CN205960711U - 双结束低碳浮充器 - Google Patents

双结束低碳浮充器 Download PDF

Info

Publication number
CN205960711U
CN205960711U CN201620874158.6U CN201620874158U CN205960711U CN 205960711 U CN205960711 U CN 205960711U CN 201620874158 U CN201620874158 U CN 201620874158U CN 205960711 U CN205960711 U CN 205960711U
Authority
CN
China
Prior art keywords
resistance
unit
pulse
timer
pressure limiting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201620874158.6U
Other languages
English (en)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Ninglai Science and Trade Co Ltd
Original Assignee
Chongqing Ninglai Science and Trade Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Ninglai Science and Trade Co Ltd filed Critical Chongqing Ninglai Science and Trade Co Ltd
Priority to CN201620874158.6U priority Critical patent/CN205960711U/zh
Application granted granted Critical
Publication of CN205960711U publication Critical patent/CN205960711U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Elimination Of Static Electricity (AREA)

Abstract

双结束低碳浮充器,属于电子技术领域,由涓流电阻,并联充电单元,接口单元,脉冲计数器,脉冲清零单元,脉冲振荡单元,结束切换开关,结束双启动单元,结束执行单元,负载单元组成,脉冲振荡单元起振,脉冲计数器输出高低变换,控制接口单元于开通与截止,接口单元控制并联充电单元于开通与关闭,形成脉冲充电,结束双启动单元中两种结束启动方式,由结束切换开关进行切换,结束双启动单元启动,触发结束执行单元,关闭并联充电单元,脉冲清零单元是每次通电后都对脉冲计数器清零,使计数更准确,停止充电后,此时由涓流电阻向被电池提供涓流,实现对充电电池实现科学的充电最大化,从而最大化的延长被充电池的寿命与容量,实现社会的环保。

