CN205720216U - 远程土地湿度高精安全检测系统 - Google Patents

远程土地湿度高精安全检测系统 Download PDF

Info

Publication number
CN205720216U
CN205720216U CN201620223611.7U CN201620223611U CN205720216U CN 205720216 U CN205720216 U CN 205720216U CN 201620223611 U CN201620223611 U CN 201620223611U CN 205720216 U CN205720216 U CN 205720216U
Authority
CN
China
Prior art keywords
audion
resistance
electric capacity
operational amplifier
humidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201620223611.7U
Other languages
English (en)
Inventor
韩群艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Hengzheng Engineering Quality Inspection Co., Ltd.
Original Assignee
Chengdu Hongkairui Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Hongkairui Technology Co Ltd filed Critical Chengdu Hongkairui Technology Co Ltd
Priority to CN201620223611.7U priority Critical patent/CN205720216U/zh
Application granted granted Critical
Publication of CN205720216U publication Critical patent/CN205720216U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本实用新型公开了一种远程土地湿度高精安全检测系统,包括湿度检测结构和与该湿度检测结构通过无线网络连接的远程监控结构;湿度检测结构由远程控制器,分别连接在远程控制器上的信号发射器、太阳能电池和数模转换器,以及通过信号处理电路与数模转换器相连接的土壤湿度传感器组成,在太阳能电池与远程控制器之间还设置有双稳保护电路;远程监控结构由终端控制器,以及分别连接在终端控制器上的显示器与信号接收电路组成。本实用新型提供了一种远程土地湿度高精安全检测系统,降低了土壤湿度的检测难度,无需种植人员在土地中奔波,更好的保护了农作物,提高了土壤湿度的检测效率。

