CN206003136U - 一种rfid标签芯片中的射频调制电路 - Google Patents

一种rfid标签芯片中的射频调制电路 Download PDF

Info

Publication number
CN206003136U
CN206003136U CN201620732754.0U CN201620732754U CN206003136U CN 206003136 U CN206003136 U CN 206003136U CN 201620732754 U CN201620732754 U CN 201620732754U CN 206003136 U CN206003136 U CN 206003136U
Authority
CN
China
Prior art keywords
semiconductor
oxide
type metal
circuit
electric capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201620732754.0U
Other languages
English (en)
Inventor
易俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Yue Technology Co. Ltd.
Original Assignee
Hangzhou Lanshi Microelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Lanshi Microelectronics Technology Co Ltd filed Critical Hangzhou Lanshi Microelectronics Technology Co Ltd
Priority to CN201620732754.0U priority Critical patent/CN206003136U/zh
Application granted granted Critical
Publication of CN206003136U publication Critical patent/CN206003136U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electronic Switches (AREA)

Abstract

本实用新型涉及电路领域,特别地涉及一种RFID标签芯片中的射频调制电路。本实用新型公开了一种RFID标签芯片中的射频调制电路,包括P型MOS管MP1、N型MOS管MN1、反相电路、电容C1和单向开关,所述P型MOS管MP1和N型MOS管MN1的漏极相连,所述P型MOS管MP1和N型MOS管MN1的源极分别接天线的两端,所述N型MOS管MN1的源极同时接地,所述P型MOS管MP1的衬底与漏极连接,调制信号接所述N型MOS管MN1的栅极,同时经反相电路接所述电容C1的第一端,所述电容C1的第二端接P型MOS管MP1的栅极,同时连接单向开关接地,所述单向开关的电流导通方向指向地。本实用新型解决了射频信号位于负半周期时,射频信号被非正常箝位,从而影响工作距离的问题,且电路结构简单,成本低。

Description

一种RFID标签芯片中的射频调制电路
技术领域
本实用新型属于电路领域,具体地涉及一种RFID标签芯片中的射频调制电路。
背景技术
射频识别(RFID:Radio Frequency Identification)技术,是一种利用射频信号和电磁耦合实现识别目标的技术。同时,该技术也利用电磁耦合实现基站和标签之间的数据传输。该技术具有不局限于视线,识别距离比光学系统远,标签可读写、可携带大量数据,同时具有难以伪造和智能性较高等优点而得到社会各领域的广泛使用。
RFID标签芯片上的射频调制电路的理想电路(如图1a)是一个理想开关S1,接在天线的两端RFP、RFN,由调制信号VMOD控制,当调制信号VMOD为低电平时,开关S1开路。由于开关S1是理想开关,天线两端RFP、RFN看到一个无穷大的电阻,天线两端电压RFP-RFN即为接收到的射频信号;当调制信号VMOD为高电平时,开关S1闭合,理想开关的闭合阻抗为0,使得天线两端短路,RFP-RFN为0,其波形如图1b所示。
典型的实际的RFID标签芯片上的射频调制电路如图2a所示,一个N型MOS管MN1作为开关,调制信号VMOD通过一个驱动缓冲级BUF1来控制N型MOS管MN1的开关。图2b所示为N型MOS管MN1的等效电路,即为一个理想开关S1和N型MOS管MN1的导通电阻RN串联后和一个寄生二极管DN1并联组成。当调制信号VMOD为高电平时,N型MOS管MN1导通,天线两端看到等效电阻RN,通常会设计该电阻RN具有一个很小的电阻值,使得天线两端RFP和RFN近乎短路,即电压RFP-RFN几乎为0;当调制信号VMOD为低电平(此处为0)时,N型MOS管MN1关断,天线两端RFP、RFN期望看到的是一个开路,但是,当天线上接收到的射频输入信号RFP-RFN在负半周期时,且射频输入信号RFP-RFN的幅度比寄生二极管DN1的导通电压高时,即使调制信号VMOD为低电平,寄生二极管DN1也会导通,于是天线两端看到的并不是一个开路,而且造成射频输入信号RFP-RFN被箝位和漏电,进一步影响工作距离,特别是在高温时,其波形如图2c所示。
为了解决寄生二极管DN1的箝位和漏电问题,可以增加一个互补的P型MOS管MP1,并把P型MOS管MP1的漏极连接到N型MOS管MN1的漏极,如图3a所示。其等效电路如图3b所示,当射频输入信号RFP-RFN在负半周期时,N型MOS管MN1的寄生体二极管DN1被P型MOS管MP1阻断,不能导通,解决上述问题。但是,由于P型MOS管MP1需要一定的导通电压VTH(MP1),相当于在其等效电路中,增加了一个正向导通电压VTH(MP1),导致在调制信号VMOD为高电平时,天线两端RFP、RFN不能短路相接,而是被箝位在VTH(MP1)处,如图3c所示,从而引入了新问题,所以单增加一个互补的P型MOS管MP1不能有效解决上述问题。
发明内容
本实用新型目的在于为解决上述问题而提供一种可以有效解决射频信号位于负半周期时,射频信号被非正常箝位,从而影响工作距离的问题,且电路结构简单,成本低的RFID标签芯片中的射频调制电路。
为此,本实用新型公开了一种RFID标签芯片中的射频调制电路,包括P型MOS管MP1、N型MOS管MN1、反相电路、电容C1和单向开关,所述P型MOS管MP1和N型MOS管MN1的漏极相连,所述P型MOS管MP1和N型MOS管MN1的源极分别接天线的两端,所述N型MOS管MN1的源极同时接地,所述P型MOS管MP1的衬底与漏极连接,调制信号接所述N型MOS管MN1的栅极,同时经反相电路接所述电容C1的第一端,所述电容C1的第二端接P型MOS管MP1的栅极,同时连接单向开关接地,所述单向开关的电流导通方向指向地。
进一步的,所述反相电路由反相器INV1组成,调制信号接所述反相器INV1的输入端,所述反相器INV1的输出端接电容C1的第一端。
进一步的,所述单向开关为二极管D1,所述二极管D1的正端接电容C1的第二端,所述二极管D1的负端接地。
进一步的,所述单向开关为P型MOS管MP2,所述P型MOS管MP2的源极接电容C1的第二端,所述P型MOS管MP2的漏极接地,所述调制信号接P型MOS管MP2的栅极,所述P型MOS管MP2的衬底与漏极连接。
进一步的,所述单向开关为NPN三极管Q1,所述NPN三极管Q1的发射极接电容C1的第二端,所述NPN三极管Q1的集电极接地,所述调制信号接NPN三极管Q1的基极。
本实用新型的有益技术效果:
本实用新型通过采用互补的MOS管组成开关并通过电容和单向开关组成自举电路将P型MOS管的栅极电压下拉到负,使得天线两端RFP和RFN近乎短路,从而有效解决了射频信号位于负半周期时,射频信号被非正常箝位,从而影响工作距离的问题,且电路结构简单,成本低。
附图说明
图1a为理想的射频调制电路原理图;
图1b为图1a的射频输入信号波形图;
图2a为典型的实际的RFID标签芯片上的射频调制电路原理图;
图2b为图2a的等效电路图;
图2c为图2a的射频输入信号波形图;
图3a为增加一个P型MOS管的射频调制电路原理图;
图3b为图3a的等效电路图;
图3c为图3a的射频输入信号波形图;
图4a为本实用新型实施例一的电路原理图;
图4b为图4a的若干节点的电压波形图;
图5为本实用新型实施例二的电路原理图;
图6为本实用新型实施例三的电路原理图。
具体实施方式
现结合附图和具体实施方式对本实用新型进一步说明。
实施例一:
如图4a和4b所示,一种RFID标签芯片中的射频调制电路,包括P型MOS管MP1、N型MOS管MN1、反相电路、电容C1和单向开关,本实施例中,反相电路由反相器INV1组成,当然,在其它实施例中,也可以是由其它元器件如三极管组成的反相电路,所示单向开关为二极管D1,所述P型MOS管MP1和N型MOS管MN1的漏极相连,所述P型MOS管MP1和N型MOS管MN1的源极分别接天线的两端RFP和RFN,N型MOS管MN1的源极同时接地,即天线的RFN端接地,所述P型MOS管MP1的衬底与漏极连接,调制信号VMOD通过缓冲器BUF1接N型MOS管MN1的栅极,所述电容C1的第一端接反相器INV1的输出端,反相器INV1的输入端接缓冲器BUF1的输出端,所述电容C1的第二端接P型MOS管MP1的栅极,同时连接二极管D1接地,所述二极管D1的正端接电容C1的第二端,所述二极管D1的负端接地,图中的二极管DP1和DN1分别表示P型MOS管MP1和N型MOS管MN1的寄生电容。
工作原理如下:当调制信号VMOD为低电平时,反相器INV1输出高电平,对电容C1进行充电,P型MOS管MP1的栅极电压VGP被二极管D1箝位在二极管D1的压降VD,通常约为0.5-0.7V,电容C1两端的电压为调制信号VMOD的电源电压VDD减去二极管D1的压降VD,即VDD-VD。当调制信号VMOD为高电平时,反相器INV1输出低电平,即0V,由于电容C1具有保持电荷的特性,P型MOS管MP1的栅极电压VGP变为负电压,即-(VDD-VD)。调制信号VMOD、N型MOS管MN1的栅极电压VGN和P型MOS管MP1的栅极电压VGP的波形如图4b所示。只要设计VDD-VD大于P型MOS管MP1的开启电压VTH(MP1),即可以使得P型MOS管MP1可以很好的导通,可把天线RFP端的电压拉低到RFN端的电压,近乎短接,即可解决图3a所示的调制电路在调制信号VMOD为高电平时,天线两端RFP、RFN不能短路相接,而是被箝位在VTH(MP1)处的问题,从而有效解决了射频信号位于负半周期时,射频信号被非正常箝位,从而影响工作距离的问题。
实施例二:
如图5所示,本实施例与实施例一的区别在于:单向开关为P型MOS管MP2,P型MOS管MP2的源极接电容C1的第二端,P型MOS管MP2的漏极接地,P型MOS管MP2的源极的栅极接缓冲器BUF1的输出端,所述P型MOS管MP2的衬底与漏极连接,图中二极管DP2表示P型MOS管MP2的寄生电容。
工作原理:当调制信号VMOD为低时,P型MOS管MP2开启,对电容C1进行充电,P型MOS管MP1的栅极电压VGP被P型MOS管MP2箝位在P型MOS管MP2的开启电压VTH(MP2),电容C1两端的电压为调制信号VMOD的电源电压VDD减去P型MOS管MP2的开启电压VTH(MP2),即VDD-VTH(MP2);当调制信号VMOD为高时,P型MOS管MP2关断,P型MOS管MP1的栅极电压VGP为-(VDD-VTH(MP2))。只要设计VDD-VTH(MP2)大于P型MOS管MP1的开启电压VTH(MP1),即可以使得P型MOS管MP1可以很好的导通,可把天线RFP端的电压拉低到RFN端的电压,近乎短接,即可解决图3a所示的调制电路在调制信号VMOD为高电平时,天线两端RFP、RFN不能短路相接,而是被箝位在VTH(MP1)处的问题,从而有效解决了射频信号位于负半周期时,射频信号被非正常箝位,从而影响工作距离的问题。
实施例三:
如图6所示,本实施例与实施例二的区别在于:所述单向开关为NPN三极管Q1,NPN三极管Q1的发射极接电容C1的第二端,所述NPN三极管Q1的集电极接地,所述NPN三极管Q1的基极接缓冲器BUF1的输出端。其工作原理可以参照实施例二,此不再细说。
当然,在其它实施例中,单向开关也可以是其它类型的开关,采用其它开关来实现上述单向开关的功能是本领域技术人员可以实现的,此不再细说。
尽管结合优选实施方案具体展示和介绍了本实用新型,但所属领域的技术人员应该明白,在不脱离所附权利要求书所限定的本实用新型的精神和范围内,在形式上和细节上可以对本实用新型做出各种变化,均为本实用新型的保护范围。

Claims (5)

1.一种RFID标签芯片中的射频调制电路,其特征在于:包括P型MOS管MP1、N型MOS管MN1、反相电路、电容C1和单向开关,所述P型MOS管MP1和N型MOS管MN1的漏极相连,所述P型MOS管MP1和N型MOS管MN1的源极分别接天线的两端,所述N型MOS管MN1的源极同时接地,所述P型MOS管MP1的衬底与漏极连接,调制信号接所述N型MOS管MN1的栅极,同时经反相电路接所述电容C1的第一端,所述电容C1的第二端接P型MOS管MP1的栅极,同时连接单向开关接地,所述单向开关的电流导通方向指向地。
2.根据权利要求1所述的RFID标签芯片中的射频调制电路,其特征在于:所述反相电路由反相器INV1组成,调制信号接所述反相器INV1的输入端,所述反相器INV1的输出端接电容C1的第一端。
3.根据权利要求1或2所述的RFID标签芯片中的射频调制电路,其特征在于:所述单向开关为二极管D1,所述二极管D1的正端接电容C1的第二端,所述二极管D1的负端接地。
4.根据权利要求1或2所述的RFID标签芯片中的射频调制电路,其特征在于:所述单向开关为P型MOS管MP2,所述P型MOS管MP2的源极接电容C1的第二端,所述P型MOS管MP2的漏极接地,所述调制信号接P型MOS管MP2的栅极,所述P型MOS管MP2的衬底与漏极连接。
5.根据权利要求1或2所述的RFID标签芯片中的射频调制电路,其特征在于:所述单向开关为NPN三极管Q1,所述NPN三极管Q1的发射极接电容C1的第二端,所述NPN三极管Q1的集电极接地,所述调制信号接NPN三极管Q1的基极。
CN201620732754.0U 2016-07-08 2016-07-08 一种rfid标签芯片中的射频调制电路 Active CN206003136U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201620732754.0U CN206003136U (zh) 2016-07-08 2016-07-08 一种rfid标签芯片中的射频调制电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201620732754.0U CN206003136U (zh) 2016-07-08 2016-07-08 一种rfid标签芯片中的射频调制电路

Publications (1)

Publication Number Publication Date
CN206003136U true CN206003136U (zh) 2017-03-08

Family

ID=58201822

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201620732754.0U Active CN206003136U (zh) 2016-07-08 2016-07-08 一种rfid标签芯片中的射频调制电路

Country Status (1)

Country Link
CN (1) CN206003136U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106169092A (zh) * 2016-07-08 2016-11-30 杭州澜达微电子科技有限公司 一种rfid标签芯片中的射频调制电路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106169092A (zh) * 2016-07-08 2016-11-30 杭州澜达微电子科技有限公司 一种rfid标签芯片中的射频调制电路

Similar Documents

Publication Publication Date Title
CN104104362A (zh) 大幅度皮秒平衡脉冲信号发生器
CN204180043U (zh) 按键防抖电路及电子装置
CN206003136U (zh) 一种rfid标签芯片中的射频调制电路
CN102594300A (zh) 光控信号发生电路
CN108874011A (zh) 一种ldmos固态功率放大器的栅极调制电路
CN101616520B (zh) 一种低成本高可靠性led开路保护电路
CN101739378B (zh) 一种eib总线发送装置驱动电路
CN106452406B (zh) 基于脉冲边缘检测的高压高频电子开关
CN209545536U (zh) 一种固态雷达中固态功放电压时序保护电路
CN104811174A (zh) 可调节功率开关管开关速度的功率开关管驱动电路
CN209134378U (zh) 低成本高性能开关管驱动电路
CN102811327A (zh) 数字电视机顶盒lnb供电控制电路
CN102801404B (zh) 一种无源射频识别上电控制电路及无源射频识别标签
CN109167592A (zh) 低成本高性能开关管驱动电路
CN108900081A (zh) 一种控制负压输出的电路
CN206099293U (zh) 高电压输入保护电路
CN205320053U (zh) 一种快速通断直流固态继电器
CN106169092A (zh) 一种rfid标签芯片中的射频调制电路
CN106452405B (zh) 高压电子开关装置
CN201509264U (zh) 具有短路保护功能的lnb供电电路
CN103346758B (zh) 前端读出电路中的自触发峰值保持电路
CN208739028U (zh) 一种控制负压输出的电路
CN102457256A (zh) 复位信号延迟电路
CN204536503U (zh) 永磁机构控制装置断路器位移检测模块
CN101465535A (zh) 输出电压短路保护电路

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20190802

Address after: Room 506, Building 1818-2, Wenyi West Road, Yuhang Street, Hangzhou City, Zhejiang 310000

Patentee after: Zhejiang Yue Technology Co. Ltd.

Address before: Green Ting Road Yuhang District Cang Qian street of Hangzhou city Zhejiang province 310000 No. 1 Building 3 room 448

Patentee before: Hangzhou Lanshi Microelectronics Technology Co., Ltd.

TR01 Transfer of patent right