Description

双结束低碳浮充器
技术领域
属于电子技术领域。
背景技术
本企业在前段时间申请了保安产品系列,而该产品必须要备份电池,否则当无市电时,保安功能将成为一种虚设,而无市电的时候,恰恰又可能是发生保安事故的高峰时候。所以备份电池是必需的。而且备份电池的性能直接关系到整体的性能。
但是备份电池必需要对其充电维护,对备份电池的科学维护,直接关系到备份电池的寿命,与容量。有资料认为,电池常常不是用坏的,而是充电不当而损坏的。保安器材中的电池,属于专用电池,对体积容量有特殊要求,配备苛求于一般产品。因此如何保障备份电池寿命与容量不受影响这是一个问题。
因为上述原因,为保证本企业所申请的保安产品的性能,本企业的充电部分不能采用普通的对电池的充电方法与普通的充电线路。
其常规的充电方法是采用单一直流充电法,这样的方法均会使电解液持续产生氢氧气体,其氧气在内部高压作用下,渗透至负极与镉板作用生成CDO ,造成极板有效容量下降。如果采用脉冲充电,而且采用采用充与停并存的方法,即充一定时间,如5秒钟,就停一定时间如1秒钟。这样充电过程产生的氧气在放电脉冲下将大部分被还原成电解液,可使析气量大大降低,减少析气量可以使浓差极化和欧姆极化自然而然地得到消除,从而减轻了铅酸蓄电池的内压,使下一阶段的脉冲充电更加顺利地进行,从而使铅酸蓄电池可以吸收更多的电量。间歇脉冲使铅酸蓄电池有较充分的化学反应时间,从而减少了充电过程中铅酸蓄电池的析气量,提高了铅酸蓄电池的充电电流可接受能力。脉冲充电法充电一定时间如5秒钟,停止一定时间如1秒钟,如此循环。这种充电方法会使铅酸蓄电池在充电过程中所产生的氧气和氢气在停止充电脉冲下,大部分析出的氧气和氢气又被还原成了电解液,这不仅减少了铅酸蓄电池在充电过程中内部电化学副反应——水的电解所产生的析气量,而且对已经严重极化而引起失效的铅酸蓄电池还有修复作用,在使用本充电方法对失效的铅酸蓄电池充放电一定次数后,会使铅酸蓄电池的容量逐渐的恢复。又据资料介绍按又充电又停充的充电方法,不仅对铅蓄电池很有帮助,而且对一些碱电池也有积极帮助。
但是按上述的充电方法,常规的线路也是存在技术难点的,因为常规的电路不是又充又停的电路,如果按传统的设计,必定线路 复杂,新增加了故障点,如何解决这些矛盾,成为了新难点。
随着现代生活的丰富,用电池的电器的种类越来越多,除了本企业所研究的保安器材外,还有很多产品,如数码机机,手机,等等,其充电器的要求,也有类似本企业要求的地方,所以对充电器的研究,不仅牵涉充电器本身的质量,还牵涉被充电池两个方面的问题。因些一个好的充电措施有着积极的意义。
发明内容
本实用新型的目的是,用具备频率调整与占空比调整的振荡,使之输出高低变换,不断使充电的开关管形成导通与截止,形成脉冲的充电形式,实现对充电电池实现科学的充电最大化,从而最大化的延长被充电池的寿命与容量,实现社会的环保。
所采用的技术措施是:
1、双结束低碳浮充器由涓流电阻,并联充电单元,接口单元,脉冲计数器,脉冲清零单元,脉冲振荡单元,结束切换开关,结束双启动单元,结束执行单元,负载单元组成。
其中:充电显示单元由充电指示保护电阻与充电过程指示灯组成:充电指示保护电阻与充电过程指示灯串联在信号输入与接口单元中接口三极管的集电极之间。
接口单元由接口三极管、接口触发电阻、两充电控制二极管组成:接口三极管的发射极接地线,接口触发电阻的一端接口三极管的基极,两充电控制二极管的正极各接一个充电管的基极,充电控制二极管的负极接接口三极管的集电极。
并联充电单元由两充电管、两充电触发电阻组成:两充电管的集电极都接信号输入,两充电管的集电极与基极之间各接一个充电触发电阻,两充电管的发射极相连,即成为并联充电单元的输出。
脉冲计数器的一个输出端接脉冲输出二极管的一端,脉冲输出二极管的另一端接接口触发电阻的另一端。
脉冲清零单元由脉冲清零电容、脉冲清零导向支路、脉冲清零电容的接地电阻、脉冲清零电阻组成:脉冲清零电容的一端接信号输入,脉冲清零电容的另一端为两路,一路接脉冲清零电容的接地电阻到地线,另一路接脉冲清零导向支路到脉冲计数器的清零端,脉冲清零电阻接在脉冲计数器的清零端与地线之间。
脉冲振荡单元由振荡电路、频率调整电路、占空比电路组成。
振荡电路由脉冲计数器内部的振荡一门、振荡二门与计数振荡电容、计数振荡电容串联电阻组成;频率调整电路由频率限值电阻频率可调电阻串联而成,占空比电路由导向二极管与占空比电阻串联而成。
脉冲计数器内部的振荡一门的输出接脉冲计数器内部的振荡二门的输入,频率调整电路与占空比电路并联,一端接脉冲计数器内部的振荡一门的输出,另一端接计数振荡电容的另一端,计数振荡电容的一端接振荡二门的输出,计数振荡电容的另一端还接计数振荡电容串联电阻到脉冲计数器内部的振荡一门的输入。
结束双启动单元由定时单元与限压阈值单元组成。
限压阈值单元由限压上偏调整电阻、限压上偏限制电阻、限压下偏电阻、限压结束启动二极管、限压停振二极管组成:限压上偏调整电阻串联限压上偏限制电阻,一端接并联充电单元输出,另一端为限压起动端,接限压下偏电阻至地线,限压结束启动二极管接在限压起动端与结束执行单元中执行启动电阻的一端,限压停振二极管的一端接限压起动端,限压停振二极管的另一端接脉冲计数器的清零端。
定时单元由定时器、定时振荡电阻、定时振荡电容、定时器的清零电容、微分三极管、接地电阻、接地电容、定时器的保护电阻、定时器的电源稳压管、定时停振二极管、定时结束启动二极管组成。
