腔在远离金属表面的地方相互耦合。
CN201620880518.3U 2016-08-16 2016-08-16 一种可调的表面等离激元滤波器 Expired - Fee Related CN206038955U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201620880518.3U CN206038955U (zh) 2016-08-16 2016-08-16 一种可调的表面等离激元滤波器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201620880518.3U CN206038955U (zh) 2016-08-16 2016-08-16 一种可调的表面等离激元滤波器

Publications (1)

Publication Number Publication Date
CN206038955U true CN206038955U (zh) 2017-03-22

Family

ID=58306296

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201620880518.3U Expired - Fee Related CN206038955U (zh) 2016-08-16 2016-08-16 一种可调的表面等离激元滤波器

Country Status (1)

Country Link
CN (1) CN206038955U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110361798A (zh) * 2018-03-26 2019-10-22 桂林电子科技大学 一种基于表面等离激元波导带阻滤波器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110361798A (zh) * 2018-03-26 2019-10-22 桂林电子科技大学 一种基于表面等离激元波导带阻滤波器

Similar Documents

Publication Publication Date Title
Pasquazi et al. All-optical wavelength conversion in an integrated ring resonator
CN103091831B (zh) 可调谐光学滤波器及应用
CN104133270B (zh) 基于有源-无源光学微腔耦合系统的片上可调谐光隔离器
Li et al. Graphene actively Q-switched lasers
CN106647098B (zh) 一种基于氮化硅波导的通信带到中红外超连续谱产生方法
CN206019882U (zh) 一种基于表面等离激元共振腔的纳米光学压力传感器
CN102955268A (zh) 基于金属纳米波导的表面等离子光学调制器
Fu et al. Passively Q-switched Yb-doped all-fiber laser based on Ag nanoplates as saturable absorber
Liu et al. Recent progress on applications of 2D material-decorated microfiber photonic devices in pulse shaping and all-optical signal processing
CN105629521A (zh) 一种石墨烯辅助的微光纤环形腔全光开关
Han et al. High-energy, tunable-wavelengths, Q-switched pulse laser
Li et al. All-optical switch based on nonlinear optics
CN103941518B (zh) 基于硅基微环谐振腔热光调谐机构的可调全光振荡器
CN103308082A (zh) 一种单环镶嵌谐振腔耦合m-z干涉仪的传感结构
Steinberg et al. Study of pulse formation in an EDFL under a large dispersion variation hybridly mode-locked by graphene and nonlinear polarization rotation
Xiao et al. A pulsewidth measurement technology based on carbon-nanotube saturable absorber
CN100541147C (zh) 一种光子晶体减慢光速效应的测量方法及测量装置
CN206038955U (zh) 一种可调的表面等离激元滤波器
CN102130413A (zh) 基于多组分掺杂石英光纤的全光纤化超连续谱激光源
Han et al. All-optical modulator based on reduced graphene oxide coated D-shaped fiber waveguide
CN109541752B (zh) 一种基于全光纤光控系统的可调谐光衰减器
CN101833138B (zh) 一种偏振无关光栅耦合器的制作方法
CN106410586A (zh) 一种高功率高重频锁模脉冲光纤激光器
Wang et al. Two-dimensional material integrated micro-nano fiber, the new opportunity in all-optical signal processing
Yan et al. Operation bandwidth optimization of photonic differentiators

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170322

Termination date: 20200816

CF01 Termination of patent right due to non-payment of annual fee