CN205770209U - 多旋翼动力测试装置 - Google Patents

多旋翼动力测试装置 Download PDF

Info

Publication number
CN205770209U
CN205770209U CN201620625865.1U CN201620625865U CN205770209U CN 205770209 U CN205770209 U CN 205770209U CN 201620625865 U CN201620625865 U CN 201620625865U CN 205770209 U CN205770209 U CN 205770209U
Authority
CN
China
Prior art keywords
force
arm
testing
horizontal arm
installed surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201620625865.1U
Other languages
English (en)
Inventor
刘萍
张功学
杨柳
吴坚
耿其亚
崔乐
何晓莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North Information Control Group Co Ltd
Original Assignee
North Information Control Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North Information Control Group Co Ltd filed Critical North Information Control Group Co Ltd
Priority to CN201620625865.1U priority Critical patent/CN205770209U/zh
Application granted granted Critical
Publication of CN205770209U publication Critical patent/CN205770209U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本实用新型提供一种多旋翼动力测试装置,包括测试底座、轴承、垂直力臂、水平力臂以及压力传感器,其中:所述轴承安装在测试底座上,用于在进行测试时改变被测螺旋桨所产生的拉力和扭矩的方向;所述垂直力臂直接与所述轴承连接,所述水平力臂垂直地安装到所述垂直力臂的下方,并且垂直力臂和水平力臂之间硬连接;所述垂直力臂的上方形成有螺旋桨的推力测试安装面以及扭矩测试安装面,并且推力测试安装面与扭矩测试安装面垂直;所述压力传感器安装在水平力臂的下方,位于水平力臂与测试底座之间。本实用新型的测试系统不仅可以有效、安全的测试多旋翼无人机的动力性能和电源性能,而且还可以满足不同臂数旋翼无人机、不同型号驱动单元的测试要求。