定时器有电源输入端,即第8脚;地线端,即第4脚;一个手动控制输入端,即第1脚;一个复位端,即第7脚;一个振荡输入端即第6脚;一个振荡输出端,即第5脚;两个终极输出端;其中一个终极输出端为定时结束时从高电压输出低电压,即第2脚,另一个终极输出端为定时结束时从低电压输出高电压,即第3脚。
定时器的保护电阻的一端接信号输入,另一端接定时器的电源输入端,定时器的电源稳压管接在定时器的电源输入端与地线之间,定时器的地线端接地线,定时器的振荡输出端接定时振荡电阻到定时器的振荡输入端,定时器的振荡输入端接定时振荡电容到地线,恒流单元的输出接定时器的清零电容到微分三极管的基极,微分三极管的基极与地线之间接接地电阻,微分三极管的发射极接地线,微分三极管的集电极接定时器的复位端,定时器的复位端与地线之间接接地电容,定时停振二极管的一端接定时结束时从低电压输出高电压的终极输出端,定时停振二极管的另一端接脉冲计数器的清零端,定时结束启动二极管的一端接定时结束时从低电压输出高电压的终极输出端,定时结束启动二极管的另一端接结束执行单元中执行触发电阻的一端。
结束执行单元由执行触发电阻、结束控制三极管、两充电结束执行二极管、结束执行电源电阻组成:执行触发电阻的另一端接结束控制三极管的基极,结束控制三极管的发射极接地线,结束执行电源电阻接在信号输入与结束控制三极管的集电极之间,两充电管的基极各接一个充电结束执行二极管到结束控制三极管的集电极。
负载单元由被充电池与被充电池接触显示灯、被充电池接触显示保护电阻组成:被充电池接在并联充电单元输出与地线之间,被电池接触显示灯一端与被充电池正极相连,另一端串联被充电池接触显示保护电阻后接地线。
涓流电阻接在信号输入与并联充电单元的输出之间。
2、脉冲计数器是集成电路CD4060。
3、所有二极管都是面接触型二极管。
4、计数振荡电容是由两个电解电容组成的无极电容。
5、结束切换开关接在限压起动端与地线之间。
工作原理说明:
通电后,脉冲发生单元控制接口三极管(图2中的3.1),使并联充电单元向被充电池进行又充电又停充的充电工作。
在充电过程中,因为脉冲发生单元工作,不断控制并联充电单元中的充电工作管(图2中的5.11)于开通与断开状态,所以整个工作过程是采用的脉冲电流充电。
在脉冲充电过程中,采用的充电物理过程是,即又存在着充电又存在着停充特殊的形式。所形成的充电规律是,在脉冲的一周期之内,当接口三极管的集电极为低位时,并联充电单元关闭,停止充电,当接口三极管的集电极为高位时,并联充电单元开通,向被充电池充电,由于在脉冲的一周期之内,充电的时间长,而停充的时间短,所以充电过程是处于脉冲充电状态。这样的充电方式有利于对电池的科学维护,同时对已损坏的电池也有一定程度的恢复作用。
当被充电池没有接触好时,被充电池接触显示灯不亮。
本实用型使用了两种结束启动方式,由结束切换开关进行切换,一种为限压启动,是当电池充满电后,电池的端压超过限压阈值单元所形成的阈值后,限压阈值单元启动结束执行单元,关闭并联充电单元,并触发脉冲计数器的清零端,使脉冲计数器停振。另一种为定时启动,当定时到点后,定时器(图2中的7.0)的定时结束时从低电压输出高电压的终极输出端输出了高位信号,一是触发脉冲计数器(图2中的6.0)的清零端。此时充电过程指示灯(图2中的2.2)熄,二是其相连的结束控制三极管(图2中的8.21)集电极输出低位信号,从而钳位充电单元,结束对被充电池的充电工作。此时所连的涓流电阻(图2中的30)向被充电池提供所需的维持的涓电流。
线路特点分析:
1、结束双启动单元。
本实用型实施了两种结束的启动方式,由结束切换开关(图2中的11)进行切换,一种为限压启动,一种为定时启动,以或门的方式触发结束执行单元,从而关闭并联充电单元停止充电,并让脉冲计数器清零。由于限压启动的时间比定时启动的时间短,因此结束切换开关是接在了限压起动端与地线之间,当结束切换开关接通时,直接将限压起动端钳位到零,为定时启动,而当结束切换开关断开时,由于定时的时间很长,所以限压先启动。
(1)、定时单元的说明。
定时单元由定时器(图2中的7.0)、定时振荡电阻(图2中的7.9)、定时振荡电容(图2中的7.10)、定时器的清零电容(图2中的7.15)、微分三极管(图2中的7.17)、接地电阻(图2中的7.16)、接地电容(图2中的7.11)、定时器的保护电阻(图2中的7.12)、定时器的电源稳压管(图2中的7.13)、定时停振二极管(图2中的7.21)、定时结束启动二极管(图2中的7.20)组成。
定时器有8个脚,定时器的电源输入端(图2中的7.8),即第8脚;定时器的地线端(图2中的7.4),即第4脚;一个定时器的手动控制输入端(图2中的7.1),即第1脚;一个定时器的复位端(图2中的7.7),即第7脚;一个定时器的振荡输入端(图2中的7.6),即第6脚;一个定时器的振荡输出端(图2中的7.5),即第5脚;两个终极输出端(图2中的7.2、7.3);其中一个终极输出端为定时结束时从高电压输出低电压,即第2脚,另一个终极输出端为定时结束时从低电压输出高电压,即第3脚。
定时器采用CMOS工艺集成电路HL2203。它有内置振荡器、分频器、D触发器等逻辑单元;有双相输出端及复位和手动中途结束定时功能,静态功耗小;工作电压范围宽。可方便地构成多种定时、延时电路。
定时器内部的结构是,定时器的第5脚为振荡输出端,也即是内部门1的输出端,定时器第6脚是内部门2的输入端,当门2的输入端为低位时,门1的输出端为高位。反之,当门2的输入端为高位,门1的输出端为低位。所以形成振荡的原理是,通电后,因为定时振荡电容未充电,所以振荡输出端输出高位,通过定时振荡电阻向定时振荡电容的充电,成为振荡的前半周期,当定时振荡电容的电充到阈值后,振荡输出端又由高位变为了低位,所以定时振荡电容又通过定时振荡电阻放电,形成振荡的后半周期。
根据该定时器振荡的振荡原理,所以本措施是将定时振荡电阻变成固定与可调两电阻的串联形式,以实现频率的可调,同时保证频率的可调在一定范围,所以增加了固定电阻作为可调电阻的最小值限定。
其调整规律是,定时振荡电阻越大,周期越长,定时越长,反之越短。增加了频率即周期可调的好处是,可以适应多种被充电池的需要。
在定时器的复位端接了清零电路,由定时器的清零电容、微分三极管、接地电阻与接地电容组成,其好处是每次通电,都对定时器进行一次清零,保证每次定时时间的准确性。
由于定时器的第3脚是定时结束时从低电平变为高电平的终极输出端(图2中的7.3),所以当定时结束,第3脚输出高位,启动结束执行单元,使结束控制三极管(图2中的9.1)导通,其集电极为低位,通过两充电结束执行二极管关闭充电单元,同时第3脚输出的高位进入脉冲计数器(图2中的6.1)的清零端,对脉冲计数器清零,使脉冲计数器停止计数。
充电过程指示灯(图2中的2.2)熄,此时停止充电,由涓流电阻(图2中的30)向被电池提供维持涓流。
(2)、限压启动的说明。
限压阈值单元由限压上偏调整电阻(图2中的8.1)、限压上偏限制电阻(图2中的8.2)、限压下偏电阻(图2中的8.3)、限压结束启动二极管(图2中的8.5)、限压停振二极管(图2中的8.7)组成。
限压上偏调整电阻、限压上偏限制电阻与限压下偏电阻共同形成了限压阈值,当电池充满电,电池的端压超过这个阈值,限压启动端就会输出高压,启动结束执行单元,使结束控制三极管(图2中的9.1)导通,其集电极为低位,通过两充电结束执行二极管关闭充电单元,同时第3脚输出的高位进入脉冲计数器(图2中的6.1)的清零端,对脉冲计数器清零,使脉冲计数器停止计数。
限压上偏调整电阻能可靠调整限压的阈值,而限压上偏限制电阻是对限压上偏调整电阻最小值的限制。
2、接口单元
该单元由接口三极管(图2中的3.1)、接口触发电阻(图2中的3.2)、充电控制二极管(图2中的3.3)组成。接口三极管主要产生以下功能:
一是将充电的直流变成脉冲充电流。其原因是在脉冲计数器(图2 中的6.0)的激励下,经过该三极管的传递,使并联充电单元的基极产生高低的脉冲变化。(接口三极管集电极为高位时,并联充电单元是正向偏置,为通电的状态,反之接口三极管集电极为低位时,并联充电单元是无偏置,为断路状态)从而使该单元的输出端产生高低状的变化。因而充电电流是脉冲电流,使并联充电单元产生充电与停充两种状态。
二是激励充电过程指示灯(图2中的2.2)闪光。当该管集电极为低位时,电流从电源流向接口三极管集电极,充电过程显示发光管亮。反之不亮。充电结束时接口三极管集电极为高位,充电过程显示发光管不亮。
3、脉冲计数器与脉冲振荡单元。
A、其主要作用是脉冲计数器与脉冲振荡单元的特点是不仅是一振荡发生器,在线路中不仅可以调整频率,而且可以调整占空比。
脉冲计数器与脉冲振荡单元在本发明中有三点作用,一是通过接口三极管(图2中的3.1)控制并联充电单元,并且使直流充电的形式成为脉冲充电的形式。二是通过接口三极管控制充电显示发光管(图2中的2.2),形成充电过程指示。三是实现占空比的调节。使充电的全过程,在实现又充电与停充的复合过程,保持着最佳的比例状态。
B、原理组成及特点。
脉冲振荡单元由振荡电路、频率调整电路、占空比电路组成。
振荡电路由脉冲计数器内部的振荡一门(图2中的6.11)、脉冲计数器内部的振荡二门(图2中的6.12),与计数振荡电容(图2中的6.13)、计数振荡电容串联电阻(图2中的6.18)组成,频率调整电路由频率限值电阻(图2中的6.14)串联频率可调电阻(图2中的6.15)组成,占空比电路由导向二极管(图2中的6.16)串联占空比电阻(图2中的6.17)组成。其中脉冲计数器内部的两门其中第一门是脉冲计数器内部的振荡一门(图2中的6.11)、第二门是脉冲计数器内部的振荡二门(图2中的6.12)。
其中由频率限值电阻(图2中的6.14)串联频率可调电阻(图2中的6.15)组成了频率调整电路并可实现频率可调。振荡电路形成振荡的原理是,当脉冲计数器内部的振荡二门输出为高位时,通过计数振荡电容,充放电支路,及放电支路到脉冲计数器内部的振荡一门的输出端,开成对计数振荡电容的充电状态,此时连接的中心点,即是计数振荡电容与计数振荡电容串联电阻的连接点,为高位。导致脉冲计数器内部的振荡一门的输入端为高位,直至振荡前半周期的结束。当计数振荡电容的隔离效果使中心点电压低于门的门坎电压后(即阈值电压后),脉冲计数器内部的振荡一门的输出端由低充变为高,这时脉冲计数器内部的振荡一门的输出端输出电流通过充放电支路与放电支路的并联电路向计数振荡电容进行反方向的放电过程。此时为振荡的后半周期,直至后半周期的结束,当中心点的电压值高于阈值后,又重复着第一个周期的过程。进行以后的振荡。
本发明采用这种振荡电路的原因一是振荡可靠,二所用元件少,三是可以增设频率可调,与占容比可调。
C、频率调整电路的组成与原理。
在本单元中,频率可调电阻与频率限值电阻的串联组成了频率调整电路,该电路也是一个充放电支路。
当脉冲计数器内部的振荡二门输出端为高位,而脉冲计数器内部的振荡一门输出端为低位时,脉冲计数器内部的振荡二门输出端输出的电流经计数振荡电容及频率调整电路与占空比电路而流入脉冲计数器内部的振荡一门输出端,在这个充电过程中,频率调整电路的两电阻值远远大于占空比电路的阻值,但是占空电路存在导向二极管,此时处于反向偏置,所以此时充电电流完全从频率调整电路通过,所以该电路可以对频率进行粗调。其规律是该电路的可调电阻越小,则计数振荡电容的充电会越早到位,因而则频率越快,反之越慢。其频率限值电阻是对频率可调电阻的最小值进行了一定的限制。