Description

远程土地湿度高精安全检测系统
技术领域
本实用新型属于检测系统领域,特别涉及一种远程土地湿度高精安全检测系统。
背景技术
农作物在生长的时候,需要温度、养分以及水分相互配合才能使得农作物更好的进行生长。在农作物生长的过程中,无论土壤的含水量过高或过低均会干扰其正常生长,影响最终的产量,甚至还会导致农作物在生长的过程中发生死亡。
现有的技术中,对土壤的含水量进行测定主要是依靠人工测定的方式来完成,需要耗费大量的人力进行测定,不利于节省种植成本。而采用现代化的土壤含湿度检测设备又需要不断的进行换位检测,也需要耗费大量的时间。
发明内容
本实用新型的目的在于克服了上述问题,提供了一种远程土地湿度高精安全检测系统,降低了土壤湿度的检测难度,无需种植人员在土地中奔波,更好的保护了农作物,提高了土壤湿度的检测效率。
为了实现上述目的,本实用新型采用以下技术方案实现:
远程土地湿度高精安全检测系统,包括湿度检测结构和与该湿度检测结构通过无线网络连接的远程监控结构;湿度检测结构由远程控制器,分别连接在远程控制器上的信号发射器、太阳能电池和数模转换器,以及通过信号处理电路与数模转换器相连接的土壤湿度传感器组成,在太阳能电池与远程控制器之间还设置有双稳保护电路,该双稳保护电路的输入端与太阳能电池相连接、输出端与远程控制器相连接;远程监控结构由终端控制器,以及分别连接在终端控制器上的显示器与信号接收电路组成;远程控制结构通过信号发射器与终端控制器上的信号接收电路无线连接。
作为优选,所述土壤湿度传感器为SE-103V土壤水分传感器或者SW-103土壤水分传感器。
作为优选,所述远程控制器与终端控制器均为M68HC11型单片机。
进一步的,所述双稳保护电路由三极管VT1,三极管VT2,三极管VT3,三极管VT4,MOS管Q1,一端与三极管VT1的集电极相连接、另一端与三极管VT2的集电极相连接的电阻R1,正极与三极管VT3的集电极相连接、负极与三极管VT4的发射极相连接的电容C1,串接在三极管VT3的基极与发射极之间的电阻R2,正极与MOS管Q1的源极相连接、负极与电容C1的负极相连接的电容C2,一端与三极管VT2的基极相连接、另一端与三极管VT3的发射极相连接、滑动端与MOS管Q1的栅极相连接的滑动变阻器RP1,一端与三极管VT1的发射极相连接、另一端与三极管VT4的集电极相连接的电阻R4,N极与MOS管Q1的漏极相连接、P极经电阻R5后与三极管VT4的基极相连接的二极管D1,一端与二极管D1的P极相连接、另一端与三极管VT4的发射极相连接的电阻R6,一端与三极管VT3的发射极相连接、另一端与电容C2的正极相连接的电阻R3,以及一端与电容C2的正极相连接、另一端与三极管VT4的发射极相连接的电阻R7组成;其中,电容C1的正极与三极管VT1的集电极相连接,三极管VT1的基极与三极管VT2的发射极相连接,三极管VT1的发射极与MOS管Q1的源极相连接。
再进一步的,所述信号接收电路由运算放大器P1,运算放大器P2,三极管VT5,三极管VT6,信号接收天线M,正极与信号接收天线M相连接、负极经电阻R9后与运算放大器P1的正输入端相连接的电容C7,一端接+5V电源、另一端与电容C7的负极相连接的电阻R8,一端接地、另一端与运算放大器P1的负输入端相连接的电阻R10,串接在运算放大器P1的负输入端与输出端之间的电阻R11,负极与运算放大器P2的负输入端相连接、正极顺次经电阻R12和电容C6后与运算放大器P1的输出端相连接的电容C7,串接在运算放大器P2的负输入端与输出端之间的电阻R14,正极与运算放大器P2的输出端相连接、负极顺次经电阻R8和电阻R13后与运算放大器P2的正输入端相连接的电容C6, 正极与电容C6的正极相连接、负极与三极管VT5的发射极相连接的电容C7,以及一端与三极管VT5的基极相连接、另一端与三极管VT6的集电极相连接、滑动端与电容C7的负极相连接的滑动变阻器RP2组成;其中,电阻R13和电阻R8的连接点接地,电容C6的负极与三极管VT5的集电极相连接,运算放大器P2的正电源端接+5V电源,运算放大器P2的负电源端接-5V电源,三极管VT5的发射极与三极管VT6的基极相连接,信号接收天线M作为该信号接收电路的输入端,三极管VT6的发射极作为该信号接收电路的输出端且与终端控制器相连接。
本实用新型较现有技术相比,具有以下优点及有益效果:
(1)本实用新型设置有湿度检测结构与远程监控结构组成,使得湿度检测结构在使用时其检测结果可以在远方的远程监控结构上进行显示,使得检测人员无需在田间走动,降低了检测的难度,更好的保护了农作物的生长。
(2)本实用新型设置有双稳保护电路,能够稳定太阳能电池输出的电压与电流,避免了产品在使用时电压电流波动对后续元器件造成冲击,更好的保护了产品的使用安全,同时还能很好的避免电压或电流波动对检测数据造成的影像,进一步提高了系统检测的准确度。
(3)本实用新型设置有信号接收电路,能够提升信号接收的效果,并对接收的信号进行滤波与放大处理,进一步提高了信号的强度与辨识率,大大提高了系统的使用效果。
附图说明
图1为本实用新型的结构框图。
图2为本实用新型的双稳保护电路的电路图。
图3为本实用新型的信号接收电路的电路图。
具体实施方式
下面结合实施例对本实用新型作进一步地详细说明,但本实用新型的实施方式不限于此。
实施例
如图1所示,远程土地湿度高精安全检测系统,包括湿度检测结构和与该湿度检测结构通过无线网络连接的远程监控结构;湿度检测结构由远程控制器,分别连接在远程控制器上的信号发射器、太阳能电池和数模转换器,以及通过信号处理电路与数模转换器相连接的土壤湿度传感器组成,在太阳能电池与远程控制器之间还设置有双稳保护电路,该双稳保护电路的输入端与太阳能电池相连接、输出端与远程控制器相连接;远程监控结构由终端控制器,以及分别连接在终端控制器上的显示器与信号接收电路组成;远程控制结构通过信号发射器与终端控制器上的信号接收电路无线连接。
所述土壤湿度传感器为SE-103V土壤水分传感器或者SW-103土壤水分传感器。所述远程控制器与终端控制器均为M68HC11型单片机。
安装时,首先将湿度检测结构设置在土地中需要检测土壤湿度的位置,在设置时要确保土壤湿度传感器的端部插入土地中,并要确保植物的枝叶不会遮蔽太阳能电池,最终打开湿度检测结构的电源开关使其开始运行,确保湿度检测结构与设置在远处的远程监控结构通电运行并相互连接。
如图2所示,所述双稳保护电路由三极管VT1,三极管VT2,三极管VT3,三极管VT4,MOS管Q1,电容C1,电容C2,滑动变阻器RP1,电阻R1,电阻R2,电阻R3,电阻R4,电阻R5,电阻R6,以及电阻R7组成。
连接时,电阻R1的一端与三极管VT1的集电极相连接、另一端与三极管VT2的集电极相连接,电容C1的正极与三极管VT3的集电极相连接、负极与三极管VT4的发射极相连接,电阻R2串接在三极管VT3的基极与发射极之间,电容C2的正极与MOS管Q1的源极相连接、负极与电容C1的负极相连接,滑动变阻器RP1的一端与三极管VT2的基极相连接、另一端与三极管VT3的发射极相连接、滑动端与MOS管Q1的栅极相连接,电阻R4的一端与三极管VT1的发射极相连接、另一端与三极管VT4的集电极相连接,二极管D1的N极与MOS管Q1的漏极相连接、P极经电阻R5后与三极管VT4的基极相连接,电阻R6的一端与二极管D1的P极相连接、另一端与三极管VT4的发射极相连接,电阻R3的一端与三极管VT3的发射极相连接、另一端与电容C2的正极相连接, 电阻R7的一端与电容C2的正极相连接、另一端与三极管VT4的发射极相连接。
其中,电容C1的正极与三极管VT1的集电极相连接,三极管VT1的基极与三极管VT2的发射极相连接,三极管VT1的发射极与MOS管Q1的源极相连接。
如图3所示,信号接收电路由运算放大器P1,运算放大器P2,三极管VT5,三极管VT6,信号接收天线M,滑动变阻器RP2,电容C3,电容C4,电容C5,电容C6,电容C7,电阻R8,电阻R9,电阻R10,电阻R11,电阻R12,电阻R13,以及电阻R14组成。
连接时,电容C7的正极与信号接收天线M相连接、负极经电阻R9后与运算放大器P1的正输入端相连接,电阻R8的一端接+5V电源、另一端与电容C7的负极相连接,电阻R10的一端接地、另一端与运算放大器P1的负输入端相连接,电阻R11串接在运算放大器P1的负输入端与输出端之间,电容C7的负极与运算放大器P2的负输入端相连接、正极顺次经电阻R12和电容C6后与运算放大器P1的输出端相连接,电阻R14串接在运算放大器P2的负输入端与输出端之间,电容C6的正极与运算放大器P2的输出端相连接、负极顺次经电阻R8和电阻R13后与运算放大器P2的正输入端相连接,电容C7的正极与电容C6的正极相连接、负极与三极管VT5的发射极相连接,滑动变阻器RP2的一端与三极管VT5的基极相连接、另一端与三极管VT6的集电极相连接、滑动端与电容C7的负极相连接。
其中,电阻R13和电阻R8的连接点接地,电容C6的负极与三极管VT5的集电极相连接,运算放大器P2的正电源端接+5V电源,运算放大器P2的负电源端接-5V电源,三极管VT5的发射极与三极管VT6的基极相连接,信号接收天线M作为该信号接收电路的输入端,三极管VT6的发射极作为该信号接收电路的输出端且与终端控制器相连接。
工作时,土壤湿度传感器对土壤中的含水量进行测定,并将相应的数据通过数模转换器发送给远程控制器,该远程控制器将具体的土壤湿度通过信号发射器发送给设置在终端控制器上的信号接收电路,最终通过设置在终端控制器 上的显示器进行显示,使得相关人员能够轻易的得知具体的检测结果。
通过上述方法,便能很好的实现本实用新型。

Claims (4)

1.远程土地湿度高精安全检测系统,其特征在于,包括湿度检测结构和与该湿度检测结构通过无线网络连接的远程监控结构;湿度检测结构由远程控制器,分别连接在远程控制器上的信号发射器、太阳能电池和数模转换器,以及通过信号处理电路与数模转换器相连接的土壤湿度传感器组成,在太阳能电池与远程控制器之间还设置有双稳保护电路,该双稳保护电路的输入端与太阳能电池相连接、输出端与远程控制器相连接;远程监控结构由终端控制器,以及分别连接在终端控制器上的显示器与信号接收电路组成;远程控制结构通过信号发射器与终端控制器上的信号接收电路无线连接;所述信号接收电路由运算放大器P1,运算放大器P2,三极管VT5,三极管VT6,信号接收天线M,正极与信号接收天线M相连接、负极经电阻R9后与运算放大器P1的正输入端相连接的电容C7,一端接+5V电源、另一端与电容C7的负极相连接的电阻R8,一端接地、另一端与运算放大器P1的负输入端相连接的电阻R10,串接在运算放大器P1的负输入端与输出端之间的电阻R11,负极与运算放大器P2的负输入端相连接、正极顺次经电阻R12和电容C6后与运算放大器P1的输出端相连接的电容C7,串接在运算放大器P2的负输入端与输出端之间的电阻R14,正极与运算放大器P2的输出端相连接、负极顺次经电阻R8和电阻R13后与运算放大器P2的正输入端相连接的电容C6,正极与电容C6的正极相连接、负极与三极管VT5的发射极相连接的电容C7,以及一端与三极管VT5的基极相连接、另一端与三极管VT6的集电极相连接、滑动端与电容C7的负极相连接的滑动变阻器RP2组成;其中,电阻R13和电阻R8的连接点接地,电容C6的负极与三极管VT5的集电极相连接,运算放大器P2的正电源端接+5V电源,运算放大器P2的负电源端接-5V电源,三极管VT5的发射极与三极管VT6的基极相连接,信号接收天线M作为该信号接收电路的输入端,三极管VT6的发射极作为该信号接收电路的输出端且与终端控制器相连接。
2.根据权利要求1所述的远程土地湿度高精安全检测系统,其特征在于,所述土壤湿度传感器为SE-103V土壤水分传感器或者SW-103土壤水分传感器。
3.根据权利要求2所述的远程土地湿度高精安全检测系统,其特征在于, 所述远程控制器与终端控制器均为M68HC11型单片机。
4.根据权利要求3所述的远程土地湿度高精安全检测系统,其特征在于,所述双稳保护电路由三极管VT1,三极管VT2,三极管VT3,三极管VT4,MOS管Q1,一端与三极管VT1的集电极相连接、另一端与三极管VT2的集电极相连接的电阻R1,正极与三极管VT3的集电极相连接、负极与三极管VT4的发射极相连接的电容C1,串接在三极管VT3的基极与发射极之间的电阻R2,正极与MOS管Q1的源极相连接、负极与电容C1的负极相连接的电容C2,一端与三极管VT2的基极相连接、另一端与三极管VT3的发射极相连接、滑动端与MOS管Q1的栅极相连接的滑动变阻器RP1,一端与三极管VT1的发射极相连接、另一端与三极管VT4的集电极相连接的电阻R4,N极与MOS管Q1的漏极相连接、P极经电阻R5后与三极管VT4的基极相连接的二极管D1,一端与二极管D1的P极相连接、另一端与三极管VT4的发射极相连接的电阻R6,一端与三极管VT3的发射极相连接、另一端与电容C2的正极相连接的电阻R3,以及一端与电容C2的正极相连接、另一端与三极管VT4的发射极相连接的电阻R7组成;其中,电容C1的正极与三极管VT1的集电极相连接,三极管VT1的基极与三极管VT2的发射极相连接,三极管VT1的发射极与MOS管Q1的源极相连接。
CN201620223611.7U 2016-03-22 2016-03-22 远程土地湿度高精安全检测系统 Expired - Fee Related CN205720216U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201620223611.7U CN205720216U (zh) 2016-03-22 2016-03-22 远程土地湿度高精安全检测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201620223611.7U CN205720216U (zh) 2016-03-22 2016-03-22 远程土地湿度高精安全检测系统

Publications (1)

Publication Number Publication Date
CN205720216U true CN205720216U (zh) 2016-11-23

Family

ID=57314328

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201620223611.7U Expired - Fee Related CN205720216U (zh) 2016-03-22 2016-03-22 远程土地湿度高精安全检测系统

Country Status (1)

Country Link
CN (1) CN205720216U (zh)

Similar Documents

Publication Publication Date Title
CN205229869U (zh) 一种智能温室大棚系统
CN106873480A (zh) 一种农业大棚智能控制系统
CN106503785A (zh) 一种农业虫害智能监控系统
CN107272779A (zh) 一种智慧农业控制系统
CN104686296A (zh) 基于多路传感器的农田灌溉智能控制系统
CN103149243B (zh) 树木热脉冲蒸腾量测定仪及其测量方法
CN205720216U (zh) 远程土地湿度高精安全检测系统
CN205720214U (zh) 远程土地湿度高精准监测系统
CN205720218U (zh) 远程土地湿度监测系统
CN205720217U (zh) 远程土地湿度高强度监测系统
CN205808584U (zh) 用于晶体冶炼炉的多路高精度温度巡检仪
CN210426616U (zh) 一种农业大棚的温湿度自动检测系统
CN204406247U (zh) 一种农业温室大棚内环境的监控与控制装置
CN205620409U (zh) 远程土地湿度安全检测系统
CN205720215U (zh) 远程土地湿度高强度双稳检测系统
CN204302764U (zh) 基于物联网的温室大棚控制装置
CN204101942U (zh) 植物生长环境多元信息检测及显示装置
CN204612750U (zh) 一种作物微环境信息实时监测装置
CN203191336U (zh) 树木茎流量测量仪
CN203405715U (zh) 一种规模养猪场智能实时控制系统
CN204270130U (zh) 一种花卉大棚智能控制系统
CN103605391A (zh) 一种农业大棚的智能监测装置及其实现方法
CN205121868U (zh) 一种土壤温湿度采集系统
CN204065888U (zh) 用于恒温恒湿试验室的温湿控制装置
CN206388035U (zh) 一种基于arm单片机的滴灌专用灌溉控制系统

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20180601

Address after: 510000 33 Bridge Road, Qiao street, Panyu District, Guangzhou, Guangdong.

Patentee after: Guangzhou Hengzheng Engineering Quality Inspection Co., Ltd.

Address before: 611200 youth (University) Pioneer Park, Chongzhou Economic Development Zone, Chengdu, Sichuan

Patentee before: CHENGDU HONGKAIRUI TECHNOLOGY CO., LTD.

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20161123

Termination date: 20210322

CF01 Termination of patent right due to non-payment of annual fee