Description

多旋翼动力测试装置
技术领域
本发明涉及多旋翼飞行器技术领域,具体而言涉及一种多旋翼动力测试装置与方法。
背景技术
动力系统和电源系统是多旋翼无人机最重要的两部分。动力系统中,螺旋桨与电机的匹配性,以及螺旋桨工作时的效率直接关系到无人机性能、寿命。电源系统则为动力系统提供可靠、持续的能源。因此,需要研制一套有效的测试平台,用于准确获取多旋翼系统的动力要求、能源要求,对于保障整个多旋翼无人机的安全性和可靠性直观重要。
多旋翼无人机动力与电源测试平台,一方面用于测试动力系统的性能,另一方面,在地面试验时,通过增加载荷、手动调节、引入飞控等方法尽量在地面测试无人机电源性能,以降低升空风险。
目前,现有的旋翼试验平台都是针对直升机而研制的,主要用于对旋翼在悬停状态下的气动、动力学、飞行力学等问题进行试验研究。该测试平台成本高、结构复杂、体积大,且同时只能测试一对螺旋桨,不适用于多旋翼这种小型飞行器。
发明内容
本发明目的在于提供一种多旋翼动力测试装置,是一种根据动力学原理提出多旋翼动力与电源测试平台,不仅可以有效、安全的测试多旋翼无人机的动力性能和电源性能,而且还可以满足不同臂数旋翼无人机、不同型号驱动单元的测试要求。
本发明的上述目的通过独立权利要求的技术特征实现,从属权利要求以另选或有利的方式发展独立权利要求的技术特征。
为达成上述目的,本发明提出一种多旋翼动力测试装置,包括测试底座、轴承、垂直力臂、水平力臂以及压力传感器,其中:
所述轴承安装在测试底座上,用于在进行测试时改变被测螺旋桨所产生的拉力和扭矩的方向;
所述垂直力臂直接与所述轴承连接,所述水平力臂垂直地安装到所述垂直力臂的下方,并且垂直力臂和水平力臂之间硬连接;
所述垂直力臂的上方形成有螺旋桨的推力测试安装面以及扭矩测试安装面,并且推力测试安装面与扭矩测试安装面垂直;
所述压力传感器安装在水平力臂的下方,位于水平力臂与测试底座之间。
进一步的实施例中,所述压力传感器安装在所述测试底座上,并且压力传感器的上端与所述水平力臂的下方点接触。
进一步的实施例中,所述压力传感器呈S形,其底端安装在底座上,上端与水平力臂点接触。
由以上技术方案,本发明的多旋翼动力测试装置与现有技术相比,其显著优点在于:
(1)通过本发明,降低了多旋翼无人机升空试验的风险;
(2)通过本发明,有效的测试了动力系统和电源系统性能;
(3)通过本发明,可以积累丰富的旋翼测试数据;
(4)通过本发明,在测试时还可接入飞控,通过控制飞控模拟多旋翼无人机空中姿态变化,测试动力系统和电源系统性能。
应当理解,前述构思以及在下面更加详细地描述的额外构思的所有组合只要在这样的构思不相互矛盾的情况下都可以被视为本公开的发明主题的一部分。另外,所要求保护的主题的所有组合都被视为本公开的发明主题的一部分。
结合附图从下面的描述中可以更加全面地理解本发明教导的前述和其他方面、实施例和特征。本发明的其他附加方面例如示例性实施方式的特征和/或有益效果将在下面的描述中显见,或通过根据本发明教导的具体实施方式的实践中得知。
附图说明
附图不意在按比例绘制。在附图中,在各个图中示出的每个相同或近似相同的组成部分可以用相同的标号表示。为了清晰起见,在每个图中,并非每个组成部分均被标记。现在,将通过例子并参考附图来描述本发明的各个方面的实施例,其中:
图1是根据本发明一实施例的多旋翼动力测试装置的结构示意图。
图2是图1实施例的多旋翼动力测试装置的另一方向的机构示意图。
具体实施方式
为了更了解本发明的技术内容,特举具体实施例并配合所附图式说明如下。
在本公开中参照附图来描述本发明的各方面,附图中示出了许多说明的实施例。本公开的实施例不必定意在包括本发明的所有方面。应当理解,上面介绍的多种构思和实施例,以及下面更加详细地描述的那些构思和实施方式可以以很多方式中任意一种来实施,这是因为本发明所公开的构思和实施例并不限于任何实施方式。另外,本发明公开的一些方面可以单独使用,或者与本发明公开的其他方面的任何适当组合来使用。
结合图1、图2所示,一种多旋翼动力测试装置,包括测试底座1、轴承2、垂直力臂3、水平力臂4以及压力传感器7。
所述轴承2通过轴承座安装在测试底座1上,用于在进行测试时改变被测螺旋桨所产生的拉力和扭矩的方向。
所述垂直力臂3直接与所述轴承2连接,所述水平力臂4垂直地安装到所述垂直力臂3的下方,并且垂直力臂3和水平力臂4之间硬连接。
所述垂直力臂3的上方形成有螺旋桨的推力测试安装面5以及扭矩测试安装面6,并且推力测试安装面5与扭矩测试安装面垂直6。
所述压力传感器7安装在水平力臂4的下方,位于水平力臂与测试底座之间。
结合图1,所述压力传感器7安装在所述测试底座上,并且压力传感器7的上端与所述水平力臂3的下方点接触。
优选地,所述压力传感器呈S形,其底端安装在底座上,上端与水平力臂点接触。
根据本发明的公开,还提出一种多旋翼动力测试方法,包括:
(1)测试动力系统升力:将螺旋桨安装在与水平力臂相垂直的平面即推力测试安装面,当螺旋桨转动时,产生与推力测试安装面垂直的推力,该推力通过水平力臂传递至压力传感器,根据压力传感器采集的数据、压力传感器至力臂连接处长度、螺旋桨安装面至水平力臂连接处长度,以及力矩原理计算出此时螺旋桨所产生的动力;
(2)测试动力系统扭矩:将螺旋桨安装在与扭矩测试安装面相垂直的平面,当螺旋桨转动时,根据压力传感器数据、压力传感器至力臂连接处长度,以及力矩原理计算出此时螺旋桨所产生扭矩。
结合图1所示的测试装置,我们还可以利用这样的测试装置来进行多旋翼动力系统对电源系统功率要求的测试,包括:
根据多旋翼无人机臂的数量N,将所述N路相同的多旋翼动力测试装置排列在一起;
在每个多旋翼动力测试装置上的推力测试安装面或者扭矩测试安装面上安装螺旋桨;
根据载荷和工作时间要求控制N路多旋翼动力测试装置同时工作,测试电源系统能否正常工作。
如图1所示,图1为一套测试装置,构成一个平台,可用于测量一路动力单元,当对具体多旋翼无人机开展测试时,需要根据旋翼动力单元数目调整测试平台数量。譬如,四旋翼需要同时使用四套测试平台,此时电机对应安装在每一路测试平台的平面5处。多路测试平台同时工作,便可测试多旋翼无人机完全工作时的电源功率。另外,还可接入飞控,通过手动控制飞控模拟多旋翼无人机空中姿态变化,观察此时电源功率变化和对应电机转速变化情况。
由以上技术方案可知,本发明提出的多旋翼动力测试方案,用于开展新的螺旋桨和电机 的磨合试验,测试动力系统中电机与螺旋桨的匹配性,最大程度的发挥动力系统工作效率;测试不同转速下,动力系统所能产生升力,以及动力系统对于电源系统的总体功率要求;通过接入飞控,在地面模拟多旋翼无人机空中飞行时单路动力驱动系统的功能性能和飞控调节能力。
虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明。本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因此,本发明的保护范围当视权利要求书所界定者为准。

Claims (3)