D、占空比电路的组成与原理。
占空比电路由导向二极管串联占空比电阻组成。
占空比的意义是脉冲在一个周期内,实现对高位时间与低位时间的分配比例调整。
其原理是:
当脉冲计数器内部的振荡二门输出端为高位,而脉冲计数器内部的振荡一门输出端为低位时,脉冲计数器内部的振荡二门输出端输出的电流经计数振荡电容及频率调整电路、脉冲计数器内部的振荡一门的输入再到脉冲计数器内部的振荡一门的输出端,形成充电回路。充电结束后,脉冲计数器内部的振荡一门为低位,脉冲计数器内部的振荡二门为高位,所以计数振荡电容进行反方向的的放电过程,经过通道是频率调支路与占空比电路,由于频率调整电路的两电阻值远远大于占空比电路的阻值,所以放电电流主要是从放电支路通过。所以这是在该电路实现占空比的一个原因,另一个重要原因是,放电的过程经过一系列门的传递后,最后落实接口三极管(图2中的3.1)集电极为高,所以停充时间越短,在脉冲的一个周期内,充电的时间长,停充的时间短,符合总体要求,所以这是放电支路阻值小,同时也是将占空比设立在放电支路的主要原因。
由于发生单元具有频率可调与占空比,所以对被 充电池的充电可以实现相对 的最大科学化。
脉冲清零单元的主要作用是,每次通电时,都对脉冲计数器清零,使脉冲计数器的每次计数都准确。
4、并联充电单元。
并联充电单元由两充电管(图2中的5.11、5.21)、两充电触发电阻(图2中的5.12、5.22)组成:两充电管的集电极都接信号输入,两充电管的集电极与基极之间各接一个充电触发电阻,两充电管的发射极相连,即成为并联充电单元的输出。
两充电管形成并联的形式,加大了三极管的功率,各自承担了充电功率的一半,使之在充电过程中不易受损,耐用。
三极管的开、关特性好,与接口单元、脉冲计数器配合后,更能可靠开通与关闭,如果是大容量的电池,可选用大功率的NPN三极管,它的耐压高,一般都大于100V之上,所以更可靠。
本发明实施后有着突出的优点:
1、由本发明是对被充电池实现了科学充电,增进了维护,延长了被充电池的寿命,减少了报废率。而这两种产品,无论是可充电池,还是配套的充电器,都是现代生活普遍应用的种类,所以能增强两种产品的环保。环保无小事,所以本发明有积极意义。
2、也有着重要的经济价值,对于普通的电子产品的价值,如充电器这类产品,在没有名贵的元材料下,所以第一是科技价值,第二是人工加费,第三才是元件的成本,而本发明所增加的元件有限。本措施实施后,一是被充电池寿命延长,二是容量不会发生明显变化,因此社会一定会接受,承认其科学价值,因此这种优良的产品会代替劣质产品。由于现代生活中,该产品用途极为普遍,所以会产生显著的经济价值。
3、采用 又充又停的充电形式,对被充电池有显著的维护效果,网上有评论认为可充电池是被充坏的,而不是用坏的,而本措施能合被充电池的充电相对的最大科学维护,特别是对酸性电池。而用这样的充电、停充方式,不仅能使电池的容量与寿命不会减少,甚至使受损电池能得到一定程度的恢复,所以意义是很大的。
4、本发明性能优异,一是对被充电池的充电、停充时间之间的比例灵活可调,即是占空比可调,二是对脉冲的频率可调,另一个重要之点是可以对大容量的电池充电,此时只要将充电工作管换为大功率三极管即可。此外本发明还有不怕过充等等优点。
当然作为产品化时,可以取其中一部分,生产出产品系列。
5、各单元相连科学,并做到了综合利用,因而线路电路精简、可靠性高。
6、易生产,易调试,很适合微型企业生产。
7、本措施中的脉冲计数器采用了集成电路CD4060,它是二进制品德计数器,起振容易,计数准确,经过本措施的设计后,能可靠的形成频率与占空比的调整,落实到并联充电单元后,充电时间与停充时间能够达到最佳比例分配。
附图说明
图1为双结束低碳浮充器方框原理图。
图中:1信号输入;2、充电显示单元;3、接口单元; 5.1、并联充电单元;30、涓流电阻;5.9、并联充电单元的输出;6.0、脉冲计数器;6.01、脉冲振荡单元;6.02、脉冲清零单元;7、定时单元;8、限压阈值单元;9、结束执行单元;10、负载单元。
图2是双结束低碳浮充器的工程原理图。
图中:1、信号输入;2.1、充电指示保护电阻;2.2、充电过程指示灯;3.1、接口三极管;3.2、接口触发电阻;3.3、充电控制二极管;3.5、放电控制二极管;30、涓流电阻; 5.9、并联充电单元的输出;5.11、充电管一;5.21、充电触发电阻一;5.12、充电管二;5.22、充电触发电阻二; 6.1、脉冲计数器;6.11、脉冲计数器内部的振荡一门;6.12、脉冲计数器内部的振荡二门;6.13、计数振荡电容;6.14、频率限值电阻;6.15、频率可调电阻;6.16、导向二极管;6.17、占空比电阻;6.18、计数振荡电容串联电阻;6.19、脉冲清零电容;6.20、脉冲清零电容接地电阻;6.21、脉冲清零导向支路;6.22、脉冲清零电阻;7.0、定时器;7.1、定时器的手动控制输入端;7.2、定时结束时从高电压输出低电压的终极输出端;7.3、定时结束时从低电压输出高电压的终极输出端;7.4、定时器的地线端;7.5、定时器的振荡输出端;7.6、定时器的振荡输入端;7.7、定时器的复位端;7.8、定时器的电源输入端;7.9、定时振荡电阻;7.10、定时振荡电容;7.11、接地电容;7.15、清零电容;7.12、定时器的保护电阻;7.13、定时器的电源稳压管; 7.16、接地电阻;7.17、微分三极管;7.20、定时结束启动二极管;7.21、定时停振二极管;8.1、限压上偏调整电阻;8.3、限压下偏电阻;8.2、限压上偏限制电阻;8.5、限压启动二极管;8.7、限压停振二极管;9.1、结束控制三极管;9.2、执行触发电阻;9.3、结束电源电阻;9.5、充电结束执行二极管一;9.7、充电结束执行二极管二;10.1、被充电池;10.2、被充电池接触显示保护电阻;10.3、被充电池接触显示灯;11、结束切换开关。
图3是检测时用的假负载图。
图中:5.9、可控硅并联充电单元的输出;10.2、被充电池接触显示保护电阻;10.3、被充电池接触显示灯;20.2、假负载上偏限值电阻;20.1假负载稳压值可调;20.3、假负载下偏电阻;20.5、假负载三极管;20.6、假负载集电极电阻; 23、电压表红表笔;24、电压表黑表笔。
具体实施方式
图1图2例出了双结束低碳浮充器一种具体实施实例,图3例出实施中的检测图。
一、挑选元件:接口三极管与充电三极管采用大功率NPN三极管。
脉冲计数器是集成电路CD4060。
所有二极管都是面接触型二极管。
计数振荡电容是由两个电解电容组成的无极电容。
结束切换开关接在限压起动端与地线之间。
二、制板、焊接:按图2制作电路控制板,接图2的原理图进行焊接。
三、通电检查与调试。
焊接假负载。
如图3所示,用一只三极管连成可调的稳压管模拟电路,代替被充电池成为假负载。后称假负载。用万用表的电压连接以充电输出端与地之间。
调试假负载,让万用表中的电压档显示为不同的电压值,如6伏,12伏,18伏,24伏。
附加说明,用一只三极管连成可调的稳压管模拟电路的原理,当该管的上偏电阻变高时,充电端的电压要增高才能击穿该管的偏置电压,使该管进入放大状态,该假负载三极管的集电极电压有一个变化的范围,因而可以模拟成一个不同的稳压二极管,因而可以模拟出6伏、12伏、18伏24伏之值。
1、对两种结束启动方式的检测。
本措施实施了两种结束的启动方式,由结束切换开关(图2中的11)进行切换,当结束切换开关接通时,用电压表测限压起动端,调整假负调至充满电的情况,电压表显示仍为零,当结束切换开关断开时,用电压表测试限压起动端,将假负载调到充满电的情况,电压表有高压指示。
(1)、对限压阈值单元的检测。
将假负载调到未充满电的情况,用万用表测限压启动端,此时电压指示为零,将假负载调到充满电的情况,用万用表测限压启动端,此时有电压指示。
调整假负载的值,在6伏、12伏、18伏24伏之值时,用电压表测结束控制三极管(图2中的9.1)的集电极为零。
(2)、对定时单元的检测。
A、对清零电路的检查。
用万用表接微分三极管(图2中的7.17)的集电极,开始通电时此集电极应为零伏,否则应加大清零电容(图2中的7.15)的容量。
B、对定时器的频率检查。
连接上假负载。用示波器的热端连接定时器第5脚或第6脚。
在接通电源后,示波器有的振荡图形显示,可以看出频率,从频率可以算出周期,在振荡电容已确定的情况下,调节可调电阻,将频率调到设计值。
C、对定时器的检查。
用一个阻值小的电阻并联在频率可调支路的两端,频率将变得极快,定时器的第3脚很快有输出,如有输出则说明连线无误。
2、对脉冲计数器频率的的通电的检查与调试。
用示波器的热端连接脉冲计数器的输出端,冷端接地。
在接通电源后,示波器有振荡图形显示。
如果不正确,则可能是元件焊接有误,或可能是计数振荡电容(图2中的6.13)质量不好,严重漏电。
调节频率可调电阻阻值,使示波器所显示的的频率符合设计要求,其规律是电阻越大,频率越慢,反之越快。
调整占空比:用示波器的热端连接接口三极管的集电极,冷端接地。
在接通电源后,示波器有振荡图形显示,其中波形的一个重要特点是,在一个周期之内的高位时间长,而低位的时间短,如果情况相反则是导向二极管(图2中的6.16)的方向焊反。
调节占空比电阻(图2中的6.17)阻值,使示波器所显示的占空比符合设计要求,其规律是电阻越大,在一个周期之内的高位时间越长。反之电阻越小,在一个周期之内的高位时间越短。
3、对接口三极管与充电过程显示的检查。
A、将接口三极管(图2中的3.1)基极对地短路,此时该管集电极应为高位,用电压表测度并联充电单元两三极管的发射极有电,否则是连线有错。此时的充电过程指示灯(图2中的2.2)应不亮。
B、将电源串联一个临时电阻接接口三极管的基极,此时接口三极管集电极应为低位,用电压表测量充电三极管的发射极应无电,且应为截止。如果情况不正确,则应测量充电工作管的基极,如果基极为低,则可能是充电控制二极管(图2中的3.3))脱焊,或极性焊反。此时的充电过程指示灯(图2中的2.2)亮光。
4、对充电工作管的检查与调试。
将电压表的红表笔接在充电工作管的发射极上,黑表笔接在地线上。
用电源线接一个电阻接接口三极管(图2中的3.1)的基极,此时接口三极管的集电极为低位,充电工作管(图2中的5.11)的集电极无电压,电压表为零。
用地线接接口三极管的基极,此时的接口三极管的集电极为高位,充电工作管的集电极有电压输出,电压表有电压指示。
上述两点正确,说明充电工作管工作正确。如果不正确,或是连接有误,或是隔离二极管焊接反,或是充电工作损坏。
5、对被充电池接触显示检查。
当被充电池接触好后,对应被充电池接触显示灯(图2中的10.3)亮,反之不亮。
6、对涓电流的检测。
将电压表扫在涓流电阻两端测量电压,通过涓流电阻阻值,算出涓电流大小,使涓电流合乎要求。其规律是电阻越小电流越大。反之电阻越大电流越小。

Claims (5)

1.双结束低碳浮充器,其特征是:由涓流电阻,并联充电单元,接口单元,脉冲计数器,脉冲清零单元,脉冲振荡单元,结束切换开关,结束双启动单元,结束执行单元,负载单元组成;
其中:充电显示单元由充电指示保护电阻与充电过程指示灯组成:充电指示保护电阻与充电过程指示灯串联在信号输入与接口单元中接口三极管的集电极之间;
接口单元由接口三极管、接口触发电阻、两充电控制二极管组成:接口三极管的发射极接地线,接口触发电阻的一端接口三极管的基极,两充电控制二极管的正极各接一个充电管的基极,充电控制二极管的负极接接口三极管的集电极;
并联充电单元由两充电管、两充电触发电阻组成:两充电管的集电极都接信号输入,两充电管的集电极与基极之间各接一个充电触发电阻,两充电管的发射极相连,即成为并联充电单元的输出;
脉冲计数器的一个输出端接脉冲输出二极管的一端,脉冲输出二极管的另一端接接口触发电阻的另一端;
脉冲清零单元由脉冲清零电容、脉冲清零导向支路、脉冲清零电容的接地电阻、脉冲清零电阻组成:脉冲清零电容的一端接信号输入,脉冲清零电容的另一端为两路,一路接脉冲清零电容的接地电阻到地线,另一路接脉冲清零导向支路到脉冲计数器的清零端,脉冲清零电阻接在脉冲计数器的清零端与地线之间;
脉冲振荡单元由振荡电路、频率调整电路、占空比电路组成;
振荡电路由脉冲计数器内部的振荡一门、振荡二门与计数振荡电容、计数振荡电容串联电阻组成;频率调整电路由频率限值电阻频率可调电阻串联而成,占空比电路由导向二极管与占空比电阻串联而成;
脉冲计数器内部的振荡一门的输出接脉冲计数器内部的振荡二门的输入,频率调整电路与占空比电路并联,一端接脉冲计数器内部的振荡一门的输出,另一端接计数振荡电容的另一端,计数振荡电容的一端接振荡二门的输出,计数振荡电容的另一端还接计数振荡电容串联电阻到脉冲计数器内部的振荡一门的输入;
结束双启动单元由定时单元与限压阈值单元组成;
限压阈值单元由限压上偏调整电阻、限压上偏限制电阻、限压下偏电阻、限压结束启动二极管、限压停振二极管组成:限压上偏调整电阻串联限压上偏限制电阻,一端接并联充电单元输出,另一端为限压起动端,接限压下偏电阻至地线,限压结束启动二极管接在限压起动端与结束执行单元中执行启动电阻的一端,限压停振二极管的一端接限压起动端,限压停振二极管的另一端接脉冲计数器的清零端;
定时单元由定时器、定时振荡电阻、定时振荡电容、定时器的清零电容、微分三极管、接地电阻、接地电容、定时器的保护电阻、定时器的电源稳压管、定时停振二极管、定时结束启动二极管组成;
定时器有电源输入端,即第8脚;地线端,即第4脚;一个手动控制输入端,即第1脚;一个复位端,即第7脚;一个振荡输入端即第6脚;一个振荡输出端,即第5脚;两个终极输出端;其中一个终极输出端为定时结束时从高电压输出低电压,即第2脚,另一个终极输出端为定时结束时从低电压输出高电压,即第3脚;
定时器的保护电阻的一端接信号输入,另一端接定时器的电源输入端,定时器的电源稳压管接在定时器的电源输入端与地线之间,定时器的地线端接地线,定时器的振荡输出端接定时振荡电阻到定时器的振荡输入端,定时器的振荡输入端接定时振荡电容到地线,恒流单元的输出接定时器的清零电容到微分三极管的基极,微分三极管的基极与地线之间接接地电阻,微分三极管的发射极接地线,微分三极管的集电极接定时器的复位端,定时器的复位端与地线之间接接地电容,定时停振二极管的一端接定时结束时从低电压输出高电压的终极输出端,定时停振二极管的另一端接脉冲计数器的清零端,定时结束启动二极管的一端接定时结束时从低电压输出高电压的终极输出端,定时结束启动二极管的另一端接结束执行单元中执行触发电阻的一端;
结束执行单元由执行触发电阻、结束控制三极管、两充电结束执行二极管、结束执行电源电阻组成:执行触发电阻的另一端接结束控制三极管的基极,结束控制三极管的发射极接地线,结束执行电源电阻接在信号输入与结束控制三极管的集电极之间,两充电管的基极各接一个充电结束执行二极管到结束控制三极管的集电极;
负载单元由被充电池与被充电池接触显示灯、被充电池接触显示保护电阻组成:被充电池接在并联充电单元输出与地线之间,被电池接触显示灯一端与被充电池正极相连,另一端串联被充电池接触显示保护电阻后接地线;
涓流电阻接在信号输入与并联充电单元的输出之间。
2.根据权利要求1所述的双结束低碳浮充器,其特征是:脉冲计数器是集成电路CD4060。
3.根据权利要求1所述的双结束低碳浮充器,其特征是:所有二极管都是面接触型二极管。
4.根据权利要求1所述的双结束低碳浮充器,其特征是:计数振荡电容是由两个电解电容组成的无极电容。
5.根据权利要求1所述的双结束低碳浮充器,其特征是:结束切换开关接在限压起动端与地线之间。
CN201620874158.6U 2016-08-12 2016-08-12 双结束低碳浮充器 Expired - Fee Related CN205960711U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201620874158.6U CN205960711U (zh) 2016-08-12 2016-08-12 双结束低碳浮充器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201620874158.6U CN205960711U (zh) 2016-08-12 2016-08-12 双结束低碳浮充器

Publications (1)

Publication Number Publication Date
CN205960711U true CN205960711U (zh) 2017-02-15

Family

ID=57975011

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201620874158.6U Expired - Fee Related CN205960711U (zh) 2016-08-12 2016-08-12 双结束低碳浮充器

Country Status (1)

Country Link
CN (1) CN205960711U (zh)

Similar Documents

Publication Publication Date Title
CN205960712U (zh) 结束双选低碳脉冲浮充器
CN205960710U (zh) 限压结束型充放式浮充器
CN205960711U (zh) 双结束低碳浮充器
CN205960703U (zh) 定时式充放共存的充电器
CN205960709U (zh) 一种家用脉冲充电器
CN204905963U (zh) 脉冲充放式环保充电器
CN205864017U (zh) 充放式家用充电设备
CN204886350U (zh) 脉冲定时式n型充电器
CN204886347U (zh) 充放共存的脉冲式充电设备
CN205960713U (zh) 家用型双结束式充电器
CN204905961U (zh) 充放共存的脉冲式环保充电器
CN205864019U (zh) 脉冲式环保浮充装置
CN205960705U (zh) 充放共存的环保浮充器
CN204886342U (zh) 定时式脉冲环保充电器
CN204905962U (zh) 并联式脉冲充放型低碳充电器
CN204905956U (zh) P型脉冲式环保充电装置
CN204886344U (zh) P型定时式脉冲充电器
CN204886345U (zh) 集成式脉冲充电器
CN205846808U (zh) 定时式并联型充电器
CN204886362U (zh) 一种并联式脉冲恒流充电设备
CN106469920A (zh) 双n型脉冲环保充电装置
CN204886355U (zh) 一种脉冲式恒流充电器
CN204886361U (zh) 并联型创新可控硅式充电器
CN204886351U (zh) 一种双结束的脉冲恒流充电器
CN204886374U (zh) 定时式并联型充电设备

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170215

Termination date: 20170812