1.一种多旋翼动力测试装置,其特征在于,包括测试底座、轴承、垂直力臂、水平力臂以及压力传感器,其中:
所述轴承安装在测试底座上,用于在进行测试时改变被测螺旋桨所产生的拉力和扭矩的方向;
所述垂直力臂直接与所述轴承连接,所述水平力臂垂直地安装到所述垂直力臂的下方,并且垂直力臂和水平力臂之间硬连接;
所述垂直力臂的上方形成有螺旋桨的推力测试安装面以及扭矩测试安装面,并且推力测试安装面与扭矩测试安装面垂直;
所述压力传感器安装在水平力臂的下方,位于水平力臂与测试底座之间。
2.根据权利要求1所述的多旋翼动力测试装置,其特征在于,所述压力传感器安装在所述测试底座上,并且压力传感器的上端与所述水平力臂的下方点接触。
3.根据权利要求1所述的多旋翼动力测试装置,其特征在于,所述压力传感器呈S形,其底端安装在底座上,上端与水平力臂点接触。
CN201620625865.1U 2016-06-22 2016-06-22 多旋翼动力测试装置 Active CN205770209U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201620625865.1U CN205770209U (zh) 2016-06-22 2016-06-22 多旋翼动力测试装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201620625865.1U CN205770209U (zh) 2016-06-22 2016-06-22 多旋翼动力测试装置

Publications (1)

Publication Number Publication Date
CN205770209U true CN205770209U (zh) 2016-12-07

Family

ID=58129713

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201620625865.1U Active CN205770209U (zh) 2016-06-22 2016-06-22 多旋翼动力测试装置

Country Status (1)

Country Link
CN (1) CN205770209U (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105947233A (zh) * 2016-06-22 2016-09-21 北方信息控制集团有限公司 多旋翼动力测试装置与方法
CN107933979A (zh) * 2017-11-14 2018-04-20 哈尔滨工业大学 一种杠杆式火星无人机旋翼系统的悬停特性测试模拟装置及方法
CN109387314A (zh) * 2018-11-29 2019-02-26 南京航空航天大学 一种可倾转旋翼动力测量装置及其测量方法
CN112630649A (zh) * 2019-10-08 2021-04-09 北京京东尚科信息技术有限公司 电机测试装置
CN113200152A (zh) * 2021-06-16 2021-08-03 青岛航空技术研究院 小型复合翼无人机动力测试装置及其测试方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105947233A (zh) * 2016-06-22 2016-09-21 北方信息控制集团有限公司 多旋翼动力测试装置与方法
CN107933979A (zh) * 2017-11-14 2018-04-20 哈尔滨工业大学 一种杠杆式火星无人机旋翼系统的悬停特性测试模拟装置及方法
CN109387314A (zh) * 2018-11-29 2019-02-26 南京航空航天大学 一种可倾转旋翼动力测量装置及其测量方法
CN112630649A (zh) * 2019-10-08 2021-04-09 北京京东尚科信息技术有限公司 电机测试装置
CN112630649B (zh) * 2019-10-08 2024-01-12 北京京东尚科信息技术有限公司 电机测试装置
CN113200152A (zh) * 2021-06-16 2021-08-03 青岛航空技术研究院 小型复合翼无人机动力测试装置及其测试方法

Similar Documents

Publication Publication Date Title
CN105947233B (zh) 多旋翼动力测试装置与方法
CN205770209U (zh) 多旋翼动力测试装置
Powers et al. Influence of aerodynamics and proximity effects in quadrotor flight
CN102180270B (zh) 一种微小型旋翼飞行器实验平台及应用
CN105241631B (zh) 一种直升机尾桨涡环状态测试系统
CN102589840A (zh) 一种垂直或短距起降飞机地面效应试验系统
KR20140125222A (ko) 수직 이착륙이 가능한 무인 비행체 및 무인 비행체의 기동성 비행 방법
Jeong et al. Dynamic modeling and analysis of a single tilt-wing unmanned aerial vehicle
Khan Dynamics modeling of agile fixed-wing unmanned aerial vehicles
May et al. Dynamic modeling and analysis of tilt-wing electric vertical take-off and landing vehicles
Lustosa et al. Development of the flight model of a tilt-body MAV
Ioppo The design, modelling and control of an autonomous tethered multirotor UAV
Stone The T-wing tail-sitter research UAV
CN112623265A (zh) 一种民用直升机海上救生性能验证试飞方法
Li et al. Experimental investigation on aerodynamics of nonplanar rotor pairs in a multi-rotor UAV
Joels et al. Design, Analyses, and Flutter Testing of the Active Aeroelastic Aircraft Testbed (A3TB) Platform
Herz et al. Impact of Rotor-Rotor and Rotor-Body Aerodynamic Interactions on Quadrotor Vehicle Performance
CN202219839U (zh) 垂直升降飞行器的全向飞行机翼结构
Yokota et al. Observer-based angle of attack estimation for tilt-wing eVTOL aircraft
Ke et al. Full envelope dynamics modeling and simulation for tail-sitter hybrid UAVs
Dantsker et al. Propulsion System Design, Optimization, Simulation, and Testing for a Long-Endurance Solar-Powered Unmanned Aircraft
CN205524948U (zh) 无人自转旋翼机
Yeo et al. Fixed-wing unmanned aircraft in-flight pitch and yaw control moment sensing
Banazadeh et al. Development, instrumentation, and dynamics identification of a coanda air vehicle
Kaya Modeling and experimental identification of quadrotor aerodynamics